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Fair Value of Whole-Farm and Crop-Specific Revenue Insurance

Abstract

The U.S. market in subsidized commodity revenue insurance contracts has expanded rapidly

since 1996.  By far the most prevalent contract forms are crop-specific, rather than the whole-

farm design which has a better claim to being optimal.  For an arbitrary acre allocation vector,

this paper inquires into absolute and relative determinants of the actuarial costs of these forms. 

The actuarial value of whole-farm insurance increases under a particular characterization of

‘more systematic’ risk, whereas the actuarial value of insurance through crop-specific contracts

need not change.  Upon fixing stochastic revenue interactions, we identify conditions such that

the expected cost of revenue insurance via crop-specific contracts is increasing under a more

dispersed vector of location-and-scale adjusted revenue guarantee parameters.  Then we identify

two precise requirements such that the actuarial values of the two contract forms converge.  To

give insights on the difference, fair premiums for whole-farm and crop-specific contracts are

compared for typical farms in two states.

Keywords: acreage allocation, efficiency, insurance subsidies, rate setting, systematic risk
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Fair Value of Whole-Farm and Crop-Specific Revenue Insurance
Federal involvement in U.S. agricultural output insurance markets has grown to become a major

source of subsidies to U.S. farmers.  The Agricultural Risk Protection Act of 2000 increased

premium subsidy levels and removed the requirement that subsidies be no greater than that

available to individuals who purchased traditional yield insurance (APH).  This change has

increased the demand for non-traditional forms of crop insurance, such as subsidized revenue

insurance (RI) contracts.  The most popular RI product, Crop Revenue Coverage (CRC),

typically has an higher premium than APH.  In 2001 and 2002, 47% and 49% of total U.S. crop

insurance premiums were spent on the four available forms of RI contract (U.S. Department of

Agriculture).

These four RI products were developed in response to two acts of Congress that were passed

during the 1990s.  Among the reforms introduced in the Federal Insurance Reform Act of 1994

was a provision that authorized the Federal Crop Insurance Corporation (FCIC) to subsidize and

re-insure innovative risk management products.  The 1996 Farm Bill went further by requiring

the FCIC to implement a pilot revenue insurance program.  In 1996 the Federal government

provided a RI product called Income Protection (IP), while a private insurance company brought

CRC to market.  In 1997 the Revenue Assurance (RA) product became available, while Group

Risk Income Protection (GRIP) made its debut in 1999.  Since their introduction, these contracts

have expanded to cover almost all states and the more important crops, including, corn,

soybeans, wheat, canola, barley, cotton, rice, and grain sorghum.1 

The vast majority of RI contracts are crop-specific rather than whole-farm, in the sense of

Turvey.  RA is the only product that offers whole-farm coverage.  Premiums covered under RA

contracts amounted to 10% of all premium revenue under RI contracts in 2001, and reached 38%

in 2002.  Whole-farm insurance constituted a tiny share of the RI market as premiums paid for

whole-farm contracts comprised 0.8% of premiums under RA contracts issued  in 2001.  In 2002,

premium revenue under whole-farm contracts accounted for 0.2% of that under RA contracts

(U.S. Department of Agriculture).

The choice of crop-specific contracts over whole-farm contracts is somewhat surprising
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because rotation effects make it efficient for many farms to produce a plural number of crops. 

Hennessy, Babcock, and Hayes (HBH), and also Mahul and Wright (MW), have demonstrated

the superiority of whole-farm RI relative to crop-specific RI contracts.2  As has become standard

since early research on the valuation of farm-level revenue insurance contracts (e.g., Turvey and 

Amanor-Boadu; Stokes, Nayda, and English; Stokes), neither work considered problems of

moral hazard and adverse selection arising from information asymmetry.

HBH, in a state-contingent framework, demonstrated superiority by studying the expected

costs of different portfolios of contracts.  MW, using a principal-agent framework, went further

by demonstrating the optimality of the whole-farm insurance contract studied in HBH.  Sufficient

conditions for the superiority of whole-farm RI relative to crop-specific RI are that each grower

is risk-averse, the insurer is risk-neutral, the transactions cost of administering the contract is an

increasing function of the contract’s actuarially fair value (i.e., expected value which we may

write as ‘cost’), and the indemnity depends on producer-specific variables.  MW also established

that the whole-farm option may no longer dominate if the indemnity is based on imperfect

estimators of producer-specific variables (e.g., if futures prices and aggregate yields are used in

place of farm-gate prices and individual yields to determine the indemnity payment.)

The intent of this paper is to establish the factors that determine the difference in actuarially

fair values between the whole-farm and crop-specific contract designs.  The issue is important for

at least two reasons.  It should assist rate setters in pricing contracts, and so reduce the risks that

private companies face.  It should also facilitate policymakers in determining which products to

promote when seeking to assist growers in managing risk.

The analysis proceeds by first considering the actuarially fair value of whole-farm RI.  Here,

we decompose the problem into a) the effects of interactions between revenue risks, controlling

for marginals, and b) the effects of shifts in the marginals, controlling for interactions between

marginals.  We then turn to valuing crop-specific insurance for the same farm.  For these contract

forms, the contract specifications ensure that interactions between the marginals do not matter. 

