
Measuring The Benefits of Air Quality Improvement:

A Spatial Hedonic Approach

Chong Won Kim, Tim Phipps, and Luc Anselin

Paper prepared for presentation at the AAEA annual meetings, Salt Lake City, August,
1998.  Authors are Economist, Korea Research Institute for Human Settlements, Seoul,
Korea; Professor, Agricultural and Resource Economics, West Virginia University; and
Professor and Director, Regional Research Institute, West Virginia University,
Morgantown, WV, 26505.   Comments are welcome.  Address e-mail to Tim Phipps at
tphipps@wvu.edu.

Copyright 1998 by Chong Won Kim, Tim Phipps, and Luc Anselin.  All rights reserved.
Readers may make verbatim copies for non-commercial purposes by any means, provided
that this copyright notice appears on all such copies.



1

Measuring The Benefits of Air Quality Improvement:

A Spatial Hedonic Approach

Authors: Chong Won Kim, Tim Phipps, and Luc Anselini

The primary objective of this paper is to measure the marginal value of air quality

improvement in Seoul, Korea by combining spatial econometric methods with a hedonic

housing price model.  Increasingly, spatial dependence and spatial heterogeneity are

recognized as factors that may affect the efficiency and consistency of hedonic model

estimates.  The current literature shows that hedonic housing price models have generally

neglected the issue of spatial dependence of housing data.  Neglect of spatial considerations

in econometric models may lead to serious errors in the interpretation of regression

diagnostics (Anselin and Bera).

Can (1990, 1992) and Dubin (1988, 1992) considered the spatial nature of

hedonic housing data in estimating the hedonic housing price model. Can considered the

spatial lag with spatial expansion model and Dubin considered spatial autocorrelation

using a geostatistical approach.   None have jointly considered spatial econometric and

environmental factors.

Seoul was chosen for two reasons.  First, the United Nations Environment

Programme and the World Health Organization (1994) have reported that Seoul has serious

problems with sulfur dioxide and lesser, though increasing, problems with nitrogen oxides.

Since ambient air quality patterns in Seoul vary in a systematic spatial pattern, the city

provides a good laboratory for testing the spatial hedonic model.  Second, the authors had

access to air quality monitoring data for 20 stations in Seoul and an extensive geo-referenced

survey of 1121 households.
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We first describe the data, then develop the spatial hedonic models and finally

present the estimation results.

Data

A sample of the Seoul housing market was taken by the Korea Research Institute

for Human Settlement (KRIHS) in 1993.  The survey involved in-person interviews of a

random sample of owner and renter-occupied dwellings.  The sample was designed to

cover all 22 districts in the city of Seoul with three to five subdistricts chosen for

sampling within each district (the sample covers 78 subdistricts). Originally 1560

households were selected for the survey but after screening for missing observations,

1121 observations (609 for owner occupied households, 512 for renter households) were

selected this study.  This paper only reports the results for owners.

The survey collected data on housing price, house and neighborhood

characteristics, and socio-economic data of the household (Table 1).  The housing prices

are based on respondent estimates.  These estimates can be considered reasonably

accurate given the institutional characteristics of the Seoul market. The Korean

government has adopted a system of posted land prices for property tax collection.  The

posted land prices are reviewed and revised to reflect current land market prices based on

sample areas across the whole country every two years.

Table 1: Data

Variable Definition

PRVAL Property value of owner occupied house

TFLSP Total floor space of house

NMRMS Number of rooms

NMBATH Number of bath rooms

HSAGE Age of house.
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DFUEL Variable equals one if heated by oil or gas, zero if heated by briquette.

DHOUS Variable equals one if housing type is house, else zero

DINCOM Variable equals one if neighborhood incomes are high or high-middle, else

zero

ACSHPT Accessibility to the nearest hospital (time)

ACSSCH Accessibility to the school of junior or high school (time)

ACSSUB Accessibility to the nearest subway station (time)

ACSPRK Accessibility to the nearest park or swimming pool (time)

SO2 Sulfur dioxide gas (SO2) levels (unit: ppb).

