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 ABSTRACT 
 

Highway repaving and repairs often require that two (or more) lanes of traffic be 
condensed into one lane around construction sites.  As a rule, the merging process is unmanaged 
which in peak periods results in a traffic queue at the bottleneck.  Traffic moves through the 
queue in a stop-and-go manner which increases travel time.  This paper computes the amount of 
time spent in the traffic queues which result when the behavior of drivers at bottlenecks is 
unmanaged.  It then explores a strategy for imposing order on driver behavior and determines the 
reduction in queuing time that would result.  An example shows that the value of the reduction 
could be dramatic. 
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INTRODUCTION  

As drivers are well aware, it is frequently necessary to close highway lanes for 
resurfacing or repair.  These closures can be a source of considerable annoyance to drivers.  A 
number of papers have been written about the congestion problems created when one lane on a 
two-lane road is closed and vehicles traveling in both directions are forced to alternate their use 
of the open lane.  See, for example, Son (1999).  The focus of this paper is on the congestion that 
results when one lane (or perhaps more than one lane) on a limited access highway with multiple 
lanes in each direction must be closed.  There is a substantial literature dealing with the 
economics of bottlenecks.  For example, Mun (1994) considers the case of a roadway which 
contains a bottleneck whose capacity (measured in vehicles per hour) is less than the volume of 
traffic on the roadway which feeds into it.  A queue then forms at the bottleneck entrance.  
Arnott, de Palma and Lindsey (1990) analyze the evolution of a traffic queue at a bottleneck in a 
situation where drivers incur penalties for arriving at their destinations either earlier or later than 
they would desire.  In their model, drivers can reduce time spent in the queue at the cost of an 
increase in scheduling delay.  Neither of these models considers the behavior of drivers within 
the queue in any detail.    For example, Mun does not address the problems associated with the 
process of merging two lanes of traffic (in one direction) into one lane.  His model would be 
applicable in a situation where two lanes of traffic feed into a road which also contains two lanes 
but which has narrower shoulders which reduce capacity.  In this case, there would be no 
merging problem.  In the Arnott et al.  model, Verhoef (2003) points out that the queue of 
vehicles at the bottleneck takes up no physical space and that “vehicles leave the queue on a 
first-in-first-out basis (p. 534).”  In effect, each vehicle joining the queue is added to a vertical 
stack. Since drivers are not in competition for access to the bottleneck, the capacity of the 
bottleneck is independent of the size of the queue of vehicles waiting to enter.  At construction 
sites on multi-lane highways, the need to condense two (or more) lanes of traffic into one lane is 
at the heart of the congestion problem.  Verhoef (2003) analyzes a situation where a bottleneck is 
created by a decrease in the number of lanes from two to one.  However, he assumes that the 
merging process is “smooth” and that cars from the right and left lanes enter the bottleneck in an 
alternating fashion (p.540).  On actual highways, the merging process tends not to be smooth and 
vehicles compete for access to the open lane.  As we will see below, there is evidence that this 
competition reduces the rate at which vehicles can exit the bottleneck.  During peak periods, the 
reduction in capacity can result in a significant increase in travel time.   

The objective of this paper is to offer a solution to this problem.  We will proceed as 
follows.  In section II, we present a description of the travel problem and show that the failure of 
drivers to coordinate their behavior lies at the heart of the congestion problem.  In section III, we 
derive an expression that can be used to determine the total amount of time drivers spend in the 
queue.  In section IV, we present a solution to the problem, which is a strategy for reducing the 
scope for strategic behavior and thus creating a more orderly traffic flow.  The conclusion 
discusses how the simple situation considered in this paper can be made more realistic.  

 

DESCRIPTION OF THE PROBLEM 
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Drivers 
We assume that the traffic flow consists entirely of passenger cars, that each car is 

occupied only by its driver, and that all drivers place the same value on time spent in the traffic 
queue.  Determining the amount of money each driver would be willing to pay to reduce time 
spent in the queue by one hour is a straightforward process.  Button's (1993) survey of empirical 
estimates of the value of travel time shows that the price that drivers would be willing to pay to 
save an hour of travel time ranges from 12 percent of the wage rate to 145 percent of the wage 
rate.  There is also evidence that higher income drivers are willing to pay more.  Following 
Mohring (1999), we assume that the value of a travel time saving is equal to half of the wage 
rate.  In 2003, the average hourly wage rate in the private sector was about $15.35 (Council of 
Economic Advisers, 2005).  The value of a reduction in travel time would then be $7.68 per 
hour.  However, research by Small (1982) indicates that drivers are willing to pay more to avoid 
an hour of driving under congested conditions than under free-flow conditions.  Based on their 
analysis of the behavior of commuters in Sydney, Australia, Hensher et al. (1990) find that the 
ratio of the value of time spent under congested conditions to time spent under free-flow 
conditions is 1.7 to 1.  Applying this ratio to the time value above implies that each driver would 
be willing to pay $13.05 to reduce time spent in congested conditions by one hour. This value, 
which we will use in our examples, is close to the value of $12.50 used by Mohring (1999).  

