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MEAN-GINI ANALYSIS, STOCHASTIC
EFFICIENCY AND WEAK RISK AVERSION
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Stochastic dominance methods lately have been used to derive efficient strategies
for given risk aversion intervals. A new decision approach, which makes use of
the Gini coefficient, is shown to represent effectively the preferences of weakly
risk averse individuals. The approach also has distinct advantages over stochastic
dominance analysis. An application is provided of farmers’ choices among alter-
native co-operative pooling rules.

Applied research in the economics of risky decisions relies heavily on
procedures for identifying stochastically efficient strategies. Chief among
methods employed are mean-variance and stochastic dominance
analysis, including Meyer’s (1977) popular generalisation of the latter.
Recently stochastic dominance has been favoured because it may be used
to identify any strategy that individuals in a given risk aversion class
unanimously would find inferior to another strategy. Such a property is
especially desirable in view of the strict validity of mean-variance tech-
niques only for quadratic utilities, normally distributed prospects or
vanishingly small risks (Samuelson 1970).

Yet, application of stochastic dominance techniques has proven
troublesome. Second-degree dominance, which represents the interests
of all risk averters, appears typically to eliminate only one-half to four-
fifths of the strategies proposed, often leaving a large number of un-
dominated ones from which to choose (Levy and Hanoch 1970, p. 71;
Porter and Gaumnitz 1972, p. 444; Anderson 1974, p. 164; Anderson
1975, p. 101). Although additional strategies can be eliminated by
further restricting the absolute risk aversion interval, it sometimes is
difficult to know what sub-interval to employ. Further, stochastic
dominance methods are not convenient for analysing portfolio problems
where an optimal weighted combination of strategies is desired (Ander-
son 1975, p. 105).

Yitzhaki (1982) recently proposed an alternative decision model in
which risk is reflected by a function of the mean absolute difference. The
technique has some of the convenience of mean-variance analysis and is
robust, like stochastic dominance, with respect to utility and probability
functional form. In this paper the basis for the technique is described. It
is then applied to a series of risky decision problems and the results are

* Abdelbagi Subaei is now at the University of Gezira, Sudan. The authors appreciate
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compared with those from mean-variance and stochastic dominance
analyses. It is argued that Yitzhaki’s method is appropriately employed
for weakly risk averse decision makers and that the method has distinct
advantages over stochastic dominance when dealing with weakly risk
averse situations.

Mean-Gini Analysis

The variability of a random variable x can be described, among other
ways, by its ‘Gini coefficient’ (Kendall and Stuart 1969, p. 46)

(1) Tr=A/2= |0 x-y|dF(x) dF(y)/2

where F(+) is a cumulative density function defined on the range [a, b]
and x, y is a pair of values of x.! The Gini coefficient is one-half the ex-
pected absolute difference between a randomly selected pair of values of
x. It is to be distinguished from the mean absolute deviation of x from its
mean. Gastwirth (1972) and others show that (1) can be rewritten as?

2 Ir={.[1-Fx)]dx— {2 [1-Fx)* dx
—pr—a— {2 [1 - FP dx
where yu, is the mean of x when it has distribution F.

Mean-Gini dominance

The usefulness of (2) in decision analysis arises from the following
statement proven by Yitzhaki (1982, pp. 179-80). Let F(x) and G(x) be
the cumulative density functions of two risky prospects such that F{(x)
stochastically dominates G(x) in the second degree (SSD), such that

3) fo F() dx< | G(x) dx

for all ¢ in [a, b], with strict inequality for at least one /. Then it is
necessary that

(4) [t [1 = FOol" dx= {0 [1 — G dx

for all positive values of n, with strict inequality for at least one n. Pro-
vided F(x) and G(x) cross at most once, (4) is sufficient as well as
necessary for equation (3).

Condition (4) can be expressed in more intuitive form by defining,
after Shalit and Yitzhaki (1982, p. 25), the ‘extended Gini coefficient’

t For simplicity, the discussion is restricted to continuous, bounded variates. However,
the results may be derived for discrete and unbounded cases as well (Kendall and Stuart
1969; Shalit and Yitzhaki 1982). Equation (1) differs from Gini’s ‘coefhicient of concentra-
lion’, often used in income distribution studies, in that in the latter, (1) is divided by the
mean of x (Gastwirth 1972, p. 307).

