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ABSTRACT 
 
The paper involves an econometric analysis of congestion pricing at the bridges and tunnels 
operated by the Port Authority of New York and New Jersey (PANYNJ). Using a fixed effects 
model, we pool all facilities to evaluate the impacts of the congestion pricing structure in effect 
since March 2001. We find significant impacts for autos, but need to confront a counter-intuitive 
finding: cash paying vehicles, who do not benefits from off-peak discounts, are also estimated to 
be impacted. Using a unique data set on queueing at the facilities, we are able to control for 
"peak spreading", and find the pricing effect greatly reduced. By further controlling for 
endogeneity with an instrumental variables estimator, we find that the price effect on cash paying 
vehicles entirely disappears. 
 
These results confirm the hypothesis that congestion pricing has had an important impact on 
conditions at the PANYNJ facilities. Taking a weighted average of the changes by crossing for 
autos, it is estimated that value pricing led to a shift in EZ-Pass-using vehicles from the morning 
peak equal to 6.5% and in the evening peak 2.2%. Note that this result is heavily influenced by 
patterns at the George Washington Bridge, which accounts for over 50 percent of EZ-Pass-using 
autos.  



 

 

I.  INTRODUCTION 
 
The rationale for congestion (or value) pricing is by now well known and described in various 
sources such as Vickrey (1969), Keeler and Small (1977) and Hau (1992). Essentially, 
congestion pricing is proposed as a remedy for a classic market failure, where users of a 
congested facility are not accounting for the costs they impose on the facility.  In the case of 
roads, individual drivers may consider their personal travel costs, including time spent traveling 
and operational costs, before deciding whether or not to make a trip; however, they do not take 
into account the added cost their trip places on other drivers, and the resulting equilibrium use of 
the facility will be sub-optimal. By applying a congestion charge or tax, the individual would 
face a cost which would be closer to the true marginal cost of using the facility, and the resulting 
equilibrium would reflect an efficiency gain.  

 
The applications of congestion pricing have been “second best” schemes which do not charge all 
users the exact marginal costs they impose on the system (Verhoef, 2005). Rather, existing 
programs have been limited to specific facilities or geographic areas, rather than being imposed 
on entire networks. The unifying objective has typically been to alter usage of congested 
facilities by charging a higher price during the hours of peak traffic volume.   

 
The present paper reports an extensive evaluation of such a program, the congestion pricing 
initiative at six bridges and tunnels operated by the Port Authority of New York and New Jersey 
(PANYNJ).  The PANYNJ facilities include the Holland and Lincoln tunnels as well as the 
George Washington, Bayonne, and Goethals bridges and the Outerbridge Crossing. These are 
crucial links in the New York City region’s road network, providing the primary road access to 
the central business district from New Jersey and points west. Not surprisingly, the facilities are 
subject to very high volumes and varying degrees of congestion. As expansion of capacity is not, 
for the most part, an option in the foreseeable future, pricing was seen as one potential remedy.    
 
The PANYNJ instituted congestion pricing in March 2001, arguably one of the most significant 
efforts at pricing road capacity in the United States to date.  Previously, the toll imposed on 
motorists traveling into New York was set at a constant dollar amount undifferentiated by time 
of day.  With the introduction of congestion pricing, drivers now receive a toll discount of one 
dollar for using electronic tolling through E-ZPass to pay the toll. In addition, E-ZPass users 
receive an additional incentive for traveling during off-peak hours as opposed to during peak 
hours. In short, motorists using electronic toll collection pay two dollars less for traveling during 
off-peak hours over the standard six dollar cash toll rate 

 
The issue we examine here is the degree to which the introduction of congestion pricing at the 
PANYNJ facilities has been successful in shifting users to off-peak travel periods. Beyond an 
evaluation of the specific impacts of pricing at PANYNJ facilities, our analysis is of general 
interest to proponents of congestion pricing. Underlying the entire rationale for congestion 
pricing is the notion that a congestion charge will lead to a reduction in peak period traffic. 
However, absent a comprehensive “first-best” charging scheme users are imposed a charge 
which is typically only a rough approximation of an external congestion cost. Whether users 
respond to any significant degree is an entirely empirical question which needs to account for the 
characteristics of demand. It is clear that the more inelastic the demand at any facility, the less 



 

 

effective a given congestion charge will be in meeting the objective of reducing peak period 
congestion.  
 
