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ABSTRACT   

In many transportation applications it is useful to find multiple paths for an origin-destination pair. This 
paper presents a non-deterministic approach to generate alternative paths in traffic networks. The algorithm exhibits 
desirable features in both computational complexity and path quality. Hypothetic examples are provided to evaluate 
the generated paths in terms of diversity and efficiency. A microscopic traffic simulation is then used to introduce 
potential applications in transportation practices. Some future works are also discussed. 

INTRODUCTION 

Finding the minimum-cost path from an origin to a destination in a network is a well-studied problem. 
Most existing solutions are based on Dijkstra’s labeling method (Dijkstra 1959), adapting either the label-setting (LS) 
or the label-correcting (LC) procedure (Sheffi 1985). A slight variation to the basic Dijkstra’s approach is the 
symmetrical or bi-directional Dijkstra algorithm (Cherkassky et al 1993). It performs a forward search from the 
origin and a backward search from the destination simultaneously, in an attempt to reduce the search complexity. 
When the underlying network is Euclidean, another search technique called the A* algorithm is often used 
(Sedgewick and Vitter 1986). The key idea is to integrate the inherent geometric information in order to bias a more 
directed search towards the destination. Although the A* algorithm on average improves the run time over the 
Dijkastra’s algorithm, the solution is sub-optimum, i.e., it does not always find the minimum-cost path. 

The minimum-cost path problems have significant applications in many fields of Intelligent Transportation 
Systems (ITS), especially in Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information 
Systems (ATIS) (Ziliaskopoulos and Mahmassani 1993). For example, an essential part of most in-vehicle Route 
Guidance Systems (RGS) currently under development is on-line calculation of the optimum route between a 
designated origin-destination (O-D) pair (Bekhor et al 2001). Herein the optimum route is usually the one with least 
expected travel time between the given O-D pair. The RGS consists of two sub-systems: the centralized system and 
the decentralized systems. The centralized system updates the link travel time regularly and calculates the optimum 
route in real-time upon receiving drivers’ requests. The optimum route is then relayed to the decentralized systems 
for the drivers’ use. 

However, there are many situations that finding the minimum-cost path is not sufficient. Instead, it is 
necessary to identify some alternative paths for a given O-D pair. For example, currently most drivers are not 
equipped with the RGS and hence do not have complete information of the traffic network. Studies have shown that 
in such cases the route decisions are stochastic (Fu and Rilett 1998). In other words, the actual route taken by a 
particular driver is not necessarily the minimum-cost path. As another example, assume the perfect case where all 
drivers are guided by the RGS. In reality, some drivers may prefer one particular route to another for various reasons 
such as route familiarity, toll charges, etc. Therefore, it is more desirable that the RGS suggests several routes for 
each O-D pair and lets the driver make the choice. In addition, for transportation management purposes there are 
needs to take alternatives to the minimum-cost path. One particular example is that under emergency situations there 
are often excessive traffic demands from the affected areas to the safe areas. Part of the traffic should be diverted off 
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the minimum-cost route in order to reduce congestions and minimize the total evacuation time. Finally, finding 
alternative paths has important applications in transportation planning and analysis processes. In particular, 
stochastic traffic assignment models typically encompass a route generation phase, in which the set of efficient 
routes is generated for each O-D pair (Dial 1969). Then at the next phase traffic demand is assigned appropriately 
among those paths. 

Current approaches for finding alternative paths fall into two main categories. The first is known as the K 
shortest paths method, where the goal is to identify the first, second, …, and Kth best path for a given O-D pair (Yen 
1971). It was first proposed in the 1950’ (Bellman 1958), and ever since then numerous algorithms have been 
developed as improvement.  The biggest disadvantage of the K shortest paths method is its computational 
complexity (Yen 1971). It tends to run fairly slow, especially when large network is involved. This impedes its 
potential applications in ATIS where real-time route calculation is essential. Yet another drawback of it is that the 
generated paths tend to be quite similar, meaning they have a high percentage of shared links (Scott 1997). This is 
often undesirable because congestions may develop at the shared links if all traffic flow between the O-D pair is 
routed via the K shortest paths. 

