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Tests for the Role of Risk Aversion on Input Use

Abstract—Agricultural inputs can create negative externalities.  For risk averting agents, risk will

alter production decisions while the existence of institutions to insure against adverse states of

nature will likely restore decisions toward levels under risk neutrality.  In this paper, conditions

are identified on a stochastic technology to test : that risk averters choose smaller input

levels than risk neutral agents, and : that an increase in risk aversion reduces input use.  A

robust statistical method (Klecan, McFadden, and McFadden) to test for dominance is adapted to

stochastic production relations.  It is found that  is likely true for nitrogen application on

Iowa corn.  Weaker evidence is found in favor of hypothesis .
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2 A detailed exposition of this problem, and of regulatory solutions, is provided in Chambers and
Quiggin (1996) and in Quiggin and Chambers.

3 Here, payouts are a function of adverse outcomes that a firm has no control over.  Insurance on
rainfall levels or flood levels rather than on crop shortfall and property damage are examples.

Tests for the Role of Risk Aversion on Input Use

Production uncertainty is pervasive in many agricultural environments.  The market solution, risk

markets, often fail because the costs of maintaining such markets cannot be covered in

expectation, because the markets are deterred by regulation or even prohibited, or because of

problems regarding information asymmetry.  Thus, firms often have to bear the full brunt of the

uncertainty when making decisions.  Governments have many reasons to be interested in how the

risk environment that faces growers affects factor use.  Among these, we focus on two strongly

interrelated reasons; that risk market incompleteness may impede the overall level of factor use

efficiency and that the level of input use often generates externalities.

As an example, field crop production tends to be a risky enterprise while inputs such as

pesticides and nitrogen are known to run off into the water supply.  It is often difficult to regulate

these non-point pollution sources.2  Chambers and Quiggin (1996) propose to do so through an

insurance scheme that pays out on adverse states of nature.3  But if regulatory schemes such as

this are to work, it is necessary to understand the effect of risk aversion and risk market

incompleteness on pollution.  If it is found that the existence or level of risk aversion reduces the

use of polluting inputs, then risk management instruments are quite likely to complement with

the inputs in the production process.  And so, as pointed out by Chambers and Quiggin (1996),

government actions to facilitate firm-level risk management through legislation or subsidies may

exacerbate a pollution problem.

The intent of our paper is to align more closely findings from the expected utility modeling

framework with empirical methods.  In the theoretical dimension, our work extends findings by

MacMinn and Holtmann and especially by Ramaswami.  The results we develop rely on the

diffidence theorem due to Gollier and Kimball.



4 For example, Saha, Shumway, and Talpaz employ the specification in a study of behavior by
Kansas wheat growers.  Smale et al. apply it when inquiring into the effects of diversity in wheat
varieties on yield risk.
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In order to understand the role of risk aversion on choice for a stochastic production

technology, we need to characterize the technology.  To date the most influential empirically

implementable characterization has been the Just and Pope (1978) production function.4  While a

major econometric innovation, its two-moment construction limits its ability to explain behavior

in the expected utility framework.  One concern, identified in Rothschild and Stiglitz, is that an

increase in variance does not capture all attributes of risk that a von Neumann & Mortgenstern

(vNM) risk averter faces.  A second concern, due to Chambers and Quiggin (2001), is that the

Just-Pope technology imposes inflexibility on how inputs and states of nature interact.  In the

manner of Ramaswami, we will work with a very general representation of a stochastic

technology.  As a consequence, we are in a position to establish and test the exact conditions on

the technology such that the existence and level of vNM risk aversion have determinate effects

on input use.

Our empirical methods are adapted from the small literature on discerning partial orderings

among a set of empirical distributions.  Recognizing that a quest for stochastic dominance among

empirical distributions requires an accommodation of the sampling error problem, Tolley and

Pope developed a non-parametric test on a pair of such distributions.  The test statistic is

generated by drawings from the pooled observations.  McFadden rigorized the permutation test

approach to generate a species of Kolmogorov-Smirnov test for the non-comparability of two

distributions in the senses of first-order and second-order dominance.  Among the limitations of

McFadden’s test are the requirement that empirical distributions have equal sample sizes, the

assumption that the distribution drawings are independent, and the need to calculate significance

levels through Monte Carlo simulations.  A test developed by Kaur, Prakasa Rao, and Singh

(KRS), based on the intersection-union concept, allows for unbalanced sample sizes and



5 As with other intersection – union tests, such as in KRS, the test does not exploit the covariance
structure of the distributions to be compared.  This buys computational efficiency at the cost of
lower statistical efficiency.  Alternative approaches, such as in Davidson and Duclos or
Dardanoni and Forcina, include the structure of the covariance matrix in their test statistics. 
According to Goldberger, taking into account the covariance structure leads to efficiency gains
relative to multiple comparison procedures “mainly when these estimates are negatively
correlated” (Dardanoni and Forcina, page 58).  This is not the case with the data we will analyze.
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simplifies the work needed to establish the test significance level.  However, the KRS test does

assume independence in drawings.  Anderson also provides a convenient test because the test

statistic is known to be distributed according to a variant of the Pearson Goodness-of-Fit statistic

with known asymptotic distribution.  But the test assumes independence.

We have balanced data, and our main concern with the aforementioned tests is with the need

for independence.  The production relation we seek to understand is that of nitrogen on corn

yield.  Independence is likely not a valid assumption for nitrogen-conditioned corn yield

distributions because weather and other factors are likely common drivers for all distributions. 