 Each driver also wishes to travel at a safe distance behind the preceding car.  We assume 
that all drivers have the same conservative notion of what constitutes a “safe” following 
distance. They wish to be able to avoid a rear end collision in the event that the preceding car 
stops instantaneously.  Given this standard, Pacquette et al. (1972) derive an equation which 
shows that the space occupied by a car depends on the car’s length, the driver’s reaction time, 
speed and the car’s breaking capacity: 

 
f*30

S+S*b*1.4666+L=SP
2

 (1) 

 
where L is the length of the car (in feet), b is driver reaction time (in seconds), S is speed 

(in miles per hour), and f is the coefficient of friction between the tires and the roadway.  The 
coefficient of friction is a function of speed.  As speed increases, the coefficient decreases in an 
approximately linear manner (Pacquette et al., 1972).  At 45 miles per hour (mph), which is the 
commonly posted speed limit in highway work zones in the United States, f would be 
approximately .89 on dry pavement.  At 65 mph, f would be .84 on dry pavement.  Given the 
amount of space occupied by one car, it is possible to compute traffic density (cars per lane-
mile) and the traffic flow (cars per lane-mile per hour).1 

In our analysis, drivers incur no penalties for arriving at their destinations earlier or later 
than they would desire.  As noted, these penalties are an important element of the congestion 
model developed by Arnott et al. (1990).  Their model considers the behavior of a group of 
drivers trying to get to work.  If commuters arrive at work late, they suffer a loss of income.  If 
they arrive early, they spend time at the work site that might be more pleasantly spent at home.  
Since the trip to work is made repetitively, it is reasonable to expect that drivers will devise 
strategies that minimize their travel costs.  In this paper, we focus on the behavior of drivers 
making long, non-work related intercity trips.  These trips are made over roads with which the 
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driver might not be familiar.  Thus, by their nature, these trips cannot be scheduled very 
precisely.  Even if drivers are aware that they will encounter construction delays, the location 
and severity of these delays are generally not known with precision.  For example, the AAA’s 
Trip-Tiks do provide a rough indication of the location of construction sites but do not suggest 
an alternative route.  In effect, we assume that drivers view construction delays on intercity trips 
as random bad luck and do not find it worthwhile to devise a strategy to deal with the problem. 

Finally, we assume that all drivers travel at the same speed and that when both lanes are 
open to traffic the traffic flow is divided evenly between the left- and right-hand lanes. 
 

The Road 
Under normal conditions, drivers have two lanes (in each direction) available to them. 

However, as shown in figure 1, a segment of the right lane is closed to traffic for an extended 
period of time.  In the transition area, traffic is channeled from the closed lane into the open lane. 
 The closed section does not contain an entry or an exit ramp.  In the work zone, the posted speed 
limit is 45 mph.  Thus, prior to entering the work zone, cars A, B, C and D in figure 1 must 
reduce speed to 45 mph.  In addition, vehicles B and D must merge into the left lane.2    

Ideally, drivers would like to execute both of the maneuvers without a traffic queue 
developing.  Whether this is possible depends on the relation between the capacity of the work 
zone (i.e. the rate at which cars can enter the work zone) and the flow of traffic on the highway.  
If the traffic flow exceeds capacity, then the transition area becomes a bottleneck and a queue 
will develop.  Traffic queues impose a number of costs on drivers.  The most obvious is that they 
increase travel time.  Since queued traffic moves in a stop-and-go manner, fuel consumption, 
vehicle wear and tear and the emission of pollutants will also increase.  There is also evidence 
that work zone queues cause an increase in the rate of accidents (Maze et al., 1999).  In this 
paper, we focus on the time cost of traffic queues.  Jiang (1999b) estimated the user costs of lane 
closures on I-65 in Indiana and found that queuing delay costs represented over 90 percent of 
total costs. 