We identify conditions under which the cost of insuring the farm resolves to a weighted
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(1)

majorization of location-and-scale adjusted guarantee levels.

The third main section integrates the analysis of the earlier sections.  In it we study what

determines the magnitude of the difference between the cost of whole-farm insurance and the

cost of crop-specific insurance for the same farm, having controlled for the magnitude of the

farm-level revenue guarantee.  The difference can be decomposed into two effects.  One concerns

how dispersed the crop-specific guarantee levels are.  The other concerns the systematic

component of crop revenue risks.  After showing that our analysis also applies to area yield

insurance, the paper concludes with numerical applications to farms typical in North Dakota and

in Arkansas.

Whole-Farm Insurance

A farm has available  acres on which to grow n crops, where  acres are

allocated to the ith crop and .  Here, the crops are denoted by the index set

.  Viewed from time point 0 (planting), the per acre revenue on the ith crop

at time point 1 (harvest) is stochastic with random value .  An insurer agrees to guarantee

whole-farm revenue of  to the grower, so that the actuarially fair value is 

where  is the expectation operator over the multivariate distribution .  In

this section, we seek to understand the determinants of .3  Our inquiry will decompose the

effects of the multivariate distribution in Eqn. (1) into impacts across the marginals, or

systematic risk impacts, and impacts along the marginals, which we label ‘dispersion impacts’.

Increase in Systematic Risk

Clearly the function  is (weakly) monotone decreasing and

convex in the argument vector .  A less obvious attribute of the function is that it is

supermodular.  That is, for any pair  with , and for evaluations , 
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, we have 

.  The concept of

supermodularity plays an important role in the theory of comparative statics, in part due to its

connection with the economic notion of complementarity (see, e.g., Topkis or Athey).  Shaked

and Shanthikumar, and also Hennessy and Lapan in economic contexts, have studied a related

stochastic order.  We tailor their order to apply to the present context.    

DEFINITION 1.  Distribution  is larger than  in the decreasing, convex,

supermodular order if  for all decreasing, convex, and supermodular

functions .  The ordering is written as .  

The stochastic order possesses a number of agreeable properties.  In particular, it is closed

under monotone increasing transformations of the random variables.  Thus, suppose that  

 where the  are all increasing functions.  Then 

implies .  Also, the order continues to adhere upon marginalization, e.g., upon

integrating out .

To appreciate why the definition captures aspects of the notion of ‘more systematic risk’,

observe that the function  is decreasing and supermodular in the  for positive

 whenever  is increasing and concave.  So with , then 

 implies  for all

 increasing and concave.  If  is a utility function, then we see that risk averters prefer

distributions that are smaller in the order because marginals are shifted rightward and they are

also, in some sense, less well-aligned.  To see the relation between utility function

 and , note that an integration by parts establishes the

equivalence between  and  for some positive measure

.  Applying Definition 1 to  establishes4
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PROPOSITION 1.  The fair value of whole-farm insurance is increasing in the  order.

Notice that Definition 1 does not require a change in any marginal distribution.  We could

fix all marginals, and then increase the covariability in their interactions to arrive at an ordering

satisfying  such that the fair value increases strictly upon .  It should

also be noted that the related concept of zone-based group insurance that are risk profile

conditioned has already received attention in Wang.  That applied study is concerned with grower

assignment to areas for an area yield insurance that purges moral hazard from grower incentives. 

The intent of the assignment is to align grower yield risks within an area so that within area

systematic risks are high and grower indemnities correlate strongly with grower crop losses.

Having considered the effects of stochastic inter-dimensional interactions, in the next section

we control for these interactions and deal with how the way the marginals themselves relate to

each other affects the whole-farm contract fair value.

Dispersion of Marginals

Whole-farm insurance may be viewed as the assumption of a portfolio position by the insurer. 

Because the insurer’s loss function, , is convex it is intuitive that the risk-neutral

insurer would have a preference for increased diversification.5  In this section we will clarify how

one might measure, and assign preferences over, the amount of risk faced by the insurer.  To do

this we make an assumption on the multivariate distribution:

ASSUMPTION 1.  The crop revenues are such that ,

where the  are exchangeable.  By exchangeable it is meant that if  follows

distribution  then  where the subscripted  transposes any two of the

arguments of .

Exchangeable random variables  do not need to independent, and so the specification  
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 allows for the crop revenues to be correlated.6  Because the  merge with  in

equation (1) under fixed acre parameters are fixed, the location parameters are of no interest in

assessing whole-farm liability when acres are fixed.  Vector  is more interesting, however. 

Upon accepting Assumption 1, we may write the fair value of whole-farm insurance as

   .  The curve in set  that is

given by   , is called the whole-farm iso-value curve.  To ascertain the

nature of , a definition is required.

  

DEFINITION 2.  (See Marshall and Olkin, p. 7) For vectors  and , denote the

respective kth largest components as  and .  Write  if a) 

, and b) .  Then vector  is said to majorize vector .