Our analysis adds to a growing body of work evaluating the impacts of tolls on motorist travel 
demand, in particular assessing the impacts of differential tolling in response to congestion. The 
analysis is distinct from the literature in its consideration of congestion and its influence on 
travel behavior. Specifically, we incorporate measures of congestion in our econometric model to 
control for its influence on shifts from peak to off-peak travel. Controlling for the phenomenon 
of peak spreading arguably removes a source of potential bias present in earlier studies.  
 
II. EXISTING CONGESTION PRICING PROGRAMS AND IMPACTS 
 
Congestion pricing programs worldwide have been shown to impact traveler behavior in both the 
short run and the long run.  Short-term impacts include adjustments to time of travel, mode 
choice, and trip frequency, with changes in route choice predominating when there exists a free 
highway alternative.  Long-term adjustments include not only trip-making decisions but 
decisions as to automobile ownership and residence location as well (Evans et al, 2003). Our 
review is selective and focuses primarily on traffic impacts in terms of elasticity measures.  
 
Singapore has been successful with its areawide congestion pricing program.  Singapore’s Area 
Licensing Scheme (ALS) was an innovative experiment introduced thrirty years ago. Under ALS 
travelers are charged a fee, which varies by time of day, to enter the restricted zone in the central 
area of the city.  Estimates of the initial response to the program produced a midpoint arc price 
elasticity that was quite high at -2.95, reflecting the response of previously untolled travelers to 
the new fee. The response to later increases in the fee was more in line with the experience of 
other programs, with an elasticity estimate of -0.33 (Evans et al, 2003).  
 
Congestion pricing programs that charge a toll for use of specific highway lanes offering 
premium or express service have been implemented in California and Texas.  The pricing 
mechanism varies by program, but generally involves higher tolls during peak hours.  The State 
Road 91 Express Lanes (91X) congestion pricing program in Orange County, California features 
pricing that varies by time of day and day of week given by a published schedule with discounts 
for high occupancy vehicles with 3 or more occupants (HOV 3+).  The estimated price elasticity 
for use of the 91X lanes during the six hour period of heaviest use is approximately -0.7 to -0.8, 
while the price elasticity during only the one hour period of heaviest use (the peak of the peak) is 
approximately -0.9 to -1.0 (Sullivan, 2000).  
 
In Lee County, Florida, a variable pricing project is underway on two toll bridges linking the 
cities of Cape Coral and Ft. Myers.  A 50 percent discount on the toll is given to bridge travelers 
who use transponders for traveling during the discounted shoulders of the peak periods.  The 
bridges do not typically suffer from congestion, and travelers have gained little travel time 
advantages from traveling during off-peak periods (Evans et al, 2003).  Estimates of response to 
the differential pricing find log arc elasticities for both bridges are lowest in the evening post-
peak period and highest in the morning pre-peak period, ranging from -0.04 to -0.24 for the  
Midpoint Bridge and -0.02 to -0.14 for the Cape Coral Bridge.  These elasticities represent the 
change in traffic during the shoulder of the peak periods relative to the variable pricing toll.  



 

 

Driver response to variable pricing has decreased over time, indicating that the long run elasticity 
is smaller in magnitude than the short run elasticity (Evans et al, 2003), (Burris et al, 2000), and 
(Burris et al, 2004). 
 
The PANYNJ program was initially evaluated a few years after its introduction. Holguín-Veras 
et al (2005) focus specifically on E-ZPass users of the facilities and find that short run pre-peak 
price elasticities tend to be greater than short run post-peak elasticities for most PANYNJ 
facilities during both weekday mornings and evenings and on weekends; thus travelers are more 
willing to shift their travel to pre-peak periods in order to take advantage of the discounts.  Short 
term pre-peak elasticities with respect to the toll are in the range of -0.32 to -1.97 on weekday 
mornings, -0.65 to -1.27 on weekday evenings, and -0.88 to -1.68 on weekends.  Post-peak 
elasticities range from -0.61 to -1.04 on weekday mornings, -0.40 to -1.07 on weekday evenings, 
and -0.55 to -1.39 on weekends.  Commercial vehicles are found to be more inelastic to toll 
levels than passenger cars in both the short run and the long run, which is consistent with 
previous studies.  The long run elasticity for passenger cars ranges from approximately -0.5 to -
1.3, while the long run elasticity for trucks ranges from approximately -0.2 to -0.8.  It is 
important to keep in mind that these pure toll elasticities are computed for E-ZPass users only.  
One would expect to see lower elasticity values when looking at the entire population of Port 
Authority facility crossings, some of whom cannot take advantage of the off-peak toll discount 
as they are paying cash. 
 