The second strategy for finding alternative paths involves a penalty concept (Scott 1997). Given an O-D 
pair, the algorithm first calculates the minimum-cost path using standard Dijkstra’s approach. Then one or more 
links comprising the best path are chosen to be penalized by some factor λ that is greater than one, meaning that the 
cost of each link is multiplied by λ. The newly calculated minimum-cost path for the updated network is regarded as 
an alternative to the best path. It has been shown that the penalty method is able to run as fast as the standard 
Dijkstra’s algorithm, and it tends to avoid the similarity problem that the K shortest path method suffers (Scott 
1997). As an extreme variation of the penalty method is the link elimination method (Azevedo et al 1993). In this 
case every chosen link is removed from the network rather than increasing its cost. Both the penalty method and the 
elimination method have disadvantages. First the algorithm must explicitly specify which particular links should be 
chosen for penalization or elimination. This choice usually affects the quality of the generated path. In the case of 
link elimination, it is even possible that deleting some links may cause the network to lose the necessary 
connectivity for having any path between the O-D pair. Another issue is that only the links comprising the initial 
best path are modified while the rest of the whole network remains unaffected. Therefore, the method tends to find 
only a very limited number of alternative paths. In other words, if the method is applied many times in an attempt to 
generate different paths, presumably it will keep finding a small set of paths over and over again. 

In this paper, a new technique is proposed for generating alternative paths in traffic networks. The new 
approach is designed to achieve two main objectives. The first is that it must be computationally efficient so as to be 
applicable for large real traffic networks. The second goal is that the generated paths should be diverse and efficient. 
The paths are considered diverse if they do not overlap with one another significantly. The paths are considered 
efficient if none is associated with an unacceptable high cost. Both criterion are carefully defined and evaluated in 
this study. 

The new algorithm finds an alternative path in traffic network at three stages. At the first stage, the program 
internally determines the new locations for the designated O-D pair. Specifically, one of the outbound links from the 
origin node is randomly chosen and the downstream node of the link is set to be the new origin. Similarly, one of the 
inbound links to the destination node is randomly chosen and the upstream node of the link is set to be the new 
destination. This treatment is included to fulfill path diversity requirement. At the next stage, the program uses a 
Dijkstra’s type labeling method for searching a path between the new O-D pair. As a result, the complexity is equal 
to the Dijkstra’s algorithm. In order to get a different path than the minimum-cost one, the program assigns a 
random factor to the cost of each link as it is scanned by the labeling algorithm. The use of randomized link cost is 
shown to meet both the path diversity and efficiency requirements. Finally, the path from the initial origin to the 
new origin, the path from the new origin to the new destination, and the path from the new destination to the initial 
destination are combined to form an alternative path. 

The rest of this paper is organized as follows. Section 2 presents the detailed description of the new 
algorithm. Section 3 evaluates the quality of the generated paths in two hypothetic cases. A microscopic traffic 
simulation of a nuclear power plant evacuation-planning scenario is given in Section 4 to demonstrate the possible 
applications of the new algorithm in real world. Finally conclusions and future works are discussed in Section 5. 
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PATH GENERATION 

New algorithms for finding alternative paths in traffic networks are needed because existing tools either are 
computationally too expensive, or fail to ensure the path diversity. We propose a new algorithm that addresses both 
issues. 

Problem Definition 

As depicted in figure 1, a traffic network is represented as a directed graph G(N,A), where N is a finite set 
of nodes and A is a finite set of links. A link is the connection between two different nodes. The starting node is 
called the upstream node and the end node is called the downstream node. Each link is associated with a cost, which 
could be distance, time, toll, etc. In traffic networks, the most relevant cost is the travel time and hence is used here. 
Depending on applications, the travel time could also include the projected turning delay at intersections or other 
constraint. A path between two nodes is defined as a sequence of nodes representing the sequence of links that 
connects from the origin to the destination. The cost of the path is simply the summation of all the link costs. The 
graph G is assumed to be connected, i.e., there exists at least one path between any two nodes (Diestel 2000). This is 
a reasonable assumption as it is the case in most traffic networks. 