The theoretical capacity of the open lane can be found using equation (1).  Assuming a 
vehicle length of 16 feet and a reaction time of .4 second, equation (1) implies that the distance 
between successive cars (front bumper to front bumper) at 45 mph would be about 118 feet.3 
Drivers would probably not want to travel this closely together for any length of time, since the 
required level of attention would be difficult to maintain.  However, the trip through the 
construction zone is a temporary event.  Moreover, the physical set up of construction zones 
often includes construction barriers on both sides of the road and narrower (or no) shoulders, 
which force drivers to pay attention.  In addition, since passing is not permitted in work zones, 
drivers don't have to worry about other drivers cutting in front of them.   With a space 
requirement of 118 feet per car, traffic density would be 44.74 cars per lane mile and the traffic 
flow would be about 2000 cars per lane mile per hour.  Of course the theoretical capacity of the 
open lane depends on a number of site specific considerations including: the width of shoulders, 
the gradient and alignment of the road in the work zone, and the proximity of construction 
workers and equipment (Dudek and Richards, 1982).  For long-term construction projects, the 
ideal would be to segregate workers from the traffic flow and to design barriers and shoulders to 
minimize driver feelings of claustrophobia. 
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In theory, as long as the traffic flow is less than or equal to 2000 cars per hour, cars 
should be able to move through the construction zone without a queue developing.  For example, 
assume that the traffic flow is 2000 cars per hour evenly divided between the two lanes and 
staggered as shown in figure 1.  At 65 mph, traffic density would be 15.38 cars per lane-mile, 
which implies that the space for each car would be 343.2' (d1 in figure 1).  Assuming a reaction 
time of 1 second, equation (1) implies that each car would require 283' of space.  While 343.2' is 
more than enough to provide an adequate safety margin under normal conditions, it does not 
provide enough space to allow B to merge into the left lane without forcing C to slow down.  If 
each car were to attempt to maintain a speed of 65 mph until the last possible moment before 
slowing down to enter the work zone, cars in the right lane would not be able to move into the 
left lane without triggering a cascade of speed reductions that would transmit a shock wave 
upstream.  However, consider a scenario in which a sign, located 1000' upstream of the transition 
area,  instructs all drivers to reduce their speed to 45 mph immediately and tells drivers in the 
right lane to merge left when it is safe to do so.  By the time car A is 500' from the transition 
area, all four cars will be traveling at 45 mph.  In addition, d1 will be 237.6' and d2 (the distance 
between A and B) will be 118.8'.  Thus, B would be able to merge into the left lane without 
impinging on C.  Unfortunately, it is hard to envision that actual drivers would behave in such a 
highly coordinated fashion.  Not all drivers will react to the sign equally quickly or brake at the 
same rate.  Some drivers might be tempted to cheat in order to save time.  For example, B might 
maintain speed in an attempt to pass A.  An officer in Wisconsin's State Highway Patrol suggests 
that it is not in the nature of American drivers to slow down unless they are forced to do so by a 
traffic tie-up (Wald, 1999).   

There is evidence that the orderly flow of traffic will break down well before theoretical 
capacity is reached.  For example, Jiang (1999b) defines work zone capacity as “the traffic flow 
just before a sharp speed drop followed by a sustained period of low vehicle speed...and a long 
period of traffic congestion (p. 7).”  In essence, Jiang defines capacity as the maximum flow that 
can be sustained without a traffic queue forming.  His analysis of four work zones in Indiana 
indicates that capacity is about 1600 cars per hour (Jiang 1999a).  Dixon et al. (1996) employ a 
similar definition of capacity and find that on rural segments of I-95 in North Carolina where 
two lanes of traffic are forced to merge into one open lane the capacity of the open lane is 
approximately 1450 cars per hour.  Interestingly, they report that on interstate work zones 
located in urban areas the capacity of the open lane is much higher, between 1696 and 1873 cars 
per hour.  They account for the difference by pointing out that while I-95 “serves a high 
proportion of unfamiliar through drivers (p. 30)” its urban segments are used by commuters who, 
because they make the same trips repetitively, are more familiar with the traffic situation. [For a 
theoretical analysis of the development of instability in the traffic flow, see Ferrari (1991).] 

Importantly, the onset of congestion and queuing is accompanied by a discontinuous drop 
in the rate at which cars are discharged from the queue into the open lane.  This phenomenon is 
analyzed in two papers by Banks (1990, 1991).  Jiang (1999a) reports that at the Indiana work 
zones he studied the mean queue discharge rate was approximately 1400 cars per hour. 

 

It is reasonable to ask what causes this abrupt capacity drop.  Banks (1991) suggests that 
“merge conflicts ...lead to the general flow breakdown” when the merging process is 
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uncontrolled (p. 89).  This hypothesis is plausible.  Consider a relatively benign merger protocol 
in which each car in the left lane allows a car from the right lane to cut in before entering the 
work zone.  With this arrangement, the flow of traffic into the open lane would not be continuous 
because there would be small time intervals in which traffic in neither lane would be moving.  At 
actual construction sites, the merger process can be much more confrontational.  Maze et al. 
(1999) observe that some drivers will attempt to travel in the closed lane as long as possible 
before merging into the open lane.  They point out that drivers who have been waiting patiently 
in the queue for their turn to enter the bottleneck have been known to straddle both lanes to 
discourage such behavior.  Thus, cars traveling in the closed lane might have to force their way 
into the open lane.  In addition to reducing the capacity of the open lane, such behavior also 
contributes to the increased accident rate at work sites mentioned above.  In addition, some 
drivers will switch lanes several times before reaching the bottleneck in an effort to be in 
whichever lane of traffic is moving.  Each lane switch uses up capacity and doubtless contributes 
to the frustration level of drivers in the queue. 

