Dependence in Spikes of Energy and Agricultural Prices

Ford Ramsey
North Carolina State University
aframsey@ncsu.edu

Selected Poster prepared for presentation at the 2015 Agricultural and Applied Economics Association and Western Agricultural Economics Association Annual Meeting, San Francisco, CA, July 26–28

Copyright 2015 by Ford Ramsey. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Using elements of extreme value theory, I develop a Bayesian modeling approach that is capable of capturing the extremal dependence structures characterizing energy and agricultural prices. This approach is based on asymptotic arguments that hold for many underlying distributions of prices. Positive and negative movements of prices are considered separately which allows for asymmetry. Because the model is applied only to returns designated as extreme, inference does not depend on observations in the main body of the distribution. This is appealing because there is no reason to suspect a priori that the processes generating nonextreme and extreme observations are similar.

A Poisson process is assumed to be valid in the limit over the entire region A containing extreme observations. Margins are standard Fréchet. The threshold is chosen so the point process likelihood reduces to \(L(\alpha, w) \propto \prod_{i=1}^{N_A} h(w_i)\). The logistic dependence function is

\[
h(w) = \frac{1}{2} (\alpha - 1) w |1 - w|^{\alpha - 1 - \frac{1}{\alpha}} w^{-1/\alpha + (1 - w)^{-1/\alpha}} \alpha^{-2}
\]

where \(0 < \alpha < 1\). The larger is \(\alpha\), the weaker the dependence. Angular measure \(w = \frac{x}{y}\) is constructed by transforming the data to pseudo-polar coordinates.

The dependence parameter \(\alpha\) has a beta prior. Estimation is possible using a Metropolis–Hastings algorithm with a normal jumping distribution centered on a transformation of \(\alpha\).

General Procedure:
1. Transform margins to unit Fréchet using the empirical CDF or estimated parameters
2. Plot \(\chi\) and \(\bar{\chi}\) to inform choice of dependence function
3. Select threshold of the form \(u = x + y\) (L1 norm) and retain exceedances in region \(A\)
4. Transform to pseudo–polar coordinates
5. Use MH algorithm to estimate \(\alpha\)

Asymptotic dependence holds when

\[
P(s) = \Pr(F(X) > s | F(Y) > s)
\]

is nonzero as \(s\) approaches the endpoint of \(F\). Otherwise, the two variables are asymptotically independent.

The following nonparametric measures can be used to examine the asymptotic dependence of two series.

\[
\begin{align*}
\chi &= \lim_{s \to \alpha} \frac{\Pr(X > s, Y > s)}{\Pr(Y > s)} \\
\tilde{\chi} &= \lim_{s \to \alpha} \frac{2 \log \Pr(Y > s)}{\log \Pr(Y > s, X > s)} - 1
\end{align*}
\]

These summaries are constrained such that \(0 \leq \chi \leq 1\) and \(-1 \leq \tilde{\chi} \leq 1\). The two variables \(X\) and \(Y\) are asymptotically independent when \(\chi = 0\) and the degree of dependence is given by \(\chi\). When \(\tilde{\chi} = 1\), the variables are asymptotically dependent with the degree of dependence given by \(\chi\).

Stationarity is induced by examining log differenced prices (returns) instead of raw prices. Time–varying dependence parameters

\[
\begin{array}{|c|c|}
\hline
\text{Series} & \text{Extremal Index} \\
\hline
\text{Corn} & 0.932 \\
\text{Oil} & 0.938 \\
\hline
\end{array}
\]

There is little evidence of clustering at thresholds selected at the 95th quantiles.

The data consists of daily cash prices for corn as reported by the CME and crude oil as reported by the NYME from January 5, 2000 to February 28, 2014. Daily returns were constructed by taking the difference of logarithmic prices and multiplying by 100.

The following results are for extreme positive returns. The threshold is \(\alpha = x_{95} + y_{95}\) where \((x_{95})\) is the 95th quantile function. Only blue points were retained. The prior is \(\beta(2, 2)\). The posterior mean of \(\alpha\) is 0.765, indicating relatively weak dependence.

References