INSERT FIGURE 1 NEAR HERE 

An origin node s depicted a square box and a destination node t depicted a triangle are designated, as 
shown in figure 1. All other nodes are depicted a circle with the node number inside it. Each line represents a two-
way link, and the number above the line is the cost for both links. In this case, the minimum-cost path between s and 
t is s-1-2-3-4-8-9-t, denoted z. We want to find an arbitrary path other than z between the O-D pair. A path is 
acceptable only if it is efficient. For example, the path s-1-2-6-8-4-5-7-9-t is not efficient because it takes an 
undesirable detour away the destination. Moreover, the generated path should not have too many shared links with z. 
In other words, running the algorithm multiple times should give different paths. 

A Three-Stage Algorithm  

The network is represented in the forward star form (Sheffi 1985). Given an O-D pair, our new algorithm 
finds an alternative path in three stages: 

1. Setting new origin and destination; 
2. Finding a path between the new O-D pair; 
3. Completing the path by combination. 

The algorithm is non-deterministic such that two executions usually result in two different paths. Therefore, 
it could be effectively used to generate a set of alternative paths for an O-D pair. 

Setting New Origin and Destination For any path between an origin s and a destination t, one fact is certain: it 
always starts at s and terminates at t. Suppose that },,,{ 21 mdddD L=  is the set of immediate downstream nodes 

of s, and },,,{ 21 nuuuU L=  is the set of immediate upstream nodes of t. Then an arbitrary path p between s and t 

can be represented as tuds ji −−−− L , where mi ≤≤1 and nj ≤≤1 . In order to maximize the diversity of 
p, it is obvious that i and j should be as random as possible. However, if the link costs are severely biased around s 
or t the searching algorithm is very likely to choose one particular node in D or U while ignoring the others. For 
example, in figure 1 D = {1, 3, 5, 6} for node 2. However, the cost of link 2-3 is only 1, while the costs of 2-1, 2-5 
and 2-6 are 11, 10 and 15 respectively. In this case, any searching algorithm based on Dijkstra’s labeling method 
will favor node 3 while nodes 1, 5 and 6 are most likely abandoned. To address this issue, our algorithm forces the 
program to select the nodes in D and U on an equal basis. This is done by randomly pick the number i and j, and 
then use di and uj as the new O-D pair. 

In practice, the origin s may have only one downstream node s1, or m = 1. Under such situation, the 
program will first move the new origin to s1, and then temporarily delete the link of s1-s, if it exists. Next it will test 
if s1 has only one downstream node. If so it will just move the new origin to the only downstream node of s1, 
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denoted s2. Otherwise, it will identify the set D for s1, and randomly pick one node di in D as the new origin. Again 
it will temporarily delete the link of di-s1, if it exists. The logic for link deletion as moving the origin to the next 
location is straightforward. The deletion ensures that the program do not search backwards to the previous location. 
Similarly, if the destination t has only one upstream node u1, then the new destination is moved to u1 and the link u-
u1 is deleted temporarily. The process repeats until the set U of the new destination has at least two nodes. Then one 
node is randomly chosen as the new destination, and the link from the previous destination to the new destination is 
temporarily removed. 

To illustrate the whole process, again take the case in figure 1 as an example. First the origin is moved from 
s to node 1 since it is the only downstream node of s. Then the link 1-s is deleted, which makes node 2 the only 
downstream node of node 1. Hence the origin is further moved to node 2 and then the link 2-1 is deleted. Now node 
2 has three downstream nodes or U = {3, 5, 6}. The program then randomly picks one node from U, say node 6, and 
deletes the link 6-2. So finally the new origin is node 6. 

