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ESTIMATION OF A PRODUCTION
FRONTIER MODEL: WITH APPLICATION
TO THE PASTORAL ZONE OF EASTERN

AUSTRALIA
GEORGE E. BATTESE AND GREG. S. CORRA*

University of New England
and
Bureau of Agricultural Economics

This paper considers a statistical model for a production frontier that
is consistent with the traditional (nonstochastic) definition of a production
function given in microeconomic theory. Limiting cases of the model are
the familiar average production function and an envelope production
function. Maximum-likelihood estimators for the parameters of the
model are defined. The three related models are applied in the estimation
of a production frontier for the Pastoral Zone of Eastern Australia with
use of data from the Australian Grazing Industry Survey.

Introduction

The concept of a ‘production function’ is basic to the development of
the theory of the firm in microeconomic theory. In the classical non-
stochastic theory of the firm a production function is defined as . . . a
schedule showing the maximum amount of output that can be produced
from a specified set of inputs, given the existing technology’ (Ferguson
[71, p. 110). Several statistical models, that are consistent with this
definition of a production function, have been discussed in recent litera-
ture (e.g. Aigner and Chu [2], Aigner, Amemiya and Poirier [1], and
Aigner, Knox Lovell and Schmidt [3]).

Aigner and Chu [2] considered a model in which output observations
never exceeded the corresponding value on the production function.
Deviations of output observations from the production function were
assumed due to technical inefficiency of a firm or detrimental occur-
rences experienced during the production process. Timmer [10] suggested
that, since the presence of outliers is likely to significantly change the
estimated production function, a predetermined proportion of output
observations should be permitted to lie above the estimated production
function.

Aigner, Amemiya and Poirier [1] and Aigner, Knox Lovell and
Schmidt [3] have suggested statistical models for production functions
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that permit output observations to lie above the production function.
The random errors in the Aigner, Amemiya and Poirier [1] model are
a mixture of positive and negative truncated normal random variables.
The Aigner, Knox Lovell and Schimdt [3] model is discussed below,
although a slight reparameterization is suggested for estimation purposes.

The Production Frontier Model

The statistical model for the production function that we consider is
defined by

Yi=x8+E;, t=1,2,...,T (1)
such that
t:Ut+Vt: t:192y-"aT (2)
where
Y, t=1,2,..., T, are observable random variables that are output
values;
X, t=1,2,..., T, are (1 X k) vectors of non-negative constants

that are input values such that the first element of x, is one and the
T

matrix ( X x’,x;) is non-singular;
t=1

Bis a (k X 1) vector of unknown constants; and

Uiand Vi, t = 1,2, ..., T, are unobservable random errors that are
independently distributed.
The random errors, U, t = 1,2, ..., T, in (2) are assumed to be

negative and arise by truncation of the normal distribution with mean

zero and positive variance op?, whereas the random errors, V,, ¢t = 1,

2, ..., T, are assumed to have normal distribution with mean zero and
positive variance o2 The density function for U, is defined by
Ju () = 2Qnroy®) ™ exp (—3uloy®), ifu, <0

=0, ifu, =0. 3)

The negative error, U,, in the model is interpreted with reference to
a firm’s technical inefficiency of production, while the symmetric error,
V:, which can be considered a ‘measurement error’, is associated with
uncontrollable factors related to the production process. The presence
of the error, V,, implies that the output value, x,8 + U,, is not observ-
able.

If the random errors, V;, are absent from the error model (2), then
the model obtained is that considered by Aigner and Chu [2], which we
call the ‘full-frontier model’. In this case the range of the dependent
random variable depends on the g-parameters, i.e., y; < x,8, t = 1, 2,
R '

If the random errors, U;, are absent from the model (2), then the
model obtained is called the ‘average-frontier model’, the one most often
estimated in econometric studies. For the production function (1)
having errors, E;, — V4, t = 1, 2, . . ., T, the expectation of output
observations for a given vector of input values, x,, is x,8, and under the
stated assumptions the output observations exceed the expectation with
probability 0-5.