2 The bottom version of equation (2) can be obtained from the top version by noting that
[[1 - F)] dx=b—a— {F(x) dx and that b— fF(x) dx= [xF(x) dx=p.
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5 Te(n) = {2 [1 = )] dx~ [.* [1 = F(x))" dx

=pr—a— [ - FJ" dx
Definitions (5) and (2) differ only in that the exponent in the integral of

(5) is generalised: I'; in equation (2), the ‘simple’ Gini coefficient, is
equivalent to I'x(2). Since

(6) pe—Te(n)=a+ [*[1 - F(x)]" dx
condition (4) can be expressed in the ‘extended mean-Gini’ form as

The latter says that if F dominates G in the second degree, then F’s mean
minus extended Gini is at least as large as G’s mean minus extended Gini,
with strict inequality holding for at least one n. Condition (7) is difficult
to apply because it may involve an infinite number of numerical com-
parisons between F and G.? For practical purposes, Yitzhaki suggests im-
plementing the comparisons for n=1 and n=2 only. When n=1,
I'(n) =0 and (7) becomes

(8) HeZ po

When n=2, I'(n) reduces to simple Gini coefficient (2); so (7) becomes

)] pr—Lrzpc—Tg
that is,
9 f2 [1=Fx))12 dx= (.2 [1 — G(x)]? dx

Taken together, equations (8) and (9) will be called the mean-Gini (MG)
criterion. F dominates G by MG if both (8) and (9) hold, providing that
at least one is a strict inequality.

Discriminating power of alternative criteria

Because (8) and (9) are necessary conditions for (7), and (7) is
necessary for (3), relations (8) and (9) are necessary for second-degree
stochastic dominance. Being generally necessary only, (8) and (9) are
easier (or at least no more difficult) to satisfy than (3). Consider two SSD-
efficient strategies, A and B, and a third strategy, C, that is SSD-
dominated by A but not by B.

(a) Since all necessary conditions exist for C to be SSD-dominated by
A, necessary conditions (8) and (9) (the MG criterion) also will in-
dicate that C is dominated by A. That is, every SSD-inefficient
strategy also will be MG-dominated.

(b) Although sufficient conditions are not present for B to be SSD-
dominated by A (or vice versa), necessary conditions (8)-(9) for

* If Fand G cross at most once, it is sufficient to compare them for n=1 and n— o only
(Yitzhaki, p. 183).
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either dominance may be present. Hence, a strategy may be MG-
dominated even if it is SSD-efficient.

(¢) Suppose A is undominated by MG criterion (8)-(9). Then A also
must be SSD-efficient because at least two conditions necessary for
it to be SSD-inefficient are lacking. In other words, every strategy
that is MG-undominated is SSD-efficient.

A principal conclusion is that while all MG-undominated strategies are
SSD-efficient, some SSD-efficient strategies may be MG-dominated.
Undominated sets resulting from application of alternative efficiency
criteria are illustrated in Figure 1. The fewer or weaker the conditions re-
quired for dominance, the more discriminating is the criterion and the
smaller (generally) is the undominated set. Sets D, C, B, and A result
from successive removal of dominance conditions and therefore suc-
cessively must enclose one another. Without knowing the distribution
families involved, we cannot safely identify the mean-variance (MV) un-

D
Second-Degree Stochastic

Dominance Criterion (3)

Extended Mean—Gini Criteria (7)

B
Mean-Gini Criteria (8) & (9)

A

Expected Value
Criterion (8)

FiGure 1 — Undominated Sets under Alternative Dominance Criteria.
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dominated set in Figure 1. But the latter is coterminous with D if the
distributions are normal, and it contains D if the distributions are
lognormal (Levy and Hanoch 1970; Levy 1973, pp. 610-11).

