Estimating Willingness to Pay for Crop Insurance under Price and Yield Uncertainty

Sharma, Sankalp & Schoengold, Karina
Department of Agricultural Economics
University of Nebraska - Lincoln
ssharma3@unl.edu; kschoengold2@unl.edu

Copyright 2015 by [Sharma, Sankalp and Schoengold, Karina]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Estimating Willingness to Pay for Crop Insurance under Price and Yield Uncertainty

Sankalp Sharma & Karina Schoengold
Department of Agricultural Economics, University of Nebraska - Lincoln
ssharma3@unl.edu

Introduction

- Farmers in the United States continue to face uncertainty since adverse weather, inefficient farm practices, and market shocks contribute to price and yield risk.
- Most farmers purchase crop insurance to guard against these risks.
- Existing evidence (Just, Calvin and Quiggin (1999)) suggests that, instead of avoiding risk, farmers purchase crop insurance to maximize income through reduced premiums.
- This claim is not hard to believe. For example, in Lancaster county Nebraska, the average premium for 200 acres was approximately $450 in 2013. Subsidy rates were: 0.38 for 85% coverage.
- Since farmers are risk-averse, we expect they would purchase insurance even without subsidies.

Main Objectives

1. Develop a structural model to define risk premiums and measures of risk aversion.
2. Use results from the structural model and data on production and insurance purchases to calculate the average risk premiums.
3. Determine if the estimated WTP varies significantly across regions.

Identifying Risk Premium and Risk Aversion

- Let the ith farmer be an expected utility (EU) maximizer, where his utility is a function of profit (L).
- Profit is a random variable due to random output price and the yield variables.
- Input use is decided before price and yield are known.

\[L = py - wx \]

Where, \(p = p + \sigma p \theta \) and \(y = y + \epsilon \) are the output price and yield, respectively (Love and Buccola (1991) and Just and Pope (1979)).

\[E(p|y) = \beta \), \(E(y|p) = \sigma_y \] and \(E(y) = \sigma_y \) are the mean and variance of \(p \) and \(y \).

We assume that \(\theta \) and \(\sigma_y \) are independent and distributed standard normal.

- \(w \) and \(x \) are the input price and quantity vectors.

1. Certainty Equivalent and Risk Premium

\[\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m} (p_i q_j)^2} \]

The risk premium can be expressed as:

\[RP = CE - E(II) = -\frac{1}{2}(\sigma_p^2 + \sigma_y^2) \]

2. Risk Aversion

The farmer maximizes $EU(I)$ by choosing relevant inputs:

\[M_{II} = EU(I) \]

Let the \(f(y) \) and \(h(x) \) have a Cobb-Douglas production technology with two inputs. The first order conditions can be obtained by differentiating (3):

\[\text{Estimation Strategy} \]

- We assume that the ith farmer fails to satisfy the first-order conditions stated above, due to random errors u_1 and u_2, respectively.

\[E(u_1) = 0, E(u_2) = 0 \text{ and } V(u_1) = \sigma_u^2, V(u_2) = \sigma_u^2 \]

- The simulation equation model can be written as:

\[u_1 = \beta \lambda A - k \lambda A - \lambda A B - k B + \epsilon \]

\[u_2 = \beta \lambda A - k \lambda A - \lambda A B - k B + \epsilon \]

- The parameters identified in this system: \(\lambda A, \lambda B, \lambda A B, \) and \(\lambda B \).

- Where, \(\beta \sigma_y, \lambda A \sigma_y, \lambda B \sigma_y, \) and \(\lambda A B \).

- Endogenous variables: \(y \) (yield), \(x \) (fertilizers), \(s \) (chemicals), \(p \) (output price) and \(s \).

- Exogenous variables: \(u_1 \) and \(u_2 \).

- Nonlinear estimation method: Nonlinear three-stage least squares (N3LLS).

Data

Most of the variables included in our model are obtained from the database provided by National Agricultural Statistics Service (NASS).

78 counties in Nebraska and 99 counties in Iowa.

\(p \) (yield): measured in bushels/acre.

\(p \) (price of fertilizers) and \(p \) (price of chemicals) obtained from crop budget reports prepared by University of Nebraska - Lincoln and Iowa State University.

\(x \) and \(y \) derived from input expenditure data available in the NASS database.

Results

- Table 1: Risk premium (dollars/acre) under the internally derived risk aversion parameter.
- Table 2 Risk premium under exogenously imposed risk aversion parameters.
- The estimated parameters are calculated at the state level.

Table 1: Risk premium under derived risk aversion

<table>
<thead>
<tr>
<th>Risk Aversion Scenario</th>
<th>Risk Premium</th>
<th>Nebraska</th>
<th>Iowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>4.97</td>
<td>27.17</td>
<td>101.25</td>
</tr>
<tr>
<td>0.03</td>
<td>7.49</td>
<td>43.43</td>
<td>119.95</td>
</tr>
<tr>
<td>0.05</td>
<td>10.49</td>
<td>69.88</td>
<td>146.09</td>
</tr>
</tbody>
</table>

- The parameters: \(\lambda A, \lambda B, \lambda A B, \) and \(\lambda B \).

- Where, \(\beta \sigma_y, \lambda A \sigma_y, \lambda B \sigma_y, \) and \(\lambda A B \).

- Exogenous variables: \(u_1 \) and \(u_2 \).

- Nonlinear estimation method: Nonlinear three-stage least squares (N3LLS).

Conclusions

- The estimated state-level risk aversion parameters are in line with previous work.
- The obtained average risk premium is lower than the observed average premium paid by farmers in both Nebraska and Iowa. This result seems to suggest that the willingness-to-pay of the farmers in both states does not exceed the actual premiums they paid.
- Based on our data Iowa is less risk averse than Nebraska. This might seem counterintuitive since, Iowa is primarily a dryland crop production state and we would expect farmers to be more risk averse due to potentially higher price and yield uncertainty.
- However, according to the simulation exercise conducted in table 2, an increase in risk aversion leads to a higher willingness-to-pay than Nebraska.

Acknowledgments

- We gratefully acknowledge US Department of Agriculture-NIFA Policy Research Grant 201-70002-19387 for financial support.
- We would also like to thank Cory Walters for useful comments and suggestions and Roger Wilson, Patrick Boyle and Nicholas Streff for help with assembling data.

References