The production function (2), in which the variances op? and o2 are
positive, is referred to in this paper as the ‘pseudo-frontier model’. The
average- and full-frontier models are limiting cases of the pseudo-
frontier model.
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The density function for the observable random variable, Y, is
given by

ng(yt) =fE1(J’t ~ x,8) 4)
where fz,( . ) denotes the density function for E,. The density function for
E, is obtained from the joint density function for U, and V, by the change-
of-variable technique that involves a straightforward but somewhat
tedious exercise in integration. That is, by the transformation
E, = U, + V, and (say) W, = V,, where E, < W,, the joint density
function for E, and W, evaluated at e, and w, is the product of the marginal
density functions for U, and V, evaluated at e, — w, and w,, respectively.
Thus the density function for E, is defined by

Tulen) = f " fode, = w) fr(wdw, )

where fy;,(.) is defined by (3) and f,(.) is the density function for the
normal distribution with mean zero and variance ,,2. The solution to the
integral equation (5) is given by (see Corra [5, pp. 13-15])

Jele) = 2[1 — ®(e,0y/oy0)](2n0?)~*exp(—1e.*/a?) (6)
where 6% = 0,2 + ¢,2 and ®( . ) denotes the distribution function for the
standard normal random variable,

ie., O(z) = fz (2m)~*exp( —1t%)dt.

Equations (4) and (6) imply that the density function for Y, can be
expressed by

Sr, () = 2[1 — ©(z))(2ra*) " 2exp[ 30 ~ x:8)*/0?] (7)
where
z, = [(y: — xB)lelly/Q - »I* (3)
and
v = oyl 9

The expression for the density function for Y,, given by (7), is not
identical to that given by Aigner, Knox Lovell and Schmidt [3, equation
(8)] in that the latter authors express the density function in terms of
A = op/oy instead of . The parameter y is bounded between zero and
one, whereas the parameter A can be any positive real number. We
suggest that estimation of the model in terms of the formulation (7)-(9)
is computationally preferable.

It is noted that if the variance ¢,> approaches zero, then the variable
z, approaches zero and so the factor 2[1 — ®(z,)] in (7) approaches
one. In this case the density function for Y, approaches that of a normal
distribution with mean x,8 and variance ¢* = ¢?,. This is the density
function for the ‘average-frontier model’. If, however, the variance 6%,
approaches zero, then the variable z, approaches minus infinity and the
factor 2[1 — ®(z,)] in (7) approaches two. In this case the density function
for Y, approaches that of the truncated normal distribution that is obtained
from (3) by substituting y, — x,f for u,.

2
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It should be noted that the parameter 6,2 is not the variance of the
negative error, U,. It can be shown that E(U,) = —(20,%/n)* and Var
(U) = 6y (m — 2)/n. Tt therefore follows that the expectation and
variance of ¥, in terms of our parameterization of the model are

E(Y) = x.f — 2yo?/n)

and
. Var(Y,) = o%(n — 2y)/x.
Given the sample observations, y;, s, . . ., ¥p, on the random vari-
ables, Y, Y», . . ., Y, the logarithm of the likelihood function is given
by

T
L@;y) = —1TIn(4n) — iTInc?) + E In[l1 — ®(z,)] —
=1

1:2 (e — x.f)*[e?, (10)
where 0 = (', 62, )" denotes the (k + 2) column vector of parameters
of the model.

The maximum-likelihood estimates for the parameters of the model,
denoted by 0, are defined by the solution to the (k + 2) likelihood
equations that are defined by equating the partial derivatives of the
logarithm of the likelihood function to zero, i.e.,

6L(8;y) /86 = 0 (11)
where 0 denotes the (k 4 2) column vector of zeros.

The first-order partial derivatives of L(#;y) with respect to f, ¢2 and
v can be shown to be

8L(0:; —

(a ﬂ ) _ [(1 _yy)az]t % hey + {( WZV)]* %1 z.x, (12)
(0
2 ;a ) _ 2T 212 z h(z,)z, + < yo.zy) E z 42
and
oL(B; B

(3): ») = — %‘[7(1 — }’):’ 1 —gjl h(Zt)Zt (14)

where h(zt) = ¢(Zr)/[1 - (D(Zt)]
and g(z) = 2 ©(z) = (2n)texp(—1z).

Itis clear from equations (12), (13) and (14) that the maximum-likelihood
estimates for the parameters cannot be expressed in closed form and that
they can only be approximated by numerical methods.

The well-known Newton-Raphson method is used to approximate the
maximum-likelihood estimates of the parameters in the production frontier
(1)~(2). Given an initial estimate, ,, for the vector 6, a new estimate, 6,
is obtained by the Newton-Raphson technique according to the formula

s s &2L(0y; )7L 6LB,; ¥)
O =00 = [ 30 90 ] 20 =
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’L(0; y) . . . .
where 2000 denotes the square matrix of dimension (k + 2), consist-

ing of the second partial derivatives of the logarithm of the likelihood
function, evaluated at the initial parameter estimates.