Mean-Gini and weak risk aversion

The fact that some SSD-efficient strategies may be eliminated under
the MG criterion is not necessarily bad. The researcher may not be in-
terested in the class of risk averters whose preferences solely account for
the SSD-efficiency of a given group of prospects. Structural similarity
between a prospect’s certainty equivalent, (x—w), and its (x—T") value
suggest that strategies characteristically eliminated by MG also would be
rejected by a broadly identifiable subset of risk averters. Pratt (1964,
pp. 125-6) has shown that the risk premium, =, of a small-risk prospect is
approximately

(10) 7= rHw)o?/2

where o2 is the variance of the prospect and r(u) is absolute risk aversion
evaluated at u. For fixed g, I and ¢2, ' = r if and only if Au)=2I'/02.
Hence, at the latter value of n(u), I' is approximately the risk premium
and (u —I') is approximately the certainty equivalent. Thus also, criterion
(9) approximately involves comparing the certainty equivalents of F and
G for a particular neighbourhood of absolute risk aversion.

There are several reasons to believe that (9) best represents the weakly
risk averse portion of the utility spectrum, One may view I'=T" (2) in (9)
as a penalty deducted from g on account of the riskiness of x. Intuitively,
a risk penalty should rise with increasing risk aversion as well as with in-
creasing dispersion of x. Yet for a given dispersion, the risk penality
represented by I' (2) is relatively small. Successively larger penalties could
be produced by utilising extended Gini coefficient (5) with successively
larger n. The subclass represented by # =2, therefore, is relatively weakly
risk averse in the interval n=1 . . ., oo admitted by extended mean-Gini
criterion (7).

Another way of viewing this is to note that under SSD criterion (3), F
cannot dominate G if the minimum value of F lies to the left of the
minimum value of G. That is equivalent to satisfying the requirement of
minimaxers that the least desirable outcome of F be at least as good as
the least desirable outcome of G. By contrast, mean-Gini criterion (9)
places only ‘mild’ emphasis on lower distribution tails because squaring a
cumulative density only ‘slightly’ de-emphasises upper tails relative to
lower ones. Analysts could further de-emphasise upper tails by raising
the exponents in the integrals of (9) to higher powers. In fact [pu—I'(n)]
approaches q, the minimum variate value, as n— o. The implication,
again, is that use of the mean-Gini criterion would be appropriate for
relatively weakly risk averse individuals.

Empirical Application
Meyer’s stochastic dominance with respect to a function (MSD), in
which efficient strategies may be identified for an arbitrary risk aversion
interval, already has been utilised by agricultural economists to limit at-
tention to the weakly risk averse case (Kramer and Pope 1981; King and
Oamek 1983). It is natural to ask whether strategies undominated under
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the mean-Gini criterion would be the same as the stochastically efficient
set for some ‘low’ risk aversion interval. The correspondence between
MG- and MSD-undominated sets was tested by applying each method to
the same series of risky decision problems. Mean-variance dominance
(MYV) also was applied for purposes of comparison.

Setting

The problem involved selecting a pooling rule that would be used to
allocate net proceeds of a horticultural processing co-operative among its
grower-members. The co-operative processes and sells a wide variety of
fruits and vegetables. Three pool structures were considered: (a) multiple
pools, where net revenues of each fruit and vegetable are accounted for
separately and allocated in proportion to the volume of each product
each member delivers; (b) a single pool, where net revenues of all pro-
ducts are combined and allocated in proportion to the total value of raw
product each member delivers; and (¢} grouped pools, where combined
fruit net revenues are grouped separately from combined vegetable net
revenues, each allocated in proportion to the value of raw product each
member delivers to each group. Raw products in (b) and (c) alternately
were valued at farm market prices (‘farm-price basis’) and at an index of
expected processing profitability (‘profitability basis’). Thus, five pooling
rules were examined in all.

Depending upon the mix of products a member contributes to the co-
operative, the member could participate in many pools under structure
(a), in at most one pool under structure (b), and in at most two pools
under structure (c). Differences between structures in the probability
distribution of a member’s total payment depend upon his product mix.
For example, although payment variability for some members may be
relatively lower in more diversified pools, those supplying products with
especially stable prices may experience lower risk in multiple (less diver-
sified) pools. Members contributing products with especially high (low)
mean returns would receive higher (lower) mean payments in multiple
pools than in single or grouped ones. Hence, it is desirable to represent
separately the decision problem faced by any member having a distinc-
tive mix of raw products. In the present study, separate dominance
analyses for ten characteristic raw product mix classes were conducted.