Air pollution is monitored daily at 20 stations in Seoul.  We used spline

interpolation to impute the ambient air quality at each of the 78 residential subdistricts

covered by the housing survey.  We assumed that the air quality within each subdistrict

was the same.  Figures 1 shows the distribution of SO2 for Seoul.  SO2 is most heavily

concentrated near the industrial sections in the southwest and northeast regions.
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SPATIAL HEDONIC MODELS

There are two basic types of spatial econometric model: the spatial lag model and

the spatial error model.   While the two are related, each has a different economic

interpretation.

The Spatial Lag Model

The spatial lag hedonic model is analogous to an autoregressive time series

model.  The difference is that in a time series model past observations of the dependent

variable partially explain current observations.  In the hedonic spatial lag model, nearby

observations of housing prices partially explain local housing price.  The spatial lag

model is an appropriate tool when capturing neighborhood spillover effects.  That is, this

model assumes that the spatially weighted sum of neighborhood housing prices is as an

explanatory variable in housing price formation [i.e.,P1 = ρ (w11P1+w12P2 + w13P3 + ··· +

w1nPn ) + Xβ + ε1], where wij is the spatial weight that links observation i and j].  This

relationship is in accord with the standard real estate appraisal process of using

comparable sales prices in forming an appraisal price.  A general spatial lag hedonic

housing price model can be written as follows:

     P = ρWP + X1β1 + X2β2 + X3β3+ ε                                                             (1)

where P is the housing price, W is a row-standardized spatial weight matrix, X1  is the

vector of structural characteristics, X2 is the vector of neighborhood characteristics, X3 is

the environmental quality variable, and error terms are assumed as ε ~ N(0, σ2I).

OLS estimators are biased and inconsistent if the spatial lag model is the correct

model specification.  In this case, maximum likelihood estimation (ML) and instrumental

variable (IV) estimation are unbiased estimators.   For ML estimation, we need to assume
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ε ~ N(0, σ2I).  The normality assumption of the error term can be tested using the

lagrange multiplier (LM) test against spatial error dependence in the presence of  partially

lagged dependent variables (Anselin 1988).

The Spatial Error Model

        When spatial dependence is present in the error term, the spatial error model is

appropriate.  The hedonic spatial error model is:

      P = X1β1 + X2β2 + X3β3+ ε                                                  (2)

      ε = λW2ε +µ,     µ~N(0,σ2I)

where λ is the spatial lag operator and W2 is the spatial weight matrix.

The spatial error model implies that spatial interactions among the observations

are the result of omitted variables that are spatially autocorrelated.  The idea of this model

is similar to the first order moving average process in time series models.  While the error

(et) in the time series model can be expressed as the weighted sum of uncorrelated and

identically distributed random errors (µt, µt-1 , µt-2....), the error term (ε) in the spatial error

model is the sum of all weighted errors since the error terms can be written

as ε λ µ λ λ λ µ= [I - W]-1 = + + + + ⋅[ ( ) ( ) ...]I W W W2 3 .

OLS estimators remain unbiased, but they are no longer efficient if the spatial

error model is a valid model specification. The spatial error hedonic property value model

can be estimated by ML estimation assuming normal error terms.

The normality assumption of the error term can be tested using the LM test

against heteroskedasticity and spatial error dependence as in the case of the spatial lag

model (Anselin 1988).
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Creation of Spatial Weight Matrices

We assume that observations in each of the subdistricts are distributed uniformly

from the district centroid.  The distance between subdistricts is measured by the distance

between the subdistrict centroids.  The strength of spatial interaction between spatial

units is generally inversely related to the distance.  We examined a number of different

specifications for the spatial weight matrix, including inverse distance, inverse distance

raised to a power, and general contiguity matrices.  Our final specification used a general

contiguity matrix based on distance between subdistrict centroids:

   if 

      

        is the critical distance

w d D

else w

where D

ij ij c

ij

c

=

=
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 Hypotheses and Results

Our qualitative hypotheses for the estimated variables are straightforward.  For

house characteristics we hypothesize that price is positively related to floor space,

number of rooms, number of bathrooms, the fuel type dummy (indicating presence of a

modern heating system), and the detached house dummy variable, and negatively related

to age.  For neighborhood characteristics we expect price to be positively related to

neighborhood income and negatively related to each of the accessability variables, since

they are measured in terms of travel time from the house to the facility.  We expect SO2

concentrations to be negatively related to housing price.  We expect SO2 to be a

statistically significant factor because levels of sulfur dioxide have been stable over time,

concentrations are publicly reported, and perhaps most importantly, sulfur dioxide is a

visible pollutant.ii
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We considered four functional forms: linear-linear, linear-log. log-linear, and log-

log functional forms with nine different weight matrices.  To conserve space, only the

best fitting model, the log-linear form for the spatial lag model, is presented for three

critical distance values: 2 km, 3 km, and 4 km.  Results for the spatial error model are not

presented because after estimating the spatial lag model, the LM test for spatial error

dependence showed no significant error dependence in any model.