If a vector, , of random variables is exchangeable, then it is readily shown (see Proposition

11.B.2 in Marshall and Olkin, pp. 287–288) that functions of the specification 

 are both symmetric and convex.  Consequently, they are Schur-

Convex in .  By Schur-Convex, it is meant that  whenever .  We see

then that  is Schur-Convex in  where  indicates the risk position

associated with crop .  And so, focusing on the riskiness of crop revenues, , rather than

on the scale parameters, the fair value of the whole-farm insurance increases as the risk positions

become more ‘spread out’ in the majorization sense.  This observation can be used to establish

PROPOSITION 2.  Under Assumption 1, in the scale parameter space, the whole-farm iso-

value curve is concave to the origin, and the fair value is smaller for iso-value curves closer to

the origin.

The proof is provided in the appendix.  Figure 1 presents an illustration in two dimensions,

and where the shaded area represents smaller levels of expected cost.  Let point  be such that
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(2)

(3)

 .  The matrix 

which is its own inverse, is a linear map of points on the half-orthant ,

onto points on the half-orthant .  In particular, it maps some point  onto

 as shown in figure 1 so that the iso-value points on either sides of the line  must

conform.  In the proof it is demonstrated that the fair values at these two points are the same, and

that the fair value on any  is smaller than either.  Further, it is

shown that the expected cost on any  is smaller than at .  These observations

suffice to demonstrate the result because any point in the shaded area of figure 1 may be obtained

from a point on the iso-cost curve through one of these two operations.  Proposition 2 reveals the

nature of the trade-offs across the crop revenue risk scaling parameters, , that leave the fair

value of the whole-farm insurance contract unchanged.

It is rather obvious that contract specification (1) generates a jointness across marginals. 

When some  increases, then the upper bound on an  such that the insurer is not liable

decreases as a consequence.  Crop-specific insurance contracts are not possessed of this attribute,

and the implications of removing this jointness are quite marked.

Crop-Specific Insurance of a Farm

As an alternative to a whole-farm contract, the insurer might offer the grower a portfolio of crop-

specific insurance contracts to cover losses beyond the crop-specific guarantee, , on the ith crop. 

Then, for the same farm, the farm-level indemnity is

The intent of this section is to ascertain the determinants of expected liability .

 If we invoke Assumption 1 then we may, without further loss of generality, hold that each
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(4)

 follows distribution , where  is an external common source of risk, i.e., the

multivariate distribution  satisfies  for some probability

measure  on the environmental conditioner .7  We will write ,

and we will assume that the usual derivative exists.  Notice that we place no other restrictions on

the univariate distribution .  Integration by parts then demonstrates that (3) may be re-

written as 

Expression , often called the (ex-ante) Sharpe index, has been regularly

encountered in the financial portfolio literature, and measures the expected differential return per

unit of risk (Sharpe; Campbell, Huisman, and Koedijk).  Here  can be thought of as a

differential return and  as the standard deviation of the differential return relative to a riskless

security with return .  However, the portfolio of insurance contracts for individual revenues

differs from an investment portfolio composed of long positions in riskless securities (revenue

guarantees) and short positions in risky assets (crop revenues) because the former portfolio curbs

the downside risk (on the part of the insured).  Expression (4) illustrates the connection between

the Sharpe index and the expected value of the portfolio of crop-specific contracts.  Clearly, the

expected value of the crop-specific insurance is increasing in each Sharpe index .  In contrast

to the investment portfolio management literature, and due to the nature of insurance contracts,

this relationship is not linear because  is convex in .8  To better understand this feature

of expression (4), a definition is warranted.9

DEFINITION 3.  (Cheng) Let .  For  and , assign 

and require the vectors be similarly ordered, i.e., . 

Then vector  is said to be p-majorized by vector  ( ) if
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(5)

(6)

(7)

whenever  is convex.  Equivalently,  if

For a coordinate-wise strictly positive weighting vector , a generalized

Schur-Convex function is one that is increasing in the p-majorization order, i.e., function  is

generalized Schur-Convex if  whenever .10  Expression  is

generalized Schur-Convex with .11  And so, the p-

majorization order is defined in terms of the expected differential returns given by the products

of the risk position times the Sharpe index for each crop.  Furthermore, Cheng shows the

following property of continuously differentiable generalized Schur-convex functions 

where  is the domain of definition.  In other words, for any  such that , an increase

in Sharpe index  by marginal amount  accompanied by a decrease in Sharpe index 

by marginal amount  increases the fair value of the portfolio of crop-specific contracts. 

This is another way of saying that the fair value of crop-specific insurance is positively related to

the variability among the Sharpe indices  adjusted for the riskiness of the crop, .

Summarizing, Definition 3 together with Equation (4) reveal:12

PROPOSITION 3.  Under Assumption 1, let  be fixed numbers.  Then the

fair value of crop-specific insurance, at the farm-level, is smaller under Sharpe index vector  

 than under Sharpe index vector  whenever .
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(8)

The proposition’s inference lends itself to a graphical interpretation, as provided in figure 2. 