There is evidence to support the hypothesis that the abrupt drop in capacity is caused by 
uncontrolled merging.  For example, at work zones in Texas, Dudek and Richards (1982) report 
that when two lanes of traffic are forced to merge into one open lane, the capacity of the open 
lane (what Jiang would term the queue discharge rate) is 1340 vehicles per hour.  In situations 
where three lanes of traffic are forced to merge into one lane, the capacity of the open lane is 
only 1130 vehicles per hour.  A reasonable explanation for the decrease is that the merging 
problem would be more complicated in the second case.  Additional support for the hypothesis 
comes from Pavis et al. (1995) who analyze a bus metering scheme at the Lincoln Tunnel in 
New York City.  They study a situation where a lane of cars and a lane of buses have to merge 
into one lane.  They report that when merging was unmanaged the traffic flow was “turbulent” 
and that the average throughput was 1050 vehicles per hour (350 buses, 700 cars) (p. 35).  A 
metering scheme in which two cars were allowed to enter for each bus was imposed.  Pavis et al. 
indicate that metering created a "more uniform flow into the tunnel" and increased the entry rate 
to approximately 1200 vehicles per hour (p. 37).   

While individual drivers might perceive it to be in their interest to behave strategically, 
this behavior reduces the capacity of the open lane and therefore increases travel time for all 
drivers.  Economic theory suggests that drivers do not pay attention to the external costs of their 
actions, which leads to a suboptimal outcome.  The implication is that controlling the merging 
process can reduce the scope for strategic behavior and thus increase the capacity of the open 
lane.  In section IV, we consider a possible method the highway authority can use to achieve this 
objective.  Of course, the basic economic question is whether the benefits of achieving a more 
orderly traffic flow are likely to exceed the costs.  Therefore, in the next section, we will present 
a method of computing the total amount of time that drivers spend in the traffic queue. 
 

DETERMINATION OF TIME SPENT IN THE QUEUE 

We use ER to represent the rate at which cars can enter the bottleneck under uncontrolled 
conditions.  We assume that the travel day contains a period T1 hours in length when the traffic 
flow on the highway exceeds ER.  After this period, we assume that the traffic flow on the road 
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and thus the rate at which cars arrive at the bottleneck is less than ER.  We use AR1 and AR2 to 
represent the rates at which cars arrive at the bottleneck during these periods (AR1 >ER>AR2).  
To simplify the analysis, we assume that AR1, AR2, and ER are constant. The relation between 
the arrival rates and the entry rate is shown in figure 2. 

When the arrival rate exceeds ER, the queue gets steadily larger increasing from 0 at time 
t0 to its maximum length at time t1.  After t1, the rate at which new cars join the queue is less than 
the rate at which cars enter the bottleneck.  The queue then starts to dissipate and will eventually 
disappear.  

As McShane et al. (1998) and Mun (1994) point out, the Lighthill and Whitham shock 
wave equation can be used to determine the rate at which the edge of the queue moves upstream 
during the buildup period:  

 
D-D
ER-AR=S

J1

1
B  (2)  

where D1 is traffic density (cars per mile) under free-flow conditions and DJ is jam density in the 
traffic queue.  Since AR1 is greater than ER and D1 is less than DJ, SB is negative.  Since AR1, 
ER, D1 and DJ are constant, SB is constant, which means that during the buildup period the edge 
of the queue will move upstream at a constant rate.  We assume that the queue will occupy both 
lanes upstream of the transition area. 

Equation (2) enables us to determine the maximum length of the queue (in cars) at t1: 

 .D*T*S-=Q J1BMAX  (3) 

Given (3), the maximum wait in the queue (for the car that enters the queue at time t1) is: 

 
ER

D*T*S-=TQ J1B
MAX  (4)

Since the length of the queue increases in a linear fashion from 0 at time t0 to its maximum 
length at t1, the average driver's wait in the queue will be: 

 
ER*2

D*T*S-=AvTQ J1B  (5) 

After t1, the arrival rate is less than ER and the queue starts to dissipate.  The rate at 
which the queue shrinks is given by: 

 
D-D
AR-ER=S

2J

2
D  (6) 

Since ER exceeds AR2 and DJ is greater than D2, SD is positive which means that during the 
second period the edge of the queue is moving closer to the work zone.  Given our assumptions, 
SD is also constant, which means that during the second period the queue will decrease at a 
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constant rate.  This implies that for drivers who join the queue after t1 the average wait in the 
queue will also be given by equation (5). 
 The total amount of time spent in the queue can be found by multiplying the average time 
spent in the queue by the number of drivers entering the queue during the two periods.  The 
number of drivers entering the queue during the buildup period is:  
 .AR*T 11  (7) 

The number of drivers during the second period is the length of the second period multiplied by 
AR2.  To find the length of the second period (T2), it is first necessary to determine how long it 
will take for the queue to disappear: 

 
S

TS-=T
D

1B
2

*  (8) 

 
The numerator of (8) is the length of the queue in miles.   

Using equations (5), (7) and (8), we can then determine the total amount of time that 
drivers spend in the queue: 

 ]
S

AR*T*S-+AR*T][
ER*2

D*T*S-[=TTQ
D

21B
11

J1B  (9) 

Substituting for SB and SD using equations (3) and (6), equation (9) can be rewritten as:

 
AR-ER
D-D*]

D-D
ER-AR[*

ER
AR*k+

D-D
ER-AR*

ER
AR*k=TTQ

21

2J2

J1

12

1J

11   (10)  

where k is (T1
2*DJ)/2.  The first and second order partial derivatives of (10) with respect to AR1 

are both positive which means that an increase in the arrival rate during period 1 will cause the 
time delay incurred by drivers in the queue to increase at an increasing rate.  The first order 
partial derivative with respect to ER is negative while the second order partial is positive which 
means that an increase in the entry rate causes TTQ to decrease at an increasing rate.  
Multiplying TTQ by $13.05 yields the value of time spent in the queue. 