The initial estimate, §,, should be in a neighbourhood of the global
maximum of the likelihood function for the Newton-Raphson estimator
to have desirable statistical properties. For one to have reasonable
assurance that approximate maximum-likelihood estimates are obtained,
a wide search of the parameter space is required and the value of the
likelihood function evaluated at different points. This is not an excep-
tionally difficult task for the production frontier model (1) because
only three parameters involve any real problem of choosing reasonable
initial estimates. These parameters are the intercept, denoted by g,, and
the variance parameters 62 and y. The ordinary least-squares estimators
for the other B-parameters are unbiased whereas the ordinary least
squares estimator for the constant, 8, unbiasedly estimates 8, —
(26y*/m)* and the residual mean square from the regression unbiasedly
estimates ¢2 — (2042%/x). It is suggested that different initial estimates
for y, ranging from say 0-1 to 0-9, be used.

Given suitable regularity conditions (e.g., Amemiya [4] and Theil
[9. p. 392)), it follows that the maximum-likelihood estimator, denoted by

Or, is such that the random vector, v/T(f; — 6), converges in distribution

to a (k + 2)-variate normal random variable with zero mean vector and
Lim 1 92L(0; Y)])| !

To>o0 [- TW“ , where Y denotes the

(T x1) vector of random variables Y;, Y,, .. ., Y. The covariance matrix

of the maximum-likelihood estimator is estimated by

Cov(fy) = [— L ¥) Y)] -

covariance matrix {

99 00 (16)

The second-order partial derivatives of L(6; y) are not given in this paper
but they are presented by Corra [5].

It is noted that one of the basic regularity conditions to establish the
above asymptotic result is that the expectations of the first-partial deriva-
tives of the logarithm of the likelihood function are zero,

ie., E[a—"‘%ﬁﬂ] = 0. (17

This condition is satisfied for the pseudo-frontier model defined by (1) and
(2). Proof that the result of (17) is true is obtained with use of the ex-
pectations

E(Z) = —Q2n)*y/(1 — »*.
E{H(Z)/[1 — ©(Z)]} = [2(1 — y)/=lt,

E{H(Z)Z,[[1 - D(Z))]} = 0,
where Z, = [(Y, — x,f)/o][y/(1 — y)]*. These expectations are not
proven here. Further, we have not been successful in obtaining the
expectations of the second-order partial derivatives of the log-likelihood

and
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function. Thus the inverse of the negative of the matrix of second-order
partial derivatives, evaluated at maximum-likelihood estimates, is used
[equation (16)] to estimate the covariance matrix of the maximum-
likelihood estimators for the parameters of the production frontier, This
estimated covariance matrix is, however, not necessarily positive definite.
- The condition of equation (17) is not satisfied for the ‘full-frontier
model” in which 62, = 0. For this model the log-likelihood function is

T
LO%y) = —3TIn(4m) = 3T (o) = 1 Z (v — x:f)jov®  (18)
=

where vy, < x,f,t =1,2,...,T, and
0* = (B, av*).
From this expression it is clear that the maximum-likelihood estimate

T
for f is obtained by minimizing the sum of squares, X (y, — x,f)?,
t=1

subject to the restrictions, y, << x:8, ¢ = 1, 2, ..., T. This is clearly
a quadratic programming problem.! The standard errors for the
maximum-likelihood estimators for the g-parameters in this model are
not obtained by use of (16).

Empirical Results

We apply the statistical model (1) in the estimation of a production
frontier for sheep production in the Pastoral Zone of Eastern Australia
which includes parts of the three States, South Australia, New South
Wales, and Queensland. The model is defined by

Y, = Bo+ x1B81 + x2:B2 + XaeB3 4 X4eBa 4 x5:85 + E,
t=1,2,...,T. (19)
where the subscript ¢ denotes the rth farm in the survey data consisting
of T farms in the region;

Y: denotes the logarithm of the value of sheep production;

x1: denotes the logarithm of the cost of watering facilities;

x2; denotes the logarithm of the cost of fencing;

xz; denotes the logarithm of the cost of labour;

x4+ denotes the logarithm of the cost of machinery inputs;

xs5; denotes the logarithm of the costs associated with land,
and the random errors, E,, 1t = 1, 2, ..., T, are assumed to be indepen-
dent and identically distributed and have the same marginal distribution
as the errors, E,, of (2).