Finding a Path between the New O-D Pair To find a path between the new origin and destination, a Dijkstra’s 
type label-correcting method is used because of its efficiency (Sheffi 1985). The label-correcting method finds the 
shortest path from the origin node to all other nodes in the network. It essentially maintains a minimum-path tree 
with the origin node being the root, and continuously updates the tree by iteratively scanning the network nodes 
(Sheffi 1985). As each node is scanned, the corresponding link cost is used to determine if a better path up to that 
node exists. The algorithm terminates as soon as no better improvement can be made to the minimum-path tree. 

However, since the interest is to find a path not necessarily having the minimum cost, a slight modification 
to the standard label-correcting procedure is made. As a link is being scanned, a random factor λ is assigned to that 
link. A new quantity that equals to the corresponding link cost multiplied by λ is then used to update the minimum-
path tree. Note the link cost is actually kept unchanged. Apparently the random factor λ has a significant effect on 
the resulting path. In our study, λ is set to be a natural number which is in the range of one to some upper bound δ. 
Experiments are designed to investigate how the value of δ affects the quality of path, as will next be shown in 
Section 3. 

INSERT FIGURE 2 NEAR HERE 

Completing the Path by Combination The final step is straightforward. The path from the initial origin to the new 
origin, the calculated path from the new origin to the new destination, and the path from the new destination to the 
initial destination are connected to form a complete path. Before exiting the program, all the deleted links at stage 
one are restored. This ensures that the initial network connectivity is always correctly represented at the beginning 
of each run. 

The complete algorithm is summarized as pseudo code in figure 2. The details of the label-correcting 
procedure are not shown since it is a well-established approach (Sheffi 1985). The algorithm is implemented in C++ 
due to its run-time efficiency. 

PATH EVALUATION 

 Unlike many existing path-finding methods, the new algorithm is non-deterministic. For any given O-D 
pair, running the algorithm twice usually gives two different paths. To evaluate the performance of the algorithm, 
we first define the criterion to assess the quality of individual path. The average quality of paths under various 
situations is then studied. 

Path Evaluation Criterion 

Let z denote the minimum-cost path between a given O-D pair, and let p denote a path generated by the 
algorithm. The path p is considered efficient if it has a relatively low cost and is different than z. The first criteria 
denoted the cost ratio is the ratio between the cost of p and the cost of z 

)(cos)(cos)(_cos ztptpratiot =  
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It is obvious that the cost ratio of any path is at least one. A higher cost ratio suggests that p has much 
longer length than z and is thus less desirable as an alternative path. 

The second criteria denoted the shared ratio is expressed as 

)(_),(_)(_ zlinksnumzplinksnumpratioshare =  

The numerator is the number of links that p and z both have, and the denominator is the number of links in 
z. Apparently the share ratio is at most one. A higher share ratio means that p has more shared links with z, and is 
hence a less favorable substitute to z. 

Both criteria are used to measure individual path quality. Because the algorithm is non-deterministic, the 
average values of the criteria are more relevant to evaluate the solutions to a given problem. 

Factors that Affect the Path Quality 

There are several factors that may affect the generated path quality. Careful study of these factors is crucial 
for evaluating the performance of the new algorithm. 

The Random Factor As described in section 2, the new algorithm assigns a random number λ to each link being 
scanned, where λ is in the range of one to an upper limit δ. A greater value of δ means that the link cost is more 
randomized, therefore the resulting path tend to be less similar than the minimum-cost one. In other words, the 
algorithm will be able to explore a larger part of the network and hence more different paths are likely to be found. 
However, as the path become less similar than the minimum-cost one, the cost ratio tends to rise which is not very 
desirable. Therefore, there might be an optimum value of δ that maximizes the path quality on average. In our 
experiments, δ is set to different values to test if such hypothesis is true. 