The only variable in (10) which is under the direct control of the highway authority is the 
entry rate.  As a measure of the magnitude of the benefit of an increase in ER, we use the 
elasticity of TTQ with respect to ER: 

 .
TTQ
ER*

ER
TTQ=e
∂
∂

To give an idea of the magnitudes involved, Table 1 provides a numerical example.  
Table 1 assumes that T1 is 2 hours, AR1 is 2000 (cars per hour), AR2 is 1000 cars and that ER is 
1400 cars per hour.  The entry rate is based on Jiang's (1999a) findings.  In the traffic queue, we 
assume that each car occupies 30'.  Therefore, the jam density is 176 cars per lane mile.  The first 
column of the table shows that the maximum length of the queue is 1315 cars which implies that 
the driver entering the queue at time t1 would encounter the edge of the queue 3.73 miles from 
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the work zone.  It is interesting to note that the length of the period during which the queue 
dissipates exceeds the length of the buildup period.  The value of the elasticity coefficient 
implies that a one percent increase in the entry rate would cause total delay time to decrease by 
5.9 percent.  The second two columns examine the impact of an increase in the entry rate.  As the 
elasticity coefficient implies, increases in the entry rate would lead to more than proportional 
decreases in delay time. The second two columns show this to be case.  An increase in the entry 
rate from 1400 to 1800 cars per hour, an increase of 28 percent, causes total delay time to fall by 
about 2800 hours, a decrease of about 83 percent.  The value of the time savings is 
approximately $36,000.  An increase in ER reduces total delay by reducing the maximum length 
of the queue, which in turn reduces the average delay.  Since the maximum length of the queue is 
reduced and the entry rate is higher, the length of the second period is drastically reduced, which 
means that fewer drivers are caught in the queue after time t1.  In this example, the length of the 
second period is reduced by about 2.5 hours. Table 2 shows the impact of an increase in AR1 to 
2200 cars per hour.  The table shows that an increase in the arrival rate during the first period 
produces a disproportionate increase in the delay cost.  Given the higher value of AR1, the 
benefits of an increase in the entry rate are higher.  For example, an increase in the entry to 1800 
cars per hour reduces delay cost by about $53,000.     
 

SOLUTION 

The examples presented in tables 1 and 2 show that an increase in ER can yield a sizable 
benefit.  This then raises the question of what policies the highway authority can implement to 
increase ER.  The least cost solution would be to require drivers to slow down to 45 mph and 
merge left in an orderly manner as outlined in section II.  Drivers who are inclined to cheat could 
be discouraged by fines.  The problem is that in construction zones it is difficult for police to 
find a safe space to detect speeders and pull them over (Wald, 1999).  In theory, it would be 
possible to install an automated detection system which would photograph the license plates of 
offenders and send them tickets in the mail.  However, this system, which is used in Europe and 
other places, is not widely used in the US.  In addition, intercity highways are used by drivers 
from a variety of states and Canadian provinces.  There is some question as to whether the 
prospect of getting a ticket in the mail from New York would encourage a driver from Ontario to 
slow down.  If relatively few cheaters could be ticketed, then in order to discourage cheating the 
fines levied on those few would probably have to be quite large.  

Since the ideal solution is not practical, we propose that prior to the transition area a 
barrier be erected between the two lanes which would prevent drivers from changing lanes.  This 
barrier would prevent cars B and D in figure 1 from moving into the left lane.  (The length of the 
barrier will be discussed below.)  The barrier would not have to be elaborate or continuous.  It 
just has to convince any driver contemplating a lane switch that s/he is running the risk of 
incurring a sizable bill at a body or muffler shop.  Data provided by Richards and Dudek (1984) 
indicate that the cost of dividing the two lanes using traffic tubes would be on the order of $100 
per day per mile.  Just before the transition area, a traffic signal would be placed in front of each 
lane to control the entry of cars into the open lane.  The cost of renting two of ADDCO’s 
portable solar traffic signals would be approximately $400 per day (Mueller, 2005).  An 
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electronic message sign located upstream of car D would inform drivers about the presence of a 
construction zone and tell them to stay in lane and be prepared to stop.  The daily rental cost of 
the sign would be about $100. Small (1983) describes a signaling system for a bus priority lane 
that could be adapted to our purposes.  During periods when the traffic flow is less than 1400 
vehicles per hour, the sign could direct drivers to merge left.  The light at the end of the left lane 
could be set on yellow.  Drivers who remain in the right lane would face a flashing red light at 
the end of the lane, which would force them to wait for a safe gap in the traffic flow before 
entering the transition area. 

