Adapting Community Supported Agriculture to Modern Markets – Where is it Working?

Timothy Woods (tim.woods@uky.edu)
Debra Tropp (debra.tropp@ams.usda.gov)

Selected Poster prepared for presentation at the 2015 AAEA & WAEA Joint Annual Meeting,
San Francisco, California, 26-28 July 2015

Copyright 2015 by authors. All rights reserved. Readers may make verbatim copies of this
document for non-commercial purposes by any means, provided that this copyright notice
appears on all such copies.
Adapting Community Supported Agriculture to Modern Markets – Where is it Working?

Timothy Woods and Debra Trop

Department of Agricultural Economics, University of Kentucky Agricultural Marketing Service, USDA

BACKGROUND

A national survey of CSA managers was completed in 2014 examining changes in the traditional CSA business model and how managers were adapting. The farm model has been expanded in many cases to include supplementary processed products, season extension technologies, various multi-farm collaborations, flexible payment plans, and utilizing a variety of ecommerce tools to better facilitate the marketing function.

This data set allows for further investigation of variations in CSA business performance and growth expectations variations reported by managers regionally and by CSA size, proximity to urban centers and age. The expectation is that these variables can potentially be important determinants to help explain variation in CSA growth, profitability and scale.

DATA

Web-based survey of CSA managers was collected nationally exploring various adoption of emerging business practices observed in a series of case studies examining CSA innovations completed earlier.

Details of the data and study findings will be released shortly by AMS, with some of the initial analysis provided here.

The definition of selected independent variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>Urban base of CSA production</td>
</tr>
<tr>
<td>CSAag</td>
<td>CSA age</td>
</tr>
<tr>
<td>CSAsaleshr</td>
<td>Share of total farm income from CSA</td>
</tr>
<tr>
<td>Localdemand</td>
<td>Observed changes in demand for local foods</td>
</tr>
<tr>
<td>Procprodcinc</td>
<td>Indicating increase in supplemental processed products</td>
</tr>
</tbody>
</table>

RESULTS

CSA2yrgrowth = f(., .)

\[
\begin{array}{lcc}
\text{Coeff} & \text{Std. Err} & z \\
\hline
\text{East} & -0.066 & 0.272 & -0.24 \\
\text{MidWest} & 0.356 & 0.270 & 1.32 \\
\text{South} & 0.257 & 0.301 & 0.85 \\
\text{Urban} & -0.200 & 0.207 & -0.97 \\
\text{SHturnover} & -0.189 & 0.119 & -1.6 \\
\text{CertOrg} & -0.016 & 0.234 & 0.07 \\
\text{CSAsaleshr} & 0.005 & 0.035 & 0.15 \\
\text{Localdemand} & 0.304 & 0.115 & 2.63 \\
\text{CSAage} & -0.169 & 0.026 & -6.34 \\
\text{Scale2014} & 0.001 & 0.006 & 0.23 \\
\text{Procprodcinc} & 0.088 & 0.231 & 0.38 \\
\text{Seasonxinc} & 0.047 & 0.213 & 0.22 \\
\text{Multifarminc} & 0.630 & 0.242 & 2.64 \\
\text{Websalesinc} & 0.265 & 0.228 & 1.17 \\
\end{array}
\]

CSAProftability = g(., .)

\[
\begin{array}{lcc}
\text{Coeff} & \text{Std. Err} & z \\
\hline
\text{East} & -0.067 & 0.284 & -0.24 \\
\text{MidWest} & 0.013 & 0.277 & 0.05 \\
\text{South} & 0.048 & 0.302 & 0.16 \\
\text{Urban} & 0.028 & 0.210 & 0.13 \\
\text{SHturnover} & -0.272 & 0.117 & 1.93 \\
\text{CertOrg} & -0.063 & 0.240 & 0.27 \\
\text{CSAsaleshr} & 0.018 & 0.037 & 4.86 \\
\text{Localdemand} & 0.530 & 0.117 & 4.53 \\
\text{CSAage} & -0.034 & 0.026 & -1.26 \\
\text{Scale2014} & 0.001 & 0.007 & 1.33 \\
\text{Procprodcinc} & -0.150 & 0.232 & -0.64 \\
\text{Seasonxinc} & 0.616 & 0.217 & 2.82 \\
\text{Multifarminc} & 0.363 & 0.242 & 1.49 \\
\text{Websalesinc} & 0.491 & 0.235 & 2.08 \\
\end{array}
\]

MODELs

- **CSA 2-year projected growth and Overall growth in CSA profitability since inception** - Ordered Logit Models:
 - For estimating determinants of projected growth and observed profitability we utilize an index model for a single latent variable \(y^* \) (which is unobservable, we only know when it crosses thresholds).
 - \(y^*_i = X_i'\beta + u_i \)
 - \(y_i = 1 \text{if } y^*_i > \beta_t \)
 - The probability that observation \(i \) will select alternative \(j \) is:
 \[p_{ij} = p(y_i = j) = p(a_j - y^*_i \leq 0) = F(a_j - X_i'\beta) - F(a_{j-1} - X_i'\beta) \]
 - For the ordered logit, \(F \) is the logistic CDF \(F(z) = e^z/(1+e^z) \).
 - The marginal effect of an increase in a regressor \(x \), on the probability of selecting alternative \(j \) is:
 \[\frac{\delta p_{ij}}{\delta x_j} = \left(F(a_{j-1} - X_i'\beta) - F(a_j - X_i'\beta) \right) \beta_j \]
 - **CSA variations in scale measured by shareholder size-OLS model**:
 - For estimating determinants of CSA shareholder volume reported in 2014
 - \(y = X'\beta + \epsilon \)
 - where \(y \) and \(\epsilon \) are \(n \times 1 \) vectors, and \(X \) is an \(n \times p \) matrix of regressors, which is also sometimes called the design matrix.
 - Log (y) is utilized here to mitigate heteroskedasticity.

CONCLUSIONS AND IMPLICATIONS

Relatively minor differences were observed for projected CSA growth factors across regions. Newer CSAs tended to be more bullish, as did those involved in multi-farm operations.

Newer trends toward season extension, flexible payment terms, and web-based sales helped positively explain variations in stated CSA profitability, while availability of multi-farm partnerships were positively associated with expected CSA sales growth over the next two years.

CSA scale (measured by shareholders) is determined by many factors. Urban-based CSAs tended to be larger as did those that were certified organic, had a larger share of the farm sales coming from the CSA, and had been around for a longer period of time. Inclusion of processed products, offering flexible payment terms, and web sales also attracted larger CSAs.

CSAs are increasingly challenging businesses to manage. The analysis highlights some of the relationships between emerging management choices and expected CSA growth and profitability.

ACKNOWLEDGMENTS

Funding for this project was provided through cooperative agreement 12-25-A-5660 between the University of Kentucky and AMS-USDA.

Contact tim.woods@uky.edu for more information.