In general, there is support for the proposition that congestion pricing has significant impacts on 
the time of day motorists choose to travel and on the level of congestion on the roadways.  A 
major shortcoming in this literature, however, is the possibility that congestion pricing is not the 
cause of the shift in travel time.  As alluded to previously, peak spreading is a phenomenon in 
which motorists shift the time of day they choose to travel in order to avoid peak congestion, and 
this could be influencing the results of these studies.  For example, Muriello and Jiji (2004), 
using only a couple years of data available at the time of their analysis, find that the shift from 
morning peak to pre-peak travel time at PANYNJ crossings appears to be correlated with 
congestion levels, and there is no statistically significant change in evening traffic levels. This 
raises the possibility that, without explicit controls for congestion, researchers cannot be sure that 
their results do indeed capture congestion pricing and not peak spreading. 
 
III. THE PRICING MODEL 
 
Our analysis benefits from several more years of data than available to Holguin-Veras et al. and 
Muriello and Jiji, consisting of quarterly traffic volumes by hour at each of the six Port Authority 
interstate crossing facilities.  The vehicle crossings are aggregated into four vehicle types: autos, 
light trucks, heavy trucks, and buses.  We have further aggregated the data into peak, shoulder of 
the peak, and off-peak crossing times consistent with the Port Authority’s definitions.  This will 
allow us to analyze shifts in the time of travel over time.  The final step in preparing the data for 
analysis is to separate motorists using E-ZPass transponders to pay the toll versus motorists 
paying with cash.  This will allow us to compare shifts in travel times of those drivers who may 
take advantage of congestion pricing versus those who do not receive the toll discount for using 
E-ZPass. 
 



 

 

We begin our analysis with a model of the pure toll effects on traffic volumes at the six PANYNJ 
crossing facilities, irrespective of time of day, in order to identify price responsiveness by users.  
We apply an Ordinary Least Squares (OLS) regression of aggregate crossings for each of our 
four vehicle types on lagged crossings, seasonal dummy variables, business cycle effects, and the 
real value of the toll.  Our regressions take the form 
 

ttvtv uBIZSEASONALLAGSTollVolume +++++= )ln()ln()ln()ln( ,, γφδβα    (1) 
 
where  

v represents vehicle type (Auto, Light Truck, Heavy Truck, or Bus) 
Volumev,t is the volume of crossings of vehicle type v,  
Tollv,t is the toll in real dollars paid by vehicle type v,  
LAGS is a tx4 matrix of lagged volume,  
SEASONAL is a txk1 matrix of k1 seasonal dummy variables,  
and BIZ is a txk2 matrix of k2 business cycle variables. 

 
As there are no true substitutes to the PANYNJ crossings for travel into New York City from 
points to the west and south, we expect the coefficient on the toll to be quite small.  However, it 
is important for us to show that demand for the crossings is not perfectly inelastic with respect to 
the toll.  A perfectly inelastic demand curve would fail to shift travel time choices with the 
implementation of congestion pricing. 
 
Once price responsiveness to the toll has been established, we explore the effects of congestion 
pricing using a model focusing on time-of-day shares and toll differentials (the Pricing Model).  
For each vehicle type and payment method, we compute shares of crossings at each of the six 
PANYNJ facilities by time of day and day of week. We follow Matas and Raymond (2003) in 
using a fixed effects model to control for heterogeneity in each of the facilities’ markets (such as 
unobserved differences in travel patterns and trip purpose at each of the crossing facilities). Our 
equations take the form 
 

ttijpvtjpvtipv uSEASONALTollRatioShareShare +Ω+++= λφβα )ln()/ln( ,,,,,,,,,  (2) 
 
where 

p represents the payment method of the motorists (E-ZPass, Cash, or all motorists) 
i represents the time of day (Peak, Shoulder of the Peak, Off-Peak, etc.), 
Sharev,p,i,t is the share of crossings of vehicle type v, using payment method p, crossing the 
facility at time of day i 
TollRatiov,p,ij,t is the ratio of the toll in the two time periods, 
and Ω is a tx6 matrix of fixed effects associated with the PANYNJ facilities. 

 
Our data covers a time period that captures five quarters before and seventeen quarters after the 
implementation of congestion pricing.  This complete data set allows us to capture the effects of 
the congestion pricing toll with respect to traffic patterns before the change in the toll structure. 
 
For each vehicle type, we run estimate the model to capture shifts in traffic patterns due to 
congestion pricing from the peak to the shoulder of the peak and from the peak to the off-peak.  