The values of the variables in the model (19) were calculated from
data obtained by the Bureau of Agricultural Economics in the 1973-74
Australian Grazing Industry Survey. The definitions of the variables in
terms of the variables of the BAE code for the survey are given in
Corra [5]. The dependent variable is obtained by summing the net
proceeds from wool sales and the net trading and inventory gain in
livestock numbers during the financial year 1973-74. The value of the
‘water variable’, x,, is calculated by summing the costs of improvements
to the water supply, depreciation in the value of existing water supply

1 This result is stated by Schmidt [8]. In addition, if the negative errors, U,,
in a full-frontier model have exponential distribution, then the maximum-likelihood
estimates for the S-parameters are obtained by linear programming, namely

T
Minimize X ly, — x,f], subjecttoy, < x5, t=1,2,..., T
=1
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facilities, and an interest charge (8 12 per cent) on the closing depre-
ciated capital value of the existing water supply. The value of the
‘fencing variable’, x,, is calculated by summing the value spent on
improvements to fencing and yards, depreciation on existing fences and
yards, and an interest charge on the closing depreciated capital values
of the yards and fences. The value of the ‘labour variable’, xs, is obtained
from the total cost of labour (including imputed family labour costs)
minus the cost of shearing and crutching which is considered a ‘market-
ing cost’ for wool that is subtracted from gross wool sales to obtain the
value of the dependent variable. The value of the ‘machinery variable’,
x4, is obtained by adding the costs of electricity, fuels, oils, grease,
repairs to machinery, insurance and depreciation on farm plant and
machinery. The value of the ‘land variable’, x5, is obtained by summing
the costs of rates and taxes, rents and an interest charge on the total
value of land.

The production frontier of (19) has independent variables that are
practically identical to those of Duloy [6, p. 87ff]. Duloy’s dependent
variable was net farm income and his data were obtained from the
1954-55 Sheep Industry Survey by the Bureau of Agricultural Eco-
nomics. Duloy used ordinary-least squares to estimate the parameters
of the production function for each of the three state regions of the
Pastoral Zone of Eastern Australia. We estimate the parameters of the
model (19) for the whole Pastoral Zone of Eastern Australia in addition
to the three State regions of the zone. Data from 146 sample farms were
used in the empirical analysis, 57 being from New South Wales, 60 from
Queensland and 29 from South Australia.

Table 1 presents the maximum-likelihood estimates for the parameters
of the average-, pseudo- and full-frontier production functions.? The
logarithms of the likelihood functions for the three models are also
evaluated at the respective estimates. The coefficients of determination
for the ordinary least-squares regressions for the N.S.W., Queensland,
S.A. and the whole zone were 0-59, 0-31, 0-86 and 0-44, respectively.

The estimates for the constant, B,, in the pseudo-frontier model
exceed the estimates obtained from the average-frontier model. In two
of the three State regions (N.S.W. and Queensland) the estimates for
the constant in the full-frontier model are less than the estimates for the
constant in the average-frontier model. Under the assumptions of the
pseudo- and full-frontier models, the ordinary least-squares estimator
for f, has a negative bias of (2ye?/m)*. For the sample input values

the predicted values, x,8, for the pseudo- and full-frontier models are
never less than the observed output values or the predicted values for
the average-frontier model. In some cases the predicted values for the
pseudo-frontier model exceed the corresponding predicted values for the
full-frontier model.

A particularly significant feature of the empirical results is the large
value of the variance-ratio parameter, y. The estimates exceed 0-95 for
all regions and are significantly greater than zero. The estimates for v
are not significantly smaller than one for the three State regions and the

2 The parameter estimates for the full-frontier model applied to the whole
Eastern Australian Pastoral Zone were not obtained because the number of linear

restrictions exceeded the maximum for the quadratic programming algorithm that
was available.
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values of the loglikelihood function indicate that the full-frontier model
fits the data best in New South Wales and South Australia. Although
the full-frontier model for the whole zone was not estimated, the esti-
inatcled value of y of 0-9583 is significantly less than one at the 5 per cent
evel.