This scheme prevents drivers from behaving strategically and ensures that they approach 
and enter the bottleneck in an orderly fashion.  Cars from the two lanes would be allowed to 
enter the open lane in alternating platoons.  In making the transition between lanes, a certain 
amount of time is lost.  When the light changes to green, there is a delay while the first driver 
reacts to the signal change and begins to accelerate.  The reaction and acceleration times of the 
second driver are faster, because they overlap with those of the first driver (McShane et al., 
1998).  As more drivers enter the bottleneck, the time gap between entries stabilizes.  At 45 mph, 
given our assumptions, cars can enter the bottleneck at the rate of one car every 1.8 seconds.  
The headways between the first 3 or 4 cars will exceed 1.8 seconds.  In the transportation 
engineering literature, one approach to dealing with this problem is to assume that the headway 
between cars is constant but that 3 seconds are "lost"-i.e. during the first three seconds after the 
light change no cars enter the bottleneck and after that cars enter at a constant rate (McShane et 
al., 1998).  In addition, there is a transition period when both lights are red (“the all red phase”) 
to minimize the possibility that cars from both lanes will attempt to enter simultaneously.  We 
assume that this period is also 3 seconds.  Thus, during each interval, 6 seconds are lost.  For 
example, if the interval length (“cycle length”) were 60 seconds, a platoon of 30 cars could enter 
during the remaining 54 seconds.  Since there are 60 intervals in an hour, the hourly entry rate 
would be 1800 cars.  While this is less than the theoretical capacity rate of 2000 cars, it is a 
considerable improvement on the unmanaged entry rate.   

As table 1 shows, the maximum queue length would be reduced to 438 cars (2.48 miles). 
 The length of the maximum queue would govern the length of the barrier between the lanes and 
the location of warning sign.  In the simple situation we are considering where the arrival flows 
and entry rate are constant; the length of the barrier would be 1.24 miles.  In a more realistic 
situation where the arrival rate and entry rate are stochastic, the length of the barrier would have 
to be longer to allow for times when the arrival rate during period 1 exceeds its expected value or 
the entry rate is less than its expected value. 

The 6 seconds that are lost are analogous to a fixed cost.  With a longer cycle length, the 
time lost would be spread over more cars and the entry rate would increase.  For example, if the 
cycle length were 120 seconds, the hourly entry rate would increase to 1900 vehicles.  The 
longer segment length increases capacity by reducing the number of gaps in the traffic flow.  In a 
more realistic situation where the traffic flow includes trucks, whose performance characteristics 
are generally worse than those of cars, the number of gaps in the traffic flow might be important 
if the bottleneck includes an upgrade.  If a truck in one platoon were to slow down, the gap 
between platoons would prevent the slowdown from affecting following platoons.   

While increasing the cycle length to 120 seconds would yield an objective improvement 
as shown in tables 1 and 2, there is some question whether drivers would perceive a 
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psychological improvement.  A segment length of 120 seconds means that drivers will be 
motionless for two minutes at a time.  There is evidence that travelers dislike sitting still. For 
example, Quarmby (1967) finds that urban commuters in the United Kingdom are willing to pay 
a much higher price to reduce time spent waiting for a bus or subway car than to reduce time 
spent in transit. 

The scheme works because it imposes order on the behavior of drivers.  There are 
parallels.  For example, in theory superconductive transmission wires can carry a greater flow of 
electricity because the reduction of resistance prevents electrons from interfering with each 
other.  Greenberg and Daou (1960) demonstrate that allowing cars to enter the Holland tunnel in 
platoons rather than individually eliminates shock waves within the tunnel and thus increases 
traffic flow.  There is sizable literature, of which the Pavis et al. (1995) study cited above is but 
one example, that metering entry rates into highways can increase highway capacity and reduce 
travel times by creating a more orderly traffic flow.  One question is whether drivers would be 
willing to cooperate with the scheme.  Pavis et al. write that initially car drivers attempted to 
violate the metering protocol but were forced to cooperate when bus drivers exercised their 
rights to enter.  The evidence presented in tables 1 and 2 indicates that the benefits of the scheme 
are sizable enough to cover the cost of stationing a trooper at the transition area during peak 
periods to ticket violators.  
 

CONCLUDING COMMENTS 

In the context of the stylized transportation problem considered in this paper, we have 
shown that a sizable benefit can be obtained at a relatively modest cost by controlling the 
merging process at construction bottlenecks on multi-lane highways.  The actual benefits are 
probably larger than our results indicate.  The benefits of a smoother traffic flow would also 
include reductions in pollution emissions and accident rates.  Dougherty (1997) indicates that if a 
car expects to idle for more than 20 seconds it makes sense to turn off the engine since the fuel 
savings and reduced pollution emissions exceed the cost of restarting the engine.  In our scheme, 
this threshold is easily met since vehicles will be motionless for (at least) a minute at a time. In 
addition, some vehicles will have more than one occupant.  One can only wonder how much a 
couple traveling with a carload of children would be willing to pay to avoid a lengthy wait in a 
traffic queue.  While a simplified set of circumstances are useful for establishing the value of an 
idea, there are a number of interesting ways in which the analysis can be made more realistic. 