 

 

We run separate regressions for motorists using E-ZPass and motorists paying in cash, as well as 
a total market regression of both E-ZPass users and non-E-ZPass users combined.  We expect to 
see the greatest response to the toll in the regression of E-ZPass users alone, as those are the 
motorists who are able to take advantage of the congestion pricing toll discount.  With EZ-Pass 
users being the only motorists eligible to receive the toll discount associated with the congestion 
pricing mechanism, the distinction between EZ-Pass and non-EZ-Pass motorists is essentially a 
distinction between a treatment group and a control group.    

 
Any toll responsiveness from motorists paying the toll in cash should not be interpreted as a 
result of congestion pricing because these users do not receive a toll discount and hence are not 
provided a direct incentive to shift their travel times.  At most, one could arguably expect a shift 
in cash paying motorists from the shoulders and off-peak periods back into the peak as a result of 
increased congestion from E-ZPass motorists shifting out of the peak periods, which would 
appear as a positive toll elasticity in our regressions. 
 
The final step in our analysis is to confirm that the behavioral responses we are seeing are indeed 
due to congestion pricing and not instead a result of peak spreading. Essentially, this involves 
defining a wider measure of the travel cost of using a PANYNJ facility. This measure would 
include not only monetary costs but congestion costs as well. 

 
We are lucky to benefit from such a measure: The PANYNJ produces biannual reports on 
congestion at their crossing facilities. In these reports, observed minutes of delay obtained from 
aerial photographs of the facilities and their surrounding access roads are presented. In essence, 
the aerial observations, differentiated for peak and off-peak periods, are reporting queue delays 
at the approaches to the facilities, which are much more meaningful indices of congestion than 
simple volumes at the crossings, for example.  From these reports, we may extract these 
measures of traffic delay approaching the facilities during the morning and evening peak and 
shoulder of the peak periods.  Adding this delay variable to our congestion pricing model will 
allow us to determine whether our results are due to the pricing mechanism or peak spreading.  
Our congestion model takes two forms: 
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Equation 3 models the effects of the ratio of delay in each of our two study periods i and j to the 
shift in traffic volume between these two periods.  Equation 4, on the other hand, simply models 
the effect of delay in period i on the shift in traffic out of period i into period j.  A negative and 
statistically significance coefficient on delay implies that peak spreading is occurring.  While 
peak spreading may occur in concert with significant toll effects, our model will show that 
congestion pricing does in fact create incentive for drivers to alter their behavior. 
 
 



 

 

IV. EMPIRICAL RESULTS FROM THE PRICING MODEL 
 
In our model of pure toll effects, the coefficient on the toll for each vehicle type, presented in 
Table 1, is quite small, as we would expect, but highly significant.  As shown, the elasticity 
estimates for cars, light trucks and heavy trucks are all highly significant at the one percent level 
and similar in magnitude at -0.04, while the toll effect for buses is not significant. 
 

TABLE 1: “PURE” TOLL EFFECTS 
Vehicle Type Toll Coefficient Standard Error R Squared 

Auto -0.04*** 0.01 0.99 
Light Truck -0.04*** 0.01 0.97 
Heavy Truck -0.04*** 0.01 0.97 

Bus -0.003 0.02 0.99 
 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
These elasticities show that while demand for use of the PANYNJ crossing facilities is quite 
inelastic, it is not perfectly inelastic.  Thus, pricing schemes should have an affect on traffic 
volume at the Port Authority interstate crossing facilities.  We explore this issue in detail using 
our Pricing Model, which focuses on changes in time-of-day volumes in response to toll 
differentials.  We find that responses to congestion pricing for each of the four vehicle types are 
strongest in the submarket for autos. In particular, we analyze the change in the shares of 
crossings in the peak and several non-peak periods, including Shoulder 1 (the one hour shoulder 
around the peak periods), Shoulder 2 (the two hour shoulder around the peaks), Off-Peak (all 
non-peak and non-shoulder hours), and Total Off-Peak (all non-peak hours).  Each regression 
was run for both week and weekend crossings and for all three payment submarkets (E-ZPass, 
Cash, and E-ZPass & Cash combined) 

 
TABLE 2: PRICING MODEL TOLL COEFFICIENTS FOR AUTOS 

 
AUTOS Week Weekend 

 EZPass + 
Cash EZPass Cash EZPass + 

Cash EZPass Cash 

Peak/Total Off-Peak -0.09** -0.16* -0.09** 0.02 0.02 -0.04 
Peak/Shoulder1 -0.09*** -0.21*** -0.07*** -0.05*** -0.21*** 0.05*** 
Peak/Shoulder2 -0.09*** -0.19*** -0.06** -0.05*** -0.14*** -0.05*** 
Peak/Off-Peak -0.08 -0.23** -0.12** 0.05 0.06 -0.04 

 
*** 1% Significance Level 
** 5% Significance Level 
*10% Significance Level 
 
As can be seen in Table 2, E-ZPass motorists are shifting out of the peak periods in response to 
the congestion pricing toll during the week.  Additionally, our model shows that they are shifting 



 

 

from the peak into each of the off-peak periods fairly equally.  The toll elasticity of autos using 
E-ZPass during the week does not vary much across off-peak alternatives.  Cash users also seem 
to be responding to the congestion toll by shifting out of the peak during the week.  This seems 
counterintuitive, as motorists paying cash do not receive the toll discount during off-peak 
periods.  This response may instead be due to peak shifting, which we examine further in our 
congestion model. 
 