Network Structures The structure of traffic networks is another factor to consider when evaluating the general 
performance of a path-finding algorithm. Although the actual topologies of traffic networks are virtually infinite, 
they could be distinguished into three main patterns as the grid-like, the star-like and irregular patterns (Jiang and 
Claramunt 2004). In the grid-like pattern, illustrated in figure 3, links are either parallel or perpendicular to one 
another. In the star-like pattern, illustrated in figure 4, there are some dense points at which several links converge. 
The irregular pattern is merely a rough mixture of the first two. In this study, both the grid-like and the star-like 
patterns are used as the underlying networks. 

INSERT FIGURE 3 & 4 NEAR HERE 

Experiments and Results 

Both the grid-like network and the star-like network are used as our test networks, as shown in figure 3 and 
figure 4 respectively. In both figures, the origin node is depicted a square box and the destination node is depicted a 
triangle. All other nodes are depicted as a circle. Each line represents a two-way link. The link cost is not shown for 
simplicity, but it is assumed to be proportional to the geographical distance. 

For each test network, several experiments are done. The algorithm is repeated 10, 100 and 1000 times 
respectively. In addition, the value of δ is varied from 2 to 10. Several measurements are collected. The number of 
unique paths is compared with the number of executions to show the effectiveness of finding alternatives. The 
distribution of both the cost ratio and the share ratio are also recorded as indicators of the average path quality. 

Table 1 summarizes the collective results from the experiments. Firstly it is shown that the algorithm finds 
different paths successfully. With only 10 runs, the unique paths generated in both networks are close to 10 under all 
cases. As the number of total runs increases the number of unique paths also increases. Secondly it is shown that the 
quality of generated paths is very satisfactory. In all cases, most paths have a cost-ratio less than 1.5, with only a few 
exceptions that are close to 2. On the other hand, the share-ratio is as low as 20 percent, suggesting many paths are 
highly different from the minimum-cost path. Thirdly it is seen that the value of δ does have a noticeable effect on 
the solutions. Generally as δ increases, more unique paths are found at the expense of higher cost-ratio. However, 
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even when δ is 10, the resulting paths are still quite efficient as the maximum cost-ratio is still less than 2 in the 
worst case. In practice the value of δ could be controlled in order to achieve optimum results in both path efficiency 
and diversity. Finally, the results show that the two networks have very different properties. The paths found in the 
grid-like network are more similar as the minimum-cost path, while those in the star-like network are very diverse 
with a much wider range of cost-ratio and share-ratio. This is clearly due to the different structure of the networks. 

INSERT FIGURE 5 & 6 NEAR HERE 

Figure 5 and 6 present the distributions of the path criterion for each network when the total number of runs 
is 100, and the value of δ is selected to be 2 and 5. In the grid-like network as shown in Figure 5, it is clearly seen 
that the majority of paths have a very low cost-ratio. When the value of δ is 2, the cost ratio is very close to 1. When 
the value of δ is 5, the cost ratio increases in general but is well below 1.2, which is very desirable. In both cases the 
share-ratio demonstrate a very random distribution between a wide ranges. The share ratio of most paths is between 
20% and 60%, with only a few close to 80%. This shows that the paths are highly diverse. In the star-network as 
shown in Figure 6, the behavior is much more random. Nevertheless, the cost-ratio is still well below 2 with most 
between 1.2 and 1.6.  The share ratio is even more desirable as most are below 60%.  

Overall, the experimental results suggest that the algorithm is efficient to find alternative paths for different 
network structures. The average path quality is very satisfactory as both the average cost ratio and share ratio are 
low. Therefore, the algorithm can be used to generate one or more paths for various applications. 

A DEMONSTRATION PROBLEM 

Traffic models are important tools for emergency evacuation planning and analysis (Franzese and Han 
2002). The route choice module is a critical component of most traffic models. It essentially calculates different 
routes and assigns them to drivers in order to achieve optimum simulation results. As an example, a preliminary 
microscopic traffic model is developed to show the usefulness of alternative paths for regional evacuation 
simulations. 