Maximum likelihood estimations of the log-linear functional form show that the

signs of parameters for all the variables are as hypothesized (Table 2).  All variables are

significant at least at the 5% level except for two of the four accessibility variables

(ACSPHT and ACSSUB).

 The criteria for measures of goodness-of-fit also show that the model with a 4 km

cut-off weight matrix fits best. There is no detectable heteroskedasticity problem in the

spatial lag model since the Breusch-Pagan (spatial) test for heteroskedasticity can not

reject the null hypothesis at the 5% level ( : ( ) ).H E t0
2 2ε σ=

Table 2  MLE for Log-Linear Spatial Lag Model

VARIABLE 2 km 3 km 4 km
 W_PRVAL 0.294***

(0.049)
0.349***
(0.063)

0.473***
(0.068)

CONSTANT 12.73***
(0.948)

11.69***
(1.222)

9.321***
(1.315)

   DHOUS 0.112***
(0.039)

0.125***
(0.039)

0.129***
(0.039)

  DINCOM 0.163***
(0.04)

0.166***
(0.04)

0.156***
(0.04)

   DFUEL 0.200***
(0.05)

0.197***
(0.05)

0.185***
(0.05)

   TFLSP 0.0112***
(0.0008)

0.011***
(0.0008)

0.0112***
(0.0008)

   NMRMS 0.0785***
(0.013)

0.078***
(0.013)

0.078***
(0.013)

  NMBATH 0.082***
(0.030)

0.082***
(0.030)

0.0826***
(0.030)

   HSAGE -0.0049**
(0.002)

-0.0052**
(0.002)

-0.0055**
(0.002)
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  ACSHPT -0.0041*
(0.002)

-0.0038*
(0.002)

-0.0041*
(0.002)

  ACSSCH -0.0061***
(0.002)

-0.0058***
(0.002)

-0.0057***
(0.002)

  ACSSUB -0.0026  (0.001) -0.0028*
(0.001)

-0.00268
(0.001)

  ACSPRK -0.0029*
(0.001)

-0.0029*
(0.001)

-0.0031**
(0.001)

   MSO2T -0.0089***
(0.0026)

-0.0089***
(0.0026)

-0.007***
(0.0026)

R2          Sq.
Corr.
LIK        AIC
SC

0.6376
0.6255
-269.254
628.274

0.6320
0.6236
-272.361
634.487

0.6375
0.6277
-267.629
625.023

Note : ∗∗∗: significant at 1 %      ∗∗ :  significant at 5 %
              ∗: significant at 10 %    ( ) : Standard Deviation

Economic Interpretation of the Spatial Lag Hedonic Model

To interpret the spatial-lag hedonic model, first express the model as:

P I W X= − +−[ ]ρ β ν1                                                                                   (3)

where P is an (n ×1) column vector, [I-ρW]-1 is an (n × n) inverse matrix, X is

an (n × k) matrix, β is an (k×1) column vector, and ν is an (n × 1) column vector.

Assume that A = [I-ρW]-1 .  Then (3) can be written as:
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Define xk as a column vector (n ×1) of one housing characteristic variable.   Then the

derivative of P(n×1) with respect to xk' is defined as follows:
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This is the Jacobian matrix of P with respect to xk'.    Based on the above definition, the

marginal implicit price (marginal benefit) of the hedonic equation is derived as follows:

∂
∂

β β β
β β β

β β β

β β ρ
P
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1[ ]                           (6)

The marginal implicit price from a spatial error hedonic model or traditional linear

hedonic model is the constant (βk), but the marginal implicit price of the spatial lag

hedonic model is βk ⋅[I-ρW]-1.