Since function  is convex, its level sets are convex.  In the two-crop context one might fix

on a level set, or crop-specific iso-value curve, as specified by .  The terms of trade are

then given by  so that  on the bisector,

.  In  space, points satisfying  (it can be seen that the

pair  is more ‘spread out’ than ) incur higher expected cost than points on the

crop-specific iso-value curve that passes through .13

At this point we turn to another feature of the equation (4), namely that it is possessed of the

arrangement increasing property (Boland, Proschan and Tong).14  In particular, suppose we

consider the values of , , , and .  If it so happens that , then the

value of  increases upon making the transposition .  That is, 

whenever  and  are well-ordered, i.e., whenever .  It can,

therefore, be concluded

PROPOSITION 4.  Under Assumption 1, let .  For any pair of crops, the

fair value of crop-specific insurance, at the farm-level, is larger when the given Sharpe index

values are well-ordered with the p weightings. 

The fair value of a portfolio of crop-specific revenue insurance contracts will be smaller

when the Sharpe indices match inversely with the scale-adjusted acre weights.  The proposition

may be applied in a number of ways.  If  then the insurer will prefer that a

fixed scale vector, , is arranged with a fixed (up to permutations) Sharpe index vector, , so

that the sum, , is minimized.  This will occur when the two vectors, the vector of

revenue risks and the vector of Sharpe indices associated with each revenue, are ordered

inversely; largest value with smallest value and so on.  Alternatively, if the values of the  are
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invariant across crops then the insurer will prefer the arrangement of given vectors  and  that

minimizes the value of .

These are different ways of illustrating that the insurer prefers if the weight is shifted from

the revenues with high Sharpe indices to the revenues with low Sharpe indices in the insurance

portfolio.  Were the risk-neutral insurer paying out the plain differences between the guarantee

levels and the realized revenues this would have been clearly true because  is exactly

the expected differential return on such a portfolio.  Proposition 4 demonstrates the relevance of

the expected differential return statistic in the case of crop-specific insurance contracts. 

Rather than re-arrange given values of Sharpe indices among the farm’s acre allocation

vector, one may wonder whether something can be said about shifts in stochastic revenue

parameters.  The answer is in the affirmative.

 

PROPOSITION 5.  Make Assumption 1.

a) The fair value of the farm-level portfolio of crop-specific insurance contracts decreases with

an increase in the expected values of the crop revenues (i.e., in the location parameters 

) .

b) If , then the fair value increases under more dispersion in the p-

majorization sense among the crop revenues risks  where the p weightings are given by

the crop acres .

This proposition should be viewed as the crop-specific counterpart to Proposition 2.  Rather

than trading off across dimensions, it exploits the effectively univariate nature of the crop-

specific portfolio problem.  The preferences expressed in part a) is a first-order stochastic

dominance result, where acres provide the positive discrete measure.  Part b) is effectively an

acre-weighted mean-preserving spread on the scale parameters.15  This part complements the

Sharpe index dispersion result in Proposition 3 by establishing that an increase in the dispersion

of acre-weighted scale parameters also increases the farm-level expected liability upon insuring
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(9)

crop-specific contracts.  In light of the convexity in scale parameters that is present in both

whole-farm and crop-specific revenue insurance contracts, it is not surprising that the fair values

of both types of insurance rise with an increase in the diversity among crop revenue risk levels.

Now that we have a sense of what determines the fair values of both a portfolio of crop-

specific RI contracts and a whole-farm contract, we are well-positioned to inquire into how they

compare.

The Difference

It has been shown by Hennessy, Babcock, and Hayes, and also by Mahul and Wright, that crop-

specific insurance will be more costly in all states of nature (and so in expectation) than whole-

farm insurance.  That is,  where 

and .  The magnitude of this difference reflects the extent of inefficiency in risk

management because the difference arises from the increased likelihood of poorly targeted cash

inflows to the farm.  The inflows are poorly targeted in that the crop-specific contracts are

designed in an uncoordinated manner so that inflows often occur when marginal utility is low.

The constraint  ensures that the revenue guarantee at the farm-level is invariant

to the contract design, crop-specific or whole-farm, by which the farm revenue is insured.  It is

not immediately clear, however, what determines the magnitude of the difference.  In this

section, we will identify factors that determine the magnitude of .  Our analysis will proceed

in two steps.  First, we will ascertain the nature of an insurer’s preferences over guarantee

vectors.  It will be shown that dispersion in the guarantee levels is responsible for some of the

value of .  Then we will demonstrate that the residual unexplained component of quantity

 is due to systematic risk.  As to dispersion in the guarantee levels,16

PROPOSITION 6.  Under Assumption 1, let  where the  are fixed. 
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(11)

Then, for the set of Sharpe index vectors such that  is constant, the fair value of crop-

specific insurance (at the farm-level) is smallest under Sharpe index vector  where 

.  The fair value of whole-farm insurance is unaffected by location on the set of

Sharpe index vectors determined by fixing the values of  and .