A Realistic Evacuation Scenario  

Figure 7 illustrates a realistic regional evacuation scenario near the Twin cities, Minnesota (Lu and Shekhar 
2002). The Monticello nuclear power plant is located in a populated area. Effective evacuation plans are highly 
crucial to ensure the safety of nearby populations if any nuclear accident happens. In the figure, the location of the 
power plant is indicted with a red square box. The affected cities subject to evacuation are indicated with orange 
circles. The designated shelter place for all the evacuees is indicated with a green triangle, which is about 40 miles 
away from the power plant. 

The assumed number of vehicular evacuees from each origin city is listed in table 2. The cities are 
numbered as shown in figure 7. 

INSERT FIGURE 7 NEAR HERE 

The Traffic Model 

The TSIS Corsim is a validated microscopic traffic simulator which is widely used to support transportation 
design and analysis (ITT Industries 2003). Corsim is able to capture the detailed individual vehicular movements at 
every simulation interval. It also generates aggregated results as measures of effectiveness (MOE) at the end of each 
simulation period. 

When used for evacuation modeling, the traffic model could adopt either static traffic assignment (STA) or 
dynamic traffic assignment (DTA) as its route choice component (Hobeika and Kim 1998). In a STA model, the 
traffic conditions at the beginning of the simulation are assumed to be unchanged throughout the entire simulation 
period. This is obviously an invalid assumption and hence STA is unable to reflect the dynamics of traffic. The 
DTA, on the other hand, uses continuously updated network information to make the route choice. Therefore, it is a 
better representation of the traffic flow. 
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In this demonstration problem, we develop a very preliminary Corsim model that uses neither STA nor 
DTA. Instead, the evacuees are assigned to a random path generated by our new algorithm at each loading interval. 
The random assignment is used in an attempt to mimic the stochastic route choice in reality. It also tends to reduce 
congestions on the heavily used roads. 

Simulation Results 

In the Corsim model, all roads are assumed to be 2-lane, with a free flow speed of 60 mph. The total 
loading period is assumed to be 30 minutes, and is divided equally into 15 loading intervals. Constant loading rate is 
assumed. At each loading interval, a group of vehicles from each origin is loaded onto the network. A new path 
created by our new algorithm is assigned to the emerging traffic. The vehicle loading and route assignment is done 
by the Corsim path-following capabilities (TSIS User Support Website 2003). 

Another simulation, which uses the Corsim static traffic assignment, is used for comparison purposes. The 
simulation is divided into two periods. In the first period the identical traffic demand as in the first case is loaded by 
specifying the corresponding O-D table. In the second period no more traffic is loaded and the simulation continues 
until the network is cleared. 

The simulations are performed on a desktop computer with a 2.4 GHz Intel Xeon processor and 1024 MB 
of system memory. The MOE for both simulations are summarized in table 2. The network clearance time is the 
total time from the start of simulation till all evacuees arrive at the destination. The average speed is the mean travel 
speed of all vehicles. The average delay percentage is the total vehicular delay time divided by the total vehicular 
travel time. The maximum queue length is the maximum number of vehicles queued on some link during 
simulation. The comparison shows that overall the simulation with generated paths gives a better result. The main 
reason is that the Corsim static traffic assignment is done at the beginning of the simulation, and only accounts for 
the free-flow network conditions. Therefore, the assignment directs a large portion of traffic through the initial 
shortest path of each O-D pair. The generated paths simulation, however, spreads the traffic over a set of different 
paths and thus effectively reduces congestions on certain links. 

CONCLUSIONS AND FUTURE WORKS 

In this paper, a new algorithm for finding alternative paths in traffic networks was presented.  The method 
modifies a Dijkstra’s type label-correcting procedure by introducing a random factor for each link being scanned. 
Two criteria were used as the primary indicator of the generated path acceptability.  The algorithm was evaluated 
using two characteristic network patterns. A realistic evacuation scenario was used to demonstrate the effectiveness 
of the new algorithm. 