For example, on real highways, the traffic flow in the right lane generally exceeds the 
flow in the left lane.  This imbalance is important because it influences the length of the barrier 
and the placement of the warning sign.  It also influences the management of the traffic signals.  
Assuming no lane switching, the queue in the left lane would be shorter than the queue in the 
right lane.  Thus, if the duration of the alternating entry intervals were the same for both lanes, 
cars in the left lane would have a shorter wait.  This knowledge would give at least some drivers 
in the right lane an incentive to switch lanes which is the sort of behavior our proposal is 
intended to discourage.  One method of dealing with this problem is that the signals could be 
managed so that there would be no competitive advantage from switching lanes.  In other words, 
the average wait would be the same for drivers in both lanes.  An alternative strategy would be to 
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use an electronic sign to assign drivers to either the left or right lane and thus equalize queue 
lengths. 

The analysis could also be adapted to include trucks in the traffic flow.  The presence of 
trucks would alter my computation of the cost of the delays caused by the queue.   It is 
reasonable to assume that the value of an hour of delay would be higher for a truck than for a car, 
since the computation would be based on the full wage of the driver and might include costs 
associated with the late arrival of the truck’s cargo.  The presence of trucks would also influence 
the management of the signal and thus the rate at which vehicles could enter the bottleneck.  For 
example, if the bottleneck contained a steep upgrade, a truck might be forced to reduce speed.  
This speed change would send a shock wave upstream and could cause a traffic tie-up within the 
bottleneck.  With our scheme, the intent is that vehicles wait to enter the bottleneck but move at 
a constant speed once they do.  With trucks, it might be necessary to increase the length of time 
both lights are red.  This would introduce longer gaps between the platoons.  Longer gaps would 
reduce the risk of a traffic tie-up but would also reduce the entry rate.   

Because our scheme is not price-based, it does not allow for differences between the 
willingness of drivers to pay for a reduction in queuing time.  However, since an increasing 
number of vehicles are equipped with transponders similar to those used by the EZ-Pass toll 
collection system, adapting our scheme for differences in driver willingness to pay would be 
relatively easy.  The metering strategy could be altered so that drivers in the left lane would have 
a shorter wait to enter the transition area but would have to pay for the privilege.   

Finally, our analysis assumes that the arrival and entry rates are constant.  In reality, 
these rates are random variables.  Therefore, it would be an interesting exercise to adapt the 
analysis to take the stochastic nature of vehicle flows into account. 
 

NOTES 

1.  Traffic density would equal 5280 divided by the amount of space per car given by equation    
      (1).  The traffic flow would equal traffic density multiplied by speed.   
 
2. Figure 1 depicts a partial lane closure.  The same basic analysis would also apply to a 

crossover situation in which all lanes on one side of a divided highway are closed and drivers 
traveling in both directions use the open side. 

 
3.  Estimates of driver reaction time vary widely (Drew, 1968).  The engineers at Consumers 

Union place driver reaction time at .2 of a second (Caruso, 1998).  Paquette et al. (1972) 
assume a reaction time of 2.5 seconds to allow for drivers whose reaction times are above 
normal.  Following Edie (1974), we assume a reaction time of one second under normal 
driving conditions.  However, for reasons discussed in the text, we assume that drivers are 
more alert in construction zones.  Thus, a shorter reaction time seems appropriate.   

 
REFERENCES 

Arnott, R., A. de Palma, and R. Lindsey. 1990. Economics of a bottleneck.  Journal of Urban 



 
 14 

Economics 27 (1): 111-130. 
 
Banks, J. H. 1990. Flow processes at a freeway bottleneck.  Transportation Research Record 
1287: 20-28. 
 
Banks, J. H. 1991. Two-capacity phenomenon at freeway bottlenecks: a basis for ramp metering. 
Transportation Research Record 1320: 83-90. 
 
Button, K. J. 1993. Transportation economics, 2nd ed. Aldershot, U.K.: Edward Elgar. 
 
Caruso, T. 1998. Personal correspondence. 
 
Council of Economic Advisers. 2005. Economic report of the President, 2005.  Washington, 
D.C.: U.S. Government Printing Office. 
 
Dixon, K. K., J. E. Hummer, and A. R. Lorscheider. 1996. Capacity for North Carolina freeway 
work zones.  Transportation Research Record 1529: 27-34. 
 
Dougherty, M. 1997. A block queueing system for slow moving traffic.  Transportation 
Research  2D (4): 259-270. 
 
Drew, D. R. 1968. Traffic flow, theory and control.  New York: McGraw-Hill. 
 
Dudek, C. L., and S. H. Richards. 1982. Traffic capacity through urban freeway work zones in 
Texas.  Transportation Research Record 869: 14-18. 
 
Edie, L. C. 1974.  Flow theories.  In Traffic science, ed. D. C. Gazis, 9-16.  Wiley: New York. 
 
Ferrari, P. 1991. The control of motorway reliability.  Transportation Research 25A (6): 419-
427. 
 