We further refine our analysis to examine the effects of congestion pricing on the morning and 
evening periods separately.  We can separate the crossing data into morning and evening peak 
periods and one hour shoulder periods both before and after each peak.  The results from the 
Pricing Model run on these four dependent variables are presented in Table 3. 
 
In general, there is a larger response of motorists shifting to the pre-peak rather than post-peak 
period both in the morning and in the evening.  Congestion pricing has the largest effect on E-
ZPass motorist crossings during the morning.  Drivers are shifting their travel to the pre-peak 
hour in response to the toll discount with an elasticity of -0.54.  With the exception of the share 
of evening peak to evening before peak crossings, cash drivers do not exhibit significant 
responses to the congestion pricing toll. 
 

TABLE 3: PRICING MODEL TOLL COEFFICIENTS FOR AUTOS: 
MORNING AND EVENING SHARES 

 
AUTOS Week 
 EZPass + Cash EZPass Cash 
Morning Peak/Morning Before Peak -0.19** -0.54*** -0.16 
Morning Peak/Morning After Peak -0.06*** -0.14** -0.04 
Evening Peak/Evening Before Peak -0.07*** -0.14*** -0.08*** 
Evening Peak/Evening After Peak 0.0002 -0.07* -0.01 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
On weekends, motorists are not as responsive to the toll discount.  We see strong responses of 
both E-ZPass and cash paying motorists between the peak and shoulder periods, but not in the 
other off-peak submarkets.  This may be because the peak period on weekends runs from noon to 
8:00pm, a significant portion of the day.  Motorists traveling during the middle of the peak may 
not find the incentive to switch to the off-peak to be strong enough to motivate changing their 
travel plans.  The elasticity of cash paying drivers switching to the one-hour shoulder is positive 
on weekends.  This may be the reverse effect of motorists moving back into the peak because of 
reduced congestion from E-ZPass users taking advantage of the toll discount during the off-peak. 
 
The markets for light trucks, heavy trucks, and buses do not show as strong results as autos, and 
therefore we do not find it meaningful to discuss these results in detail here.  One reason for the 
lack of response to congestion pricing of these motorists, including those using E-ZPass 
transponders, is the lack of flexibility in travel times (Vilain and Wolfrom, 2000).  Commercial 



 

 

vehicles must make deliveries during specific windows.  If the specified delivery window does 
not fall during an off-peak period, the driver will have little ability to alter his schedule to take 
advantage of the off-peak discount.  Most buses follow a set schedule according to rider demand, 
and thus would not respond to congestion pricing either.  Furthermore, the cost of the toll is very 
small compared to the operating costs of commercial vehicles and buses.  The congestion pricing 
discount is not large enough, in relation to total operating costs, to elicit changes in motorist 
behavior. 
 
V.  CONGESTION MODEL AND RESULTS 
 
The negative toll elasticities in our model of cash paying autos lead us to believe that peak 
spreading may be taking place, as there would be no pecuniary reason for these motorists to shift 
their travel time due to their ineligibility for the toll discount.  In order to control for this, we 
now introduce congestion explicitly into our model.  Our congestion variable takes the form 
described previously, namely minutes of delay at each of the crossings as reported by the 
PANYNJ (Annual Report of Interstate Toll Delay). We note that the Bayonne Bridge crossing is 
not monitored due to a lack of frequent congestion at that facility.   
 
In order to incorporate delay into our model, we must make some adjustments to the Pricing 
Model.  Besides removing the Bayonne Bridge crossing from our model, we also adjust our 
model to be consistent with the Port Authority’s biannual congestion data.  Congestion data is 
collected during the second and fourth quarters of each year and is reported hourly between 6:00 
am and 10:00 am and between 3:00 pm and 7:00 pm.  From this data we extract morning and 
evening delay in the peak and in each one hour shoulder period.  Delay data is not available for 
the one hour morning pre-peak shoulder occurring at 5:00 am.  This leads us to modify the 
structure of our crossing data for consistency. 
 