The elasticities estimated for the pseudo-frontier model exceed zero
with only two exceptions. In two of the four cases in which elasticities
were estimated to be negative for the average-frontier model, positive
estimates were obtained for the pseudo-frontier model. A comparison
with the results obtained by Duloy [6] indicates that the elasticities have
generally decreased over the last twenty years.

A parameter of some interest in the analysis of the production
frontier (19) is the degree of homogeneity. This parameter is defined
by the sum of the five coefficients i, B2, . . ., 85. The estimates for the

sum Z B, are given in Table 2. The estimates obtained from the

1973 74 Grazing Industry Survey indicate that the production frontier
does not exhibit increasing returns to scale. The standard errors for the
estimators for the homogeneity parameter are such that hypotheses of
constant returns to scale for the individual State regions would not be
rejected if the sizes of the tests were sufficiently small. The degree of
homogeneity of the production function in 1973-74 appears, however,
to be significantly different to that in 1954-55.

It should be noted that in the above empirical work we are not
necessarily prepared to defend our model against other competitors
that suggest additional independent variables be used. Further, we are
not recommending the pooling of data from diverse production units.
The empirical analyses are largely numerical illustrations of the statis-
tical model under investigation using a production function similar to
the one of an earlier study.

Conclusions

In this paper we have considered a statistical model for output
observations that is consistent with the traditional definition of a pro-
duction function. The empirical results obtained in the estimation of
sheep production functions for the Pastoral Zone of Eastern Australia
indicate that the variance of asymmetric error in the model is a highly
significant component. This is in contrast to the empirical results
obtained by Aigner, Knox Lovell and Schmidt [3] with manufacturing
and agricultural data. The latter authors found that the asymmetric
error component of the error model (2) was effectively zero.

The error model (2) considered in this paper is worthy of consider-
ation in production function analyses since it includes the familiar
average model and a full-frontier model as limiting cases. Unless there
are strong a priori reasons for assuming one particular model it is
suggested that empirical data be used to determine the model that fits
best.

It may often occur that a multiplicative production function is defined
and there is interest in determining economic optima. In such investiga-
tions moments of the dependent variable are required. These results are
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TABLE 2
Estimates for the Degree of Homogeneity of the Production Frontiers®

Frontier Models

“

1973-74 Data 1954-55
Datab
Region Average Pseudo Full Average
New South 0-7543 07622 0-8163 1.286
Wales 0-127) (0-154)
Queensland 0-8918 0.9383 1.0723 1-340
(0-228) (0-218)
South 1-0428 0-9153 0.8862 1-274
Australia (0-147) (0-163)
Eastern 0:9406 0-7914 — —
Australian (0-106) (0-075)
Pastoral
Zone

2 Standard errors of the estimators are given below the estimates.
b Estimates are obtained from Duloy [6], p. 94.

presented in the Appendix for the case in which the logarithm of the
production function is the model defined by equations (1) and (2).

Appendix
Consider the production function that is defined by
Zt = eﬁowlrplw2tﬁzeEt5 1= 17 2: s Ta (A'l)
such that
E =U+V, t=12,...,T, (A.2)
where Z,, t = 1,2,..., T, are observable output values;

wy, and w,, are two observable input values;
Bos B1 and B, are unknown parameters; and
U, and V; have the same distributions as the errors in (2).

Theorem A.1: If Z, has the distribution specified by (A.1) and (A.2) then
d E(Z) = (eﬁ"wltﬂ‘WZtﬂ’e%cz)z(D(""O'U) = Uy (A.3)
an
Var(Z,) = 12 {20(—20y)e>* — 4[O(—0y)]*} (A4)
where 62 = o, + o2
Proof: The results (A.3) and (A.4) follow readily by well-known results

dealing with expectations of functions of independent random variables
and the following lemma.

Lemma A.1. If U is a negative truncated normal random variable with
density function

Jo) = 2Q2na?y)* exp(—iutloy?), ifu <O
=0, ifu=z0,

then the moment generating function for U is defined by
my(t) = E(e”') = 20(—oyt) exp(o,°t?), —o0 <1t < oo,
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We note that if the error, e, in (A.1) has lognormal distribution [i.e.,
U, = 0in (A.2) or ;% = 0], then the expectation and variance of Z, are
B(Z)) = (Powy vy reo?)
and
Var(Z,) = (efow, fiwy fretor)X(erss — 1),

These results are seen to be special cases of (A.3) and (A.4) in which
O-UZ = 0.
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