Proposition 6 establishes that dispersion, in the p-majorization sense, away from the -

weighted mean of the location-and-scale adjusted crop-specific revenue guarantees, , is

responsible for some of the value of .  If we decompose 

so that 

then Proposition 6 identifies the condition under which the first right-hand term in (11)

vanishes.17  It remains to establish the determinants of .

We will presently demonstrate that what remains after accounting for the dispersion, i.e.,

, is due entirely to systematic risk.  To verify our claim, we seek a condition such that the

value of expression  recedes to zero.  To this end, we require a result similar to Proposition

1.  However, (10B) differs from the expression in (1) because each random variable enters the

expression in two ways.  Expression  is not necessarily monotone or of uniform curvature in

the random variables, and so the  order no longer suffices.  It is necessary to fix the marginals

so that function  is invariant in value.18 

DEFINITION 4.  Distribution  is larger than  in the supermodular order if

 for all supermodular functions .  The ordering is written as
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(12)

.  

Because the class of functions covered is larger than in Definition 1, this order cannot be

more discriminating than that in Definition 1, i.e., if  then .19  An

application of the  order provides: 

PROPOSITION 7.  Suppose that .  Then the positive difference between the fair

value of the farm-level portfolio of crop-specific insurance contracts and the fair value of the

whole-farm insurance contract is smaller under distribution  than under distribution . 

Equivalently, the value of  is smaller under distribution  than under distribution . 

By contrast with propositions 2 through 6, an inspection of the proof in the appendix shows

why Proposition 7 need not assume exchangeability up to location-and-scale parameters.20  The

dominated and dominating multivariate probability measures need not be symmetric in any way,

and the changes in probability weightings that leads to the  relation are not required to

conform to any symmetry constraints either.

While robust in this sense, Proposition 7 does not establish a path of dominance relations

such that  vanishes in a finite number of steps.  Therefore, it is not forthcoming with insights

on when one might expect relation  to pertain.  Our final result will be more constructive in

that it provides such a path.  The result will show how systematic risk may be viewed as a

concentration in the sources of independent risk that contribute to farm revenue risk.

In (10B), suppose that each of the  may be decomposed into m conditionally independent

and identically distributed mean-zero shocks of the form , where the

conditioning is on .  Then, with the substitution , we may write 
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(13)

(14)

The path adopted such that  vanishes will increase the value of the subtracted expectation on

the right in equation (12) to meet the value of the sum of expectations.  

Commence by writing the vector of risk positions   

Now suppose that independence is no longer adhered to because some of the  are replications,

i.e., copies.  For example,  might be replaced by a copy of another .  Then more

systematic risk has been introduced into the portfolio because there is now perfect correlation

between two among the nm sources of risk.  If, for example,  becomes a copy of  then

 becomes  

When identifying the path, if no  can be replicated by an  then the summation

 is unaffected by the replacement operation.  Remember that,

as in Proposition 2,  is Schur-Convex in the random variable

coefficients whenever the identified random variables are exchangeable.  Independent and

identically distributed random variables are exchangeable.  This allows us to see that expression

 in equation (12) will increase upon  if  and Assumption 2 below holds

ASSUMPTION 2.  No  can be replicated by an .

Upon replacing all , with  we have 



16

(15)

(16)

It is only then, or for one of the  permutations where all  are replaced with some ,  

, that the value of (12) declines to zero.

To see that (12) does decline to zero, write 

Equality  adheres due to the fact that the points of non-differentiability of each

integrand, i.e.,  for the crop-specific integrations and  for

the whole-farm integration, have the same value.  Consequently, we have

PROPOSITION 8.  If  and Assumption 2 adheres, then .  The

expression assumes the value 0 when  , as in (15) above, or when  is one of the 

permutations of .

 Propositions 6-8 establish the following.  Suppose that each revenue is subject to the same

sources of risk, and the variation in crop revenue guarantees is due to the variation in crop

revenue’s location and scale parameters: , so that .  These

are the conditions such that the difference in the indemnities under the two types of insurance

contracts completely disappears.  This happens because there are no idiosyncratic components in 

revenue risks, and all (ex-post) revenues are exact replicas of each other up to the location and

scale parameters.  Then the sum of crop revenues is also a replica of each individual revenue

after the adjustment for location and scale.  Hence, the payments under the whole-farm RI and

the portfolio of crop-specific RI are always identical.  In this case, there is no ‘natural’ risk
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diversification achieved by allocating farm acreage to multiple crops because all crop revenues

are perfectly correlated.   

In summary, when revenue risks are exchangeable up to location and scale parameters then

the fair values of the alternative approaches to crop insurance converge under two conditions. 

The revenue guarantees, when adjusted for location and scale parameters, must be common. 

Further, all risk must be systematic.

Simulation Analysis

To give us some idea of the practical magnitude of the results developed in this paper, we turn to

an examination of an hypothetical North Dakota farm in Cass County.  This farm grows corn,

soybeans and spring wheat in rotation.  The farm’s proven yields for crop insurance purposes for

the three crops equal county trend yields: 100 bu/acre for corn, 34 bu/acre for soybeans, and 40

bu/acre for wheat.  The crop insurance scenarios will be based on the rates and rating

assumptions of the RA product, where the main rating methods are as given in Babcock and

Hennessy.21  Without going into valuation details, the valuation procedure assumes a log-normal

price marginal distribution, and a beta yield distribution.  The correlation structure is imposed by

repeated use of a procedure due to Johnson and Tenenbein. 