We must also check for strong serial correlation between the toll and the delay, which could 
confound estimates of their relative influence.  We define delay at any crossing as serially 
correlated with the toll if the correlation between delay and the toll is greater than the correlation 
between delay and the dependent variable for that crossing.  Any crossings for which we find 
serial correlation are removed from the model. 

 
Finally, we also need to consider the issue of endogeneity in the model. In particular, we can 
expect that the measure of congestion by period is endogenously determined with demand for 
crossings in any particular period as well as with the “supply” of capacity. While we can make 
the claim that the toll component of travel costs is determined exogenously, we cannot do so for 
congestion, leading to a classic issue of simultaneity bias (Greene, 2003). A test of endogeneity 
(in this case the Hausmann test) tended to confirm the hypothesis that congestion levels were 
indeed endogenous.  

 
In order to correct for this problem, we run a second set of estimates of the Congestion Model 
that incorporates delay using Instrumental Variables (IV). The IV estimation attempts to 
neutralize the potential effect of endogeneity by finding an instrument or set of instruments that 
will act as a form of surrogate for the endogenous variable. We find that the E-ZPass 
participation rate and the New Jersey CMSA population together meet the usual standards for 



 

 

being a satisfactory instrument as they are highly correlated with our measures of delay but 
uncorrelated with the error terms.  The E-ZPass participation rate is negatively correlated with 
delay in that when participation in the electronic tolling program increases, delay approaching 
the toll plaza decreases.  New Jersey CMSA population is positively correlated with delay in that 
when population increases, the volume of traffic from New Jersey into New York increases as 
well.  A Wald test performed on the coefficients verifies that E-ZPass participation and NJ 
CMSA population are jointly significant in modeling delay.  We use a standard Two-Stage Least 
Squares (TSLS) estimation with IV that controls for the endogeneity. These results are reported 
along with the OLS estimates in Tables 4 and 5. 

    
We first examine our Congestion Model in the market of autos using E-ZPass.  We may expect 
to see some response to congestion in this market, but it should not greatly affect our toll 
coefficient.  The results from this model are presented in Table 4. As we can see, there is no 
significant response to delay in the shares of crossings by Auto motorists using E-ZPass.  On the 
other hand, this model confirms that these motorists are significantly altering their travel 
behavior in response to the toll.  The elasticity with respect to the toll for the evening periods is 
larger in absolute value than that in the pricing model.  These results verify that E-ZPass 
motorists are in fact responding to the toll and that the perceived responses are not instead due to 
peak spreading. 

 
TABLE 4: RESULTS FOR ESTIMATES OF PEAK SPREADING  

EFFECTS FOR E-ZPASS USERS 
 

E-ZPASS AUTOS Week  
   OLS estimates: Toll Coefficient Delay Coefficient 
Morning Peak/Morning After Peak -0.13* 0.01 
Evening Peak/Evening Before Peak -0.29** 0.02 
Evening Peak/Evening After Peak -0.16** 0.004 
   IV estimates: Toll Coefficient Delay Coefficient 
Morning Peak/Morning After Peak -0.13** -0.0003 
Evening Peak/Evening Before Peak -0.20** -0.04 
Evening Peak/Evening After Peak -0.17** 0.04 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
We now turn to our congestion model for motorists paying the toll in cash.  These motorists 
should be more inclined to exhibit peak spreading since they do not receive the off-peak toll 
discount; however our model shows otherwise.  As seen in Table 5, these motorists are generally 
not responding to either the toll or the delay.  One significant response to tolls (evening peak to 
evening before peak) loses its significance entirely when the IV regression is used, while the 
other shows a positive response to the toll. A quick look at the average shares during the 
shoulders, controlling for seasonal variations, confirms that there is little movement of cash 
paying motorists into the shoulder periods. 
 



 

 

TABLE 5: RESULTS FOR ESTIMATES OF PEAK SPREADING  
EFFECTS FOR CASH USERS 

 
CASH AUTOS Week 
   OLS estimates: Toll Coefficient Delay Coefficient 
Morning Peak/Morning After Peak 0.06 0.01 
Evening Peak/Evening Before Peak -0.11*** 0.01* 
Evening Peak/Evening After Peak 0.02 -0.005 
   IV estimates:   
Morning Peak/Morning After Peak 0.11*** 0.03 
Evening Peak/Evening Before Peak -0.07 -0.06 
Evening Peak/Evening After Peak 0.02 -0.03 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
 
VI. FACILITY SPECIFIC MODELS AND RESULTS 
 
So far, our analysis has assumed that the response to changes in the relative toll is equal across 
facilities.  This may not be the case.  In order to determine any facility-specific effects of the Port 
Authority’s Value Pricing Program, we create a model that includes a facility-specific toll 
effect1.  This allows the effect of the toll to be analyzed for each crossing independently.   
 