Procedures used

Probability data were generated by simulating the annual net returns
per acre that would have been allocated to each product mix class by each
alternative pooling rule during the periods 1960-70 and 1972-80. (The
year 1971 was deleted due to accounting anomalies.) Net returns included
final product sales revenues less processing and farm production costs.
Data were deflated and detrended, and means were adjusted to reflect
future revenue and cost expectations. Cumulative probability values F
then were found by dividing the rank of each observation in each series
by the sample size of 20. A Gini coefficient was calculated by taking twice
the covariance between x and its cumulative density F. This avoids the
necessity of integrating to find I'" (Trajtenberg and Yitzhaki 1982).

For each of the ten product mix classes, MSD, MV, and MG were used
alternatively to model members’ preferences among the five alternative
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pooling rules. MSD-efficient sets for selected risk aversion intervals were
obtained with a program written by Meyer (1977) and modified by James
Richardson. SSD-efficient sets were simply those for which the MSD risk
aversion interval was 0sr=< + o. MV-efficient sets were found by apply-
ing the rule: F dominates G if and only if u. = uc and o? < 62, with at least
one strict inequality (Tobin 1958). To obtain MG-efficient sets, u, I', and
(u—I') first were estimated for every pooling rule. Rules’ u estimates then
were arrayed from highest to lowest, with (u—I") estimates listed next to
the corresponding means. Any rule was eliminated if its (u —I'") estimate
was not higher than that of an alternative with higher mean.* An
example of this procedure for product mix V is given in Tabie 1. Rules 3
and 4 were eliminated first because 295 exceeds 284 and 287. Rule 2 was
eliminated next because 338 exceeds 309.

Results

Results of the dominance analyses are shown in Table 2. Initially the
MG-dominant sets were derived. The MSD-efficient sets were then de-
rived for alternative risk aversion intervals to see how the latter would
compare with the MG-dominant sets. In one series of comparisons, the
lower-r bound was held at zero and the positive upper-r bound gradually
increased. The upper bound nearest zero providing results different from
expected net revenue maximisation was 0<r=<0.0005; in this interval,
only members in product mix class V acted differently from risk-neutral
individuals. The next-higher upper bound providing a solution change
was 0=<r=<0.0015, in which class III members also departed from risk
neutrality. The latter solution, shown in Table 2, was identical to that
generated by the mean-Gini criterion. Results listed under 0 < r<0.0045

TABLE 1
Example of Strategy Elimination by Mean-Gini (MG) Dominance®

Eliminations

First Second
Rule A r T round round
5 547 252 295
1 543 205 338
2 529 220 309 X
3 511 227 284 X
4 471 184 287 X

Mean-Gini undominated pooling rules: 1,5

4 Pooling rule numbers are as follows: 1 —multiple; 2—single (farm-price basis); 3 —single
(profitability basis); 4 —grouped (farm-price basis); 5— grouped (profitability basis).

4 Yitzhaki (p. 183) suggests initially eliminating any strategy G if there is an F such that
wr=pg and I <T'g, with at least one strict inequality. Such conditions, which Yitzhaki col-
lectively calls the ‘MI" criterion’, are sufficient but not necessary for MG criterion (8)-(9).
Hence, application of the MTI criterion must be followed by application of the MG criterion
as just described in the text. Initial elimination by MI", which is completely analogous to
mean-variance analysis, would perhaps be useful if a large number of strategies had to be
compared.
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and 0<r< o in the table suggest how stochastically efficient sets began
to diverge from the mean-Gini-dominant set as more risk averse utilities
were included.

The mildness of risk aversion implicit in mean-Gini is emphasised by
the fact that, in all cases but III and V, MG-dominant strategies also
maximised expected net revenue. For product mix III, mean-Gini
eliminated only one of five strategies, while for product mix V it
eliminated three of the five strategies. In the case of every product mix,
each MG-dominated strategy had a lower mean than all undominated
ones. Nothing in the MG criterion explicitly requires this.