The Jacobian matrix (5) can be interpreted as follows:

Focusing on the first row, the housing price of location "1" is not only affected by a

marginal change of one housing characteristic (say air quality) of location "1" but also is

affected by marginal changes of housing characteristics in the other locations (xik, i=1,2

..,n).   That is, the total impact of a change in air quality on housing price at location "1"

is the sum of direct impacts (∂ ∂P x k1 1 ) plus induced impacts ( ∂ ∂P x ik
i

n

1
2=

∑ ).   The sum of

each row of the inverse matrix of row-standardized spatial weights is 1/(1-ρ).

The spatial lag property value model can capture the induced effects of a

neighborhood's housing characteristic change, since the weighted neighborhood housing

prices are an explanatory variables of house "i".  The traditional hedonic property value

model cannot capture these induced effects of a neighborhood's housing characteristic

change.  Therefore, a traditional hedonic property value model may lead a biased or at

least imprecise estimate of benefits of housing characteristic change if these induced

effects are present.  As seen from (6) the total effects of a marginal change in air quality
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at house "i" is 
1

1 − ρ
.  Since 

1
1 − ρ

 is a sum of an infinite geometric progression

( .......)1 2 3+ + + +ρ ρ ρ ,  the amplified effect of a housing characteristic change on

housing price can be called a "spatial  multiplier".

Marginal Benefit Estimation

The derivative of the hedonic price equation with respect to each explanatory

variable is the marginal implicit price.  This marginal implicit price can be interpreted as

the marginal WTP assuming the housing market is in equilibrium. An important

consideration is the fact that the estimated marginal benefits represent the capitalized

rather than the annual value of the benefits of pollution abatement.

The elasticity of housing price from a given small change in air quality at the

mean value for the log-linear functional form for model 1 is estimated as follows:

ε β
ρ

β ρ

xk
= ⋅

−
⋅

⋅
−

⋅

11 2

1

1

0 0089
1

1 0 294
24 2

( )

(
.

) .

,

SO

    =  .

     = 0.31   where 11 is coefficient of air pollution variable and   is the 

coefficient of spatial lag,  and SO2 is the mean value of air pollution.

The marginal benefits per household using β ρ11
1⋅ − −[ ]I W P  is about $ 3,050 ~

$3,325. This is the capitalized value of the benefits of pollution abatement in the housing

price.  Note that this is a partial measure that would not hold for a non marginal change in

air pollution.  Such a non marginal change would induce a new housing price equilibrium

that would have to be calculated before benefits could be estimated.
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Table 11   Marginal Implicit Prices (unit: million won)

WTP per household % of housing price Elasticity

Model 1 2.46 ($ 3,075) 1.26 0.31
Model 2 2.66 ($ 3,325) 1.36 0.33

Model 3 2.44 ($ 3,050) 1.25 0.33
               Note :  $1= 800 won
              Model 1 is with 2 km cut-off weights matrix,
              Model 2 is with 3 km cut-off weights matrix,
              Model 3 is with 4 km cut-off weights matrix.

SUMMARY AND CONCLUSIONS

Two conceptual models are considered for this study: the spatial lag hedonic

property value model and the spatial error hedonic property value model. The regression

diagnostics showed that the spatial lag model specification is valid for the housing market

in Seoul.

Marginal WTP for a small change in air quality (4% improvement) is about

$3,000 ~ $3,300(1.2%~1.5%) for owners.  The value of air quality capitalized into the

price of the house is the present value of air quality the owner expects to receive while

living there.

The current study improves on past hedonic modeling efforts by measuring both

the direct and induced effects of a change in a public good such as air quality.  Therefore,

the spatial lag hedonic model deals with neighborhood effects which cannot be captured

by non spatial techniques.  This contribution will increase the statistical efficiency of

empirical hedonic models and the development of estimation methods.  Future studies

may compare the results of spatial and non-spatial models and extend the spatial lag

model to allow the use of more flexible functional forms such as the Box-Cox

transformation.
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i Authors are Economist, Korea Research Institute for Human Settlements, Seoul, Korea; Professor,
Agricultural and Resource Economics, West Virginia University; and Professor and Director, Regional
Research Institute, West Virginia University, Morgantown, WV.

ii  In the broader study that this study is drawn from, we hyothesize that nitrogen oxide levels would not be
a significant factor since NOx is not a visible pollutant and because levels are increasing rapidly.
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