Greenberg, H., and A. Daou. 1960. The control of traffic flow to increase the flow.  Operations 
Research 8 (4): 524-532. 
 
Hensher, D.A., F. W. Milthorpe, N.C. Smith, and  P. O. Barnard. 1990. Urban tolled roads and 
the value of travel time savings. The Economic Record 66 (193): 146-156.  
 
Jiang, Y. 1999a. A model for estimating excess user costs at highway work zones.  
Transportation Research Record 1657: 31-41.   
 
Jiang, Y. 1999b.  Traffic characteristics and estimates of traffic delays and usser costs at 
Indiana freeway work zones.  West Lafayette, IN: Indiana Department of Transportation 
Research Division. 
 



 
 15 

Maze, T.H., S. D. Schrock, and K. S.  VanDerHorst. 1999. Traffic management strategies for 
merge areas in rural Interstate work zones.  Ames, IA: Iowa Department of Transportation. 
 
Mc Shane, W, R., R. P. Roess, and E. Prassas. 1998. Traffic engineering, 2nd ed.  Upper Saddle 
River, NJ:  Prentice-Hall. 
 
Mohring, H. 1999.  Congestion. In Essays in transportation economics and policy: a handbook 
in honor of John Meyer, eds.  J. Gomez-Ibanez and W. B. Tye, and  C. Winston, 181-221.  
Washington, D.C.:  Brookings. 
 
Mueller, J. 2005. Phone conversation on March 28, 2005.  Mr. Mueller is the Northern Region 
manager for ADDCO, which is a manufacturer of traffic control devices. 
 
Mun, S. 1994. Traffic jams and the congestion toll.   Transportation Research 28B (5): 365-375. 
 
Paquette, R. J., N. Ashford, and P. H. Wright. 1972. Transportation engineering: planning and 
design. New York: Ronald Press. 
 
Pavis, A., A. Saracena, H. N. Yagoda, and A. Bauer. 1995.  Congestion management through bus 
metering at the Lincoln Tunnel.  Transportation Research Record 1496: 35-40. 
 
Quarmby, D. A. 1967. Choice of travel mode for the journey to work: some findings.  Journal of 
Transport Economics and Policy 1 (3): 273-314. 
 
Richards, S. H., and C. L. Dudek. 1984. Selection of work zone channelizing devices using the 
value engineering approach. College Station, TX:  Texas Transportation Institute, Texas A&M 
University. 
 
Small, K. A. 1982. The scheduling of consumer activities: work trips.  The American Economic 
Review 72 (3): 467-479. 
 
Small, K. A. 1983. Bus priority and congestion pricing on urban expressways.  Research in 
Transportation Economics 1: 26-74. 
 
Son, Y. T. 1999. Queuing delay models for two-lane highway work zones.  Transportation 
Research 33B (7): 459-471. 
 
Verhoef, E. T. 2003. Inside the queue: hypercongestion and road pricing in a continuous time-
continuous place model of traffic congestion.  Journal of Urban Economics 54: 531-565. 
 
Wald, M. L. 1999. Danger, under construction.  The New York Times, January 8, sec. F.  
 
Table 1.  Impact of a Change in the Entry Rate on Delay Time 
 



 
 16 

 
ER 

 
1400 

 
1800 

 
1900 

 
SB(mph) 

 
-1.87 

 
-.62 

 
-.31 

 
QMAX (Vehicles) 

 
1315 

 
438.32 

 
219 

 
Max Delay (hrs) 

 
.94 

 
.24 

 
.115 

 
Av. Delay (hrs) 

 
.47 

 
.12 

 
.058 

 
SD (mph) 

 
1.19 

 
2.38 

 
2.67 

 
T2 (hrs) 

 
3.14 

 
.52 

 
.233 

 
Arrivals during T2 

 
3144 

 
524 

 
244 

 
Total Delay Time 

 
3355 

 
550.81 

 
244.12 

 
Total Time Cost 

 
$43,780.96 

 
$7188.11 

 
$3185.80 

 
E 

 
-5.9 

 
-11.30 

 
-21.16 
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Table 2.  Impact of an Increase in AR1 to 2200 cars per hour 
 
 
ER 

 
1400 

 
1800 

 
1900 

 
SB(mph) 

 
-2.49 

 
-1.24 

 
-.93 

 
QMAX (Vehicles) 

 
1753 

 
877 

 
657 

 
Max Delay (hrs) 

 
1.25 

 
.49 

 
.346 

 
Av. Delay (hrs) 

 
.626 

 
.24 

 
.173 

 
SD (mph) 

 
1.19 

 
2.38 

 
2.67 

 
T2 (hrs) 

 
4.19 

 
1.05 

 
.698 

 
Arrivals during T2 

 
4192 

 
1048 

 
699 

 
Total Delay Time 

 
5379.78 

 
1326.61 

 
882.16 

 
Total Time Cost 

 
$70,205.81 

 
$17,312.29 

 
$11,512.15 

 
E 

 
-5.3 

 
-6.798 

 
-8.49 
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