As the risk aversion interval in MSD is widened, an increasingly
heterogeneous group of decision makers is asked to agree on strategies to
be stochastically dominated. Hence, the efficient set generally enlarges.
Such was decidedly the case in the present study. The average number of
SSD-efficient strategies was just over three, similar to the average number
of MV-efficient strategies. SSD- and MV-efficient sets differed in six of
the ten product mix classes shown. Despite this, all MG-dominant
strategies were both SSD-efficient and MV-efficient. MG-dominant
strategies need not, of course, be MV-efficient in all research applica-
tions.

Conclusions

Whether the weak risk aversion inherent in mean-Gini is an asset or
liability depends upon the class of risks or decision makers one wishes to
represent. Clearly it would not be an appropriate model if catastrophic
risks are involved or if the decision makers are very risk-fearing or
heterogeneous in risk attitude. In the absence of more definitive informa-
tion, however, the assumption of weak risk aversion is not a bad idea. It
probably best describes the inclinations of the typical farm decision
maker faced with a moderate-sized gamble (Young 1979, p. 1067;

TABLE 2
Undominated Pools by Members’ Product Mix and Dominance
Criterion?
 Members’ Stochastic dominance (MSD)? Mean- Mean-
product  — variance Gini
mix 0-0.0015 0-0.0045 0-o (SSD) (MV) (MG)
I 4 4 1,4 1,2,4,5 4
I 4 1,3,4,5 1,3,4,5 1,2,3,4,5 4
11 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5 1,2,3,5
v 4 4 2,4 4 4
v 1,5 1,3,5 1,2,3,4,5 1,4,5 1,5
VI 4 4 4,5 2,4,5 4
VII 5 3,5 1,2,3,4,5 2,4,5 5
VIII 4 4 2,4 , 4
1X 1 1 1,3,5 1 1
X 2 1,2,4 1,2,4 1,2,4 2

2 Pooling rule numbers are described in footnote a of Table 1.
Ranges listed are absolute risk aversion intervals. Net returns used in the study were ex-
pressed in whole dollars and on a per-acre basis.
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Kramer and Pope 1981, p. 124; Bond and Wonder 1980, pp. 25-8). The
assumption also avoids the unrealistic emphasis sometimes placed on
third and fourth probability moments by more risk averse model
solutions.

For representing weakly risk averse individuals, mean-Gini has several
natural advantages over Meyer’s stochastic dominance. First, stochastic
dominance analysis of portfolio problems requires initially generating a
series of portfolios with alternative weightings of the individual options
(Porter and Gaumnitz 1972; Anderson 1975). Such sample portfolios,
even though numerous, could fail to include others that are preferable.
By contrast, a piecewise linear program can be used to identify
minimum-I' portfolios at selected mean profit levels (Yitzhaki 1982,
p. 184). MG-dominant portfolios then can be found by applying to this
u, I' frontier the procedure illustrated in Table 1 (see footnote 4).

Second, because mean-Gini analysis relies on parameter estimates
rather than on sequential inspection of entire cumulative density func-
tions, its sampling properties may easily be found analytically. The sam-
ple variance of an estimate of I’ has been derived by Lomnicki (1952).
For normal distributions it reduces approximately to 0.1627¢2N"!, where
N is sample size.’ Since in the normal family the expected value of a I’
estimate is ox™!, the coefficient of variation of the estimate is approxi-
mately 1.2673N -5 under normally distributed returns. With uniformly
distributed returns, the coefficient of variation of sample I'" is only
0.4472N°5, suggesting that mean-Gini is relatively more reliable when
dealing with shorter-tailed distributions. Sampling properties have not
been derived analytically for second-degree or Meyer’s stochastic
dominance (Stein and Pfaffenberger 1983).

A shortcoming of mean-Gini is that the absolute risk aversion interval
represented by setting n=2 is not (in the absence of a comparative study
such as the present one) known exactly. This prevents one from applying
utility assessment results to derive efficient strategies for a precisely
known class of utility functions. However, in some circumstances the
disadvantage may not be great. Estimates of absolute risk aversion coeffi-
cients are not only subject to sampling error but also sensitive to the
money scale employed and to the wealth level at which they are
evaluated. Cross-study comparisons of such coefficients are often
awkward and one may sometimes be warranted only in assuming a broad
class of risk preferences. In weakly risk averse situations, mean-Gini
analysis deserves close consideration.
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