Equation (11) reveals that if all risk is systematic, then the difference in actuarial value

between crop-specific and whole-farm coverage is due to dispersion in effective insurance

guarantees.  But clearly, corn, soybean, and wheat crop revenues are not perfectly correlated. 

Weather events affect farm yields differently and crop prices do not move together.  So at least

part of the difference in value pertains to nonsystematic risk.

Table 1 presents the covariance matrix for crop yields and prices used to rate the RA product

in North Dakota.  The resulting average degree of correlation across revenue for the three crops is

approximately 0.45.  Table 2 presents actuarially fair crop-specific and whole-farm RA

premiums for all available coverage levels.  The RA product requires a projected price input, and

the projected prices used in the calculations are $2.35/bu for corn, $4.50/bu for soybeans, with
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$3.00/bu for wheat.  The price volatilities for the log-normal distribution are 0.21, 0.18, and 0.17

respectively.  Equal acreage is assumed planted to each crop.

The value of  equals the difference between average crop-specific premiums and the

whole-farm premium.  It ranges from $5.01/acre at 65% coverage (56% of the average crop-

specific premium) to $7.05/acre at 85% coverage (36% of the average crop-specific premium). 

These large differences indicate that the choice between crop-specific coverage and whole-farm

coverage involves fairly large financial decisions.

A decomposition of  in the manner of (11) requires additional programming.  Revenue

draws were obtained with correlations derived from the Table 1 correlation matrix, while means

and variances were taken from the Cass County hypothetical farm with log-normal prices and

beta yields.  These draws were used to numerically integrate the expressions in (10A) and (10B),

and the decomposition in (11) was accomplished. 

The proportion of  accounted for by  under various coverage level scenarios was

calculated.  If all single-crop guarantees are originally 75% of projected revenue, then 

accounts for about two percent of .  This share rises to 12% when corn single-crop coverage

is 85%, soybeans is 75% and wheat is 65% and to 14% when corn coverage is 75%, soybean

coverage is 65% and wheat coverage is 85%.  As Proposition 3 suggests, we conclude that

increasing coverage dispersion increases the importance of .  But, when coverage of corn

(the crop with the most per-acre projected value) is 65%, soybean is 85%, and wheat coverage is

75%, then  accounts for only three percent of .  When compared with the (75%, 75%,

75%) scenario, the latter scenario increases percent coverage dispersion as well as the value of

.  But it actually decreases dispersion in per-acre coverage, thus accounting for the small

share of .

These results suggest that the reduction in the fair premium for whole-farm revenue

insurance relative to single-crop insurance is primarily driven by risk pooling across crops and

not by a reduction in coverage dispersion, particularly if a farmer compares single-crop and

whole-farm insurance at the same coverage level for all crops.  The example included here is a
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fairly diversified farm with significant amounts of non-systematic risk because a relatively

uncorrelated crop, wheat, was added to two highly correlated crops, corn and soybeans.

Another example will highlight the effect of crop diversification on the magnitude of . 

Table 3 presents  as a percentage of the average single-crop premium for all non-

monoculture combinations of four crops in Arkansas Co., Arkansas.22  To show how the addition

of crops affects the magnitude of , each of the four crops is treated as a “base” crop, to which

additional crops are introduced.  For each rotation, each crop is grown just once.  The

combinations are provided as a diversification lattice in figure 3.  Under Assumption 1, and if the

values of the , the , and the  are common across crops, then the higher (i.e., more

diversified tiers) on the lattice would represent a more diversified portfolio.  From Proposition 8,

we could then infer that the higher tiers on the lattice have larger  values even if lines do not

connect them.23

From table 3 or figure 3, it can be seen that the marginal effect on  upon adding a crop to

a rotation is always positive.  For example, adding cotton to a rice-corn combination increases

 from 0.44 to 0.53.  And adding soybeans to this extended rotation increases  to 0.55. 

But  may be lower under three crop combinations than two crop combinations.  For example,

, under a soybean-rice combination equals 0.48.  But  equals 0.40 under a soybean-corn-

cotton combination.  This illustrates that it is not only the number of crops that affect the

magnitude of , but also the stochastic interactions between the crops.  There is a failure in

exchangeability among the revenue random variables, and so Proposition 8 does not apply.

Table 4 presents the correlation matrix for the Arkansas crop example.  Notice that the corn-

soybean correlations tend to be larger than the corn-cotton correlations.  Notice too that the

normalized value of  for the corn-cotton rotation, as given in table 3, is 0.36 while the value

for the corn-soybean rotation is 0.23.  We see that the diversification impact of adding cotton to

the corn-soybean rotation exceeds the impact of adding soybean to the corn-cotton rotation.  The

inclusion of an additional uncorrelated farming enterprise, such as livestock returns would

significantly decrease insurance premiums further than the levels suggested by table 3.24
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Discussion

This paper has taken a very close look at systematic risk as it relates to crop revenue insurance.25 

Our empirical analysis establishes that the whole-farm contracts are, due to the extent of

idiosynchratic risk, considerably more efficient as risk management tools than are portfolios of

well-designed crop-specific contracts.