The model examines the effect of the value pricing toll and seasonal dummy variables on the 
share of crossings in each time period.  The share of crossings in any given time period may be 
related to the share of crossings in the other time periods.  This leads us to construct a model of 
Seemingly Unrelated Regressions (SUR).  Estimating the SUR system jointly provides more 
efficient estimates than estimating each equation separately (Russell and MacKinnon, 1993).  
Given the limited number of observations in the delay data, the measure of congestion is not 
included in the SUR models so as to preserve degrees of freedom which are reduced by the 
crossing specific toll. 
 
For autos, the system is estimated for morning peak, evening peak, and total off-peak periods 
jointly.  The crossing specific toll coefficients are presented in Table 6 for each time period.  
While the results generally conform to expectations, they contain several puzzling results, 
namely that Bayonne and Goethals bridges show an increase in peak period shares in the 
morning and the Holland Tunnel exhibits an increased evening peak period share. The Holland 
Tunnel evening peak trend may well reflect a delayed result of disruptions related to the 
September 11, 2001 attacks, with pronounced increases in evening peak period shares in the first 
and second quarters of 2002. The Goethals and Bayonne bridges also exhibit sharp increases in 

                                                 
1 The effect on cash-paying users is not examined here due to the lack of significant results in the previous models. 
 



 

 

morning peaks in early 2002 through 2003, which account for the positive coefficients reported 
in Table 6.       
 

TABLE 6: TOLL COEFFICIENTS FOR AUTOS 
 

Crossing Facility Morning Peak 
Toll Coefficient 

Evening Peak 
Toll Coefficient 

Off-Peak 
Toll Coefficient 

Bayonne Bridge 0.37*** -0.25*** 0.07*** 
Goethals Bridge 0.22*** -0.48*** 0.12*** 
Holland Tunnel -0.11 0.23*** 0.01 
Lincoln Tunnel -0.34** -0.27*** 0.11** 

Outerbridge Crossing -0.07 -0.18*** 0.04 
George Washington Bridge -0.40*** -0.16*** 0.10*** 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
In the evening peak period, a highly significant negative response to the toll is observed at all 
crossings.  The largest response is seen at the Goethals Bridge, which connects Staten Island and 
New Jersey.  Autos traveling on the Goethals Bridge in the evening peak are generally making a 
trip from work to home, and thus may have more flexibility in their travel times than motorists at 
the other crossings.   
 
Highly significant positive responses to toll are observed at four of the six crossings in the off-
peak period.  The magnitude of the toll coefficients is small in comparison to those in the peak 
periods, but the off-peak period is much larger than each of the peak periods.  Motorists will 
most likely switch to the shoulders around the peak periods in response to the value pricing toll 
rather than the middle of the off-peak period. For light trucks, we estimate the system for the 
peak, off-peak, and overnight periods.  The Holland Tunnel is excluded from the analysis due to 
inconsistencies in the traffic data at that particular crossing.  The results of the SUR are 
presented in Table 7. 

 
A significant and negative response is seen in the peak period at the Goethals Bridge and the 
George Washington Bridge.  This indicates that, at these two crossings, light trucks are shifting 
out of the peak period.  It is unclear, however, whether they are switching into the off-peak or 
overnight period, as they would receive monetary savings in either period. 
 
The results in the off-peak period are mixed.  A significant negative response is observed at the 
Bayonne Bridge.  This indicates that drivers are moving out of the off-peak period at this 
crossing.  These drivers may be switching to the overnight period in order to receive the 
overnight toll discount.  On the other hand, a highly significant and positive response is observed 
at the Lincoln Tunnel and at the George Washington Bridge.  Drivers at these two crossings are 



 

 

moving into the off-peak period, probably from the peak period in order to receive the toll 
discount. 