The new algorithm is readily scalable to more sophisticated applications. For example, intersection turning 
delays can be added to the link cost function to better represent the travel time. As another example, if redundant 
paths are not allowed, an extra path-checking procedure following the algorithm would well solve the problem. If a 
certain node or link must be included in any path, a straightforward solution is dividing the target path into two parts 
at the desired node or link and using the algorithm to find a path for each part before connecting them together. On 
contrary, if a certain node or link must be excluded from any path, one solution is first using the algorithm to 
generate a set of initial candidate paths, and then eliminating those which include the node or link. 

There are a few potential improvements over the current approach. As has been shown in section 3, the 
generated paths for different network structures exhibit highly different natures. Currently the users can manually 
adjust the random factor to improve the path quality. It would be nice if the algorithm is able to detect the network 
structure and automatically determine the optimum random factor. Another issue is associated with the run time 
speed. When the underlying network is extremely large, the label-correcting method tends to run slow. In this case, 
the label-correcting part could be replaced by the A* method as the searching engine. 
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Figure 1. Representation of an Example Traffic Network



Zhou, B., and Eskandarian, A. 12

Input: network G, origin s and destination t;
Output: an alternative path from s to t;
begin
    if origin has only one downstream node, repeat
        let s' be the only downstream node;
        set s = s';
        delete link s'-s if it exists;
    endif
    let D be the set of all downstream nodes of the origin;
    randomly choose one node d from D, and set new origin = d;
    delete link d-s if it exists;
    if destination has only one upstream node, repeat
        let t' be the only upstream node;
        set t = t';
        delete link t-t' if it exists;
    endif
    let U be the set of all upstream nodes of the destination;
    randomly choose one node u from U, and set new destination = u;
    delete link t-u if it exists;
    begin finding a path between d and u
        for each link being scanned
             multiply its cost with a random number λ
    end finding a path between d and u
    final path = path (s to d) + path (d to u) + path (u to t);
    restore all deleted links;
end   

Figure 2. Pseudo-code of the Algorithm
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Figure 3. An Example of Grid-like Traffic Networks
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Figure 4. An Example of Star-like Traffic Networks
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Figure 5. Distribution of Path Criterion in Grid-like Network
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Figure 6. Distribution of Path Criterion in Star-like Network 
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Figure 7. Network Representation of the Evacuation Scenario
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Table 1 Collective Measurements for Generated Paths 

Grid-like Network 
cost ratio share ratio (%) number  

of runs δ number of 
unique paths min max min max 

2 10 1.0032 1.0829 12.50 62.50 
5 9 1.0032 1.1178 18.75 50.00 10 
10 10 1.0025 1.0973 12.50 68.75 
2 46 1.0001 1.1050 12.50 87.50 
5 71 1.0000 1.1999 12.50 87.50 100 
10 62 1.0001 1.1957 12.50 75.00 
2 105 1.0001 1.2006 12.50 87.50 
5 216 1.0000 1.2848 12.50 87.50 1000 
10 262 1.0008 1.3073 12.50 87.50 

Star-like Network 
cost ratio share ratio (%) number  

of runs δ number of 
unique paths min max min max 

2 8 1.2258 1.6970 20.00 60.00 
5 10 1.2164 2.0264 20.00 60.00 10 
10 10 1.2027 1.9191 20.00 60.00 
2 68 1.0000 1.8290 20.00 100.00 
5 94 1.0000 1.9253 20.00 100.00 100 
10 96 1.0000 2.1407 20.00 100.00 
2 307 1.0000 1.8028 20.00 100.00 
5 572 1.0000 2.1298 20.00 100.00 1000 
10 636 1.0000 2.1521 20.00 100.00 
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Table 2 Selected Simulation Results for the Evacuation Problem 
Number of vehicular evacuees at each source city 

1 2 3 4 5 6 7 8 9 10 11 
450 750 300 1050 300 600 450 1500 1200 300 750 

Comparisons of MOE 
 Path-following simulation Traffic assignment simulation 

Network clearance time 3 hours 10 minutes 3 hours 45 minutes 
Average speed (mph) 29.42 28.36 

Average delay percentage (%) 0.51 0.53 
Maximum queue length (vehicle) 474 500 

 