Because the benefits from the whole-farm contract design can be so substantial for those

risk-averse growers who cannot adequately protect themselves without using insurance markets,

one wonders why almost all RI contracts are crop-specific.  The answer may be in the nature of

the federal insurance subsidy.  Insurance salespeople are paid on commission, and their

remunerations are in proportion to the premiums on sales made.  The marketer has the incentive

to market a portfolio of crop-specific contracts rather than a single whole-farm contract.  A

grower that is not strongly risk averse may be receptive to the marketer’s sales pitch because

subsidies are provided as a percent of the actuarially fair premium and the subsidy is presently

well in excess of the load to cover administration costs.  To circumvent these agency problems

and to guard against the moral hazard problem that arises from political pressure to provide ex-

post disaster assistance packages, the government might consider issuing fixed-sum crop/revenue

insurance vouchers to growers. 
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(A.1)

(A.2)

(A.3)

Appendix

PROOF OF PROPOSITION 2.  The proof proceeds in two steps.

Step 1: Write 

where .  Function  is Schur-Convex.  We will find two vectors,  and

, such that .  From convexity, we then know that

 .  As in the study by Lapan and Hennessy

of optimal portfolio allocation vectors, let  and 

 where  and .  Then, upon

substitution into (A.1), cancellations and exchangeability establish that .

Step 2: For 

, it will be shown that  is monotone

increasing in .  Differentiating 

with respect to  provides   

where  if event B is realized and  otherwise.  Note, that 

whenever  and  are both monotone in the same direction.  Because

 and  is monotone increasing in , we have that 

is monotone increasing in .  Therefore, and for any , expected liability decreases as 

contracts toward the origin.

PROOF OF PROPOSITION 5.  The approach is to treat acres as a positive discrete measure, and then
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employ standard dominance analysis of the first- and second-order.  To show part a) consider the

map .  Clearly, the expected value

 falls under the map because function  is

monotone decreasing in .  In part b), write  and observe that

 where  is the density of the absolutely continuous

distribution .  Part b) then follows by considering the map  where  with

, and applying Definition 3 to .

PROOF OF PROPOSITION 6.  The constancy of  implies the constancy of 

(at value ).  That the  are fixed implies that  is unaffected in all states. 

Therefore, the fair value of whole-farm insurance is not affected.  Returning to Proposition 3,

note that  is p-majorized by all other vectors on the weighted simplex

  .  Thus, this vector delivers the smallest fair value.

PROOF OF PROPOSITION 7.  Note that both  and  are (weakly)

supermodular in .  Therefore, expressions of the form  must be invariant under

any  with .  In ascertaining the impact on , then, the requirements

on  allow us to confine our attention to the impact on . 

The rest follows because functions of the form  are supermodular in .
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Table 1.  Correlation Matrix for Yields and Prices

Yield Price

Corn Soybeans Wheat Corn Soybeans Wheat
Corn yield 1.00
Soybean yield 0.78 1.00
Wheat yield 0.35 0.30 1.00
Corn price 0.00 0.00 0.00 1.00
Soybean price 0.00 0.00 0.00 0.70 1.00
Wheat price 0.00 0.00 -0.30 0.35 0.25 1.00

Table 2.  Revenue Assurance Premiums for a North Dakota Crop Farm

Crop

Coverage Level Corn Soybeans Wheat Average for

Crop Specific

Average for

Whole-Farm
85% 32.68 14.66 12.05 19.80 12.75
80% 28.16 12.01 9.99 16.72 10.05
75% 24.10 9.62 8.10 13.94 7.71
70% 20.15 7.50 6.37 11.34 5.69
65% 16.63 5.63 4.80 9.02 4.01
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Table 3.  Diversification Effects on Pricing Revenue Insurance for an Arkansas Crop Farm

Crop Combinationa   as a percent of
Average Single-Crop

Premium

Crop Combinationa  as a percent of
Average Single-Crop

Premium
Rice Combinations Soybean combinations
RC 0.44 SC 0.23
RS 0.48 SCt 0.28
RCt 0.31 SR 0.48
RSCt 0.50 SCCt 0.40
RCCt 0.53 SCR 0.50
RCS 0.50 SCtR 0.50
RCSCt 0.55 SCCtR 0.55
Cotton Combinations Corn Combinations
CtC 0.36 CS 0.23
CtS 0.28 CCt 0.36
CtR 0.31 CR 0.44
CtCS 0.40 CSCt 0.40
CtCR 0.53 CSR 0.50
CtSR 0.50 CCtR 0.53
CtCSR 0.55 CSCtR 0.55

a The combinations are defined as R for rice, Ct for cotton, S for soybeans, and C for corn.