 
TABLE 7: TOLL COEFFICIENTS FOR LIGHT TRUCKS 

 

Crossing Facility Peak 
Toll Coefficient 

Off-Peak 
Toll Coefficient 

Overnight 
Toll Coefficient 

Bayonne Bridge 0.13 -0.27** 0.08 
Goethals Bridge -0.24** 0.09 0.40** 
Lincoln Tunnel -0.22 0.32*** -0.14 

Outerbridge Crossing 0.15 0.002 -0.09 
George Washington Bridge -0.31*** 0.13*** 0.30** 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
 
In the overnight period, significant positive responses are seen at the Goethals Bridge and at the 
George Washington Bridge.  This indicates that light trucks are moving out of the peak and off-
peak periods and switching to the overnight period in order to receive the value pricing toll 
discount at these crossing facilities. For Heavy Trucks, the SUR model was again estimated for 
the peak, off-peak, and overnight periods.  The Holland Tunnel crossings were excluded from 
the analysis because of the restrictions implemented after the terrorist attacks of September 11, 
2001 banning heavy trucks from the Holland Tunnel.  The results of the estimation are presented 
in Table 8. 

 
TABLE 8: TOLL COEFFICIENTS FOR HEAVY TRUCKS 

 

Crossing Facility Peak 
Toll Coefficient 

Off-Peak 
Toll Coefficient 

Overnight 
Toll Coefficient 

Bayonne Bridge -0.07 -0.08 -0.05 
Goethals Bridge 0.03 -0.07 0.06 
Lincoln Tunnel -0.20 -0.07 0.11 

Outerbridge Crossing -0.57* -0.19 0.32 
George Washington Bridge -0.11 -0.12** 0.15*** 

 
*** 1% Significance Level 
** 5% Significance Level 
* 10% Significance Level 
 
As can be seen, the only significant response to the value pricing toll in the peak period is a shift 
out of the peak at the Outerbridge Crossing.  In the off-peak, the only significant response is a 



 

 

shift out of the off-peak (presumably into the overnight) at the George Washington Bridge.  In 
the overnight, there is a corresponding highly significant positive effect of the value pricing toll 
at the George Washington Bridge, confirming that heavy trucks are in fact moving into the 
overnight period in response to the toll at this one crossing. 
 
We can then use these results to estimate actual shifts in traffic from the peak. In Table 9 we 
summarize the implied shits of traffic out of the peak periods for all of the vehicle types and for 
each crossing. Only the crossings and vehicle types where the toll effect is statistically 
significant at least to the 5 percent level, whether negative or positive, are identified. For all 
other segments, it is assumed that the lack of statistical significance implies no change in patterns 
due to value pricing. Taking a weighted average of the changes by crossing for autos, it is 
estimated that value pricing led to a shift in EZ-Pass-using vehicles from the morning peak equal 
to 6.5% and in the evening peak 2.2%.  
 

TABLE 9: CHANGES IN PEAK PERIOD VOLUMES BY  
CROSSING AND VEHICLE TYPE 

 

Crossing Facility Morning Peak 
Change 

Evening Peak 
Change 

Autos:   
Bayonne Bridge 9.2% -6.2% 
Goethals Bridge 5.4% -12.0% 
Holland Tunnel No change 5.7% 
Lincoln Tunnel -8.5% -6.8% 

Outerbridge Crossing No change -4.5% 
George Washington Bridge -10.1% -1.4% 

Light Trucks:   
Bayonne Bridge No change -6.7% 

Goethals Bridge -6.0% No change 

Lincoln Tunnel  No change 8.0% 

George Washington Bridge -7.7% 3.2% 

Heavy Trucks:   

George Washington Bridge No change -3.0% 
 
 
VII. CONCLUSIONS 
 
Our rich data set and quarterly model have given rise to some very conclusive results regarding 
the effectiveness of the PANYNJ’s congestion pricing program.  Through fixed effects, we are 
able to control for the time indifferent unobserved variables at each crossing.  Furthermore, our 
incorporation of the congestion model into our analysis provides us with an innovative step in 
controlling for peak spreading previously absent from the literature.  Our analysis shows the 



 

 

absence of significant peak spreading at the PANYNJ interstate crossing facilities; we can thus 
be confident that the shifts in travel time choices are indeed a result of the Port Authority’s 
congestion pricing toll program. 
 
Our pricing model yields results consistent with previous literature.  In line with the 2005 study 
of E-ZPass users by Holguín-Veras et al and the 2003 study of variable pricing in Lee County, 
Florida by Evans et al, we find pre-peak elasticities to be greater in magnitude than post-peak 
elasticities, with the strongest response to the congestion pricing toll in the morning.  
Additionally, we find little responsiveness to the toll of cash paying vehicles ineligible for the 
congestion toll discount, a result consistent with other studies (Burris et al, 2004).  Finally, the 
initial counter-intuitive responsiveness to congestion pricing by cash paying motorists that we do 
find disappear with the use of IV regressions.  



 

 

NOTES 
 
The authors would like to thank Michael Fusillo for invaluable comments and discussion 
throughout the project. 
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