Table 4.  Correlation Matrix Used to Rate Revenue Assurance in Arkansas

Corn Yield Soybean
Yield

Cotton
Yield

RiceYield Corn
Price

Soybean
Price

Cotton
Price

Rice
Price

Corn Yield 1.00
Soybean Yield 0.51 1.00
Cotton Yield 0.29 0.51 1.00
Rice Yield 0.08 0.17 0.26 1.00
Corn Price 0.00 0.00 0.00 0.00 1.00
Soybean Price 0.00 0.00 0.00 0.00 0.78 1.00
Cotton Price 0.00 0.00 0.00 0.00 0.36 0.35 1.00
Rice Price 0.00 0.00 0.00 0.00 0.50 0.65 0.56 1.00
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Figure 1.  Insurer’s preferences over scale parameters in whole-farm insurance



28

(0, 0)

n2

n1

crop-specific iso-value line

bisector

preferred points in Sharpe 
index space southwest of 
iso-value line

tangent at bisector, with slope - p1/p2

Figure 2.  Insurer’s preferences over Sharpe index parameters in crop-specific insurance
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R

RC (0.44)RS (0.48) RCt (0.31)

RSC (0.50) RCCt (0.53) RSCt (0.50)

RSCCt (0.55)

Figure 3.  Diversification lattice for Arkansas crop rotations, with rice as the base crop
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1. In 2001, CRC was available in all contiguous states except Nevada.

2. Raviv also shows that in the case of multiple losses the optimal indemnity function depends on

the aggregate loss rather than individual losses.

3. We do not study partial insurance of losses.  All the results to follow can be readily modified

to accommodate a variety of approaches, such as coverage levels less than 1, to sharing losses.

4. As an illustration of their notion of systematic risk, some consequences of an increase in such

risk on the price of an insurance premium are provided in Hennessy and Lapan.

5. A risk-averse insurer would have even stronger preferences for diversification.

6. A theorem due to de Finetti shows that conditional independence is both necessary and

sufficient (Chow and Teicher, p. 232).

7. That is, exchangeable random variables are conditionally independent with common

conditional distributions.  See Tong, p. 110, or Chow and Teicher as given in footnote 6.

8. In the case of an investment portfolio, the relationships between the expected returns on assets

and Sharpe indices (multiplied by the corresponding risk positions) are clearly linear.

9. For alternative but equivalent definitions of p-majorization, see Marshall and Olkin (pp. 417-

421).

10. See Chambers and Quiggin for more on generalized Schur-Convex functions.

11. In the portfolio management context, Sharpe refers to quantity  as the risk of the position

in the zero-investment strategy relative to the total assets.

12. If the equality in (6) is replaced by the weak inequality #, then Proposition 3 could be

modified to pertain for the class of increasing and convex functions.

13. See also figure 3.14 in Chambers and Quiggin (p. 117).  Our crop-specific fair value function

is generalized Schur-Convex whereas their preference function  is generalized Schur-

Concave, i.e.,  is generalized Schur-Convex.

Endnotes
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14. The concept of arrangement increasing functions is due to Hollander, Proschan, and

Sethuraman.  But they termed it ‘decreasing in transposition’, a label that has fallen into disuse.

15. On the relation between majorization and mean-preserving spreads, see pp. 16-17 in Marshall

and Olkin.

16. This result is just an application to our context of a finding in Cheng, as reported on p. 421 of

Marshall and Olkin.

17. A crude attempt at an analysis of this decomposition was provided in Hennessy.  There, the

weighting vector  was uniform and the analysis concerned random vectors rather than

probability measures.

18. Stochastic order  is precisely the order studied by Shaked and Shanthikumar and by Müller

and Scarsini.

19. An example of a shift in a multivariate distribution that satisfies Definition 4 is the case

where the multivariate normal distribution undergoes an increase in one or more of its correlation

coefficients.  See Müller and Scarsini.

20. The way (10B) is written may be confusing in this regard.  In equation (10B) it is, however,

clear that the subtracted term in (10A) has been added back.  Equation (9) may be of more

assistance in providing an understanding of Proposition 7.

21. All premium calculations in this paper can be closely replicated with the USDA Risk

Management Agency’s Premium Calculator program available at http://www.rma.usda.gov/.  

22.  The table was also simulated for the North Dakota example.  The contents display findings

similar to those in Table 3.

23. RCCt is higher up the lattice than RS, but they are not connected because one cannot obtain

RCCt by adding rotation crops to RS.

24. Adding livestock to whole-farm crop insurance is possible now only with the Adjusted Gross
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Revenue (AGR) program developed by USDA.  AGR is offered only in limited areas.  But the

Agricultural Risk Protection Act of 2000 expanded the federal crop insurance program by

mandating two pilot livestock insurance programs.  These pilot programs will be offered to Iowa

hog producers in 2003.

25. The relevance of our analysis to risk management goes beyond revenue insurance.  U.S.

federal subsidies are also available for area yield insurance contracts.  Under area yield insurance,

indemnities are paid whenever yield in a contract-defined area falls short of a guarantee level. 

The problem of analyzing the payment schemes where all acres are insured together and

separately is structurally identical to the RI problem studied here.  See Vercammen or references

cited therein for more detail on area yield insurance.