We choose an extension to McFadden’s approach.  By assuming stationarity, !-mixing, and

generalized exchangeability, Klecan, McFadden, and McFadden (KMM) account for dependence

between distributions and rely on Monte Carlo analysis to derive the test distributions.  Their test

is an intersection union test that relies on multiple interval comparisons.5

In section 2 we ascertain an empirically testable condition on a stochastic payoff function

such that the effect of risk aversion on input choice is determinate.  We also identify conditions

such that an increase in risk aversion has a determinate effect on choice.  The data to be studied

is discussed in section 3.  We then present the statistical methods and apply them to the data. 

The results are analyzed, and the paper concludes.

Model and Theory

In accord with standard notation for models of expected utility maximization, let  be a twice

continuously differentiable, increasing and concave utility function.  Concavity need not be strict,
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(1)

(2)

and we denote the class of all utility functions satisfying our assumptions as .  In a two-

period model, argument z is the payoff and is itself a twice continuously differentiable function;

.  Here, b is a time point 0 action chosen from the closed interval .  Variable x

is an index measuring a random factor that is realized at time point 1.  The index over time point

1 states of nature is chosen so that more is better, i.e.,  where the subscript denotes a

derivative.  And at no additional loss of generality, we assume that .  The variable has

an absolutely continuous distribution, , with strictly positive support on all .  The

time point 0 problem is then to , and the first-order condition is

Strict concavity of  in b ensures a unique solution, and we make this assumption.

Risk-Neutral vs. Risk Averse

For the risk neutral agent the problem simplifies to  with first-order

condition .  We denote the optimal argument by  so that .

.  Because the objective function is concave in the action, all risk averters choose  such

that  if 

And all risk averters choose action  such that  if the inequality in (2) is reversed.

Integrating the left-hand expression by parts yields 



6 This integration by parts might be said to be ‘from above’.  The usual integration by parts is
‘from below’, in which case we have  in place of the

expression in (3).  But the expressions are equal because .
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(3)

(4)

where optimality at the risk-neutral solution has been employed.6  Some work, provided in

Appendix A, establishes that the left-hand side of Eqn. (3) is negative (positive) for all risk

averters such that  if and only if  

Our results can be summarized as follows

PROPOSITION 1.  Let  and .  Then  for all  if and

only if the payoff relationship adheres to condition (4) above.

Given that , monotonicity of  in s would be a

sufficient condition for the proposition to hold.  However, monotonicity cannot hold because

 cannot be uniform in sign unless it has zero value on all sets of non-null measure.

Now let us assume that  takes on the specific functional form  where 

 is a production function, p is the output price, and w is the factor price.  Then condition

(4) becomes  where .  Noting that

, condition (4) for the payoff function in question may be re-written as



7 The direction of the inequality in  is perhaps confusing.  The direction ! is chosen to be

consistent with hypothesized inequality  rather than the hypothesized inequality in (5).

6

(5)

(6)

Ramaswami has identified a criterion that is essentially the same as that in (5), and it is clear

that if  is nondecreasing (nonincreasing) in s then relation (5) assuredly

holds.  The latter sufficient condition requires that .  That is,

 where E is the expectation operator and conditions on the

expectation are given after the vertical bar symbol.  The condition requires that mean marginal

product, conditional on the source of randomness being in the upper interval , is no smaller

(no larger) than marginal product evaluated at the lower bound of that upper interval.  As we

shall show later, with a little re-working of (5), an alternative and distinct sufficient condition is

that .

In the empirical analysis to follow, we will test for condition (5), and we will abstract from

the particular point of evaluation.  When (5) is true in the " direction, then we state that

hypothesis  is accepted and so we conclude that .7  When (5) is true in the !

direction, then we state that hypothesis  is accepted, i.e., we accept .  In its discrete

form, condition (5) may be re-written as 

Because it has been assumed that , quantity  measures the sth quantile of the



8 As a point of reference for Proposition 1, a stochastic order related to that described by (7)
above has been studied in a non-economic context by Fernandez-Ponce, Kochar, and Muñoz-
Perez.  Their order, the right-spread order, is the quantile variant of the mean residual life order
which is a central concept in the statistical theory of reliability.  Other related stochastic
structures have arisen in studies by Jewitt and by Landsberger and Meilijson on the economics of
welfare under partial insurance.  To our knowledge, no empirical tests for any of this set of
orders have been developed.
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(7)

(8)

(9)

input-conditioned random production variable .  In this light, we can write (6) as 

For future reference, we denote  so that (7) becomes

We may interpret (5), (7), and (8) as follows.  The expected marginal value product conditional

on being in the upper sth quantile, , exceeds (is less than) the unconditional expected

marginal value product.8

More Risk Averse

The contrast between risk neutrality and risk aversion is rather stark.  A more general scenario is

to contrast agents that are ordered by their degree of risk aversion.  In this case, it will be shown

that the critical functional is

The important attribute is whether  has a cross-derivative that is uniform in sign. 

PROPOSITION 2.  Let  where p and w are positive constants, and

where .  Then, for all , an increase in the degree of risk aversion



9 We have not been able to ascertain whether condition (10) is necessary for all .
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(10)

(11)

reduces (increases) optimum b if

The proof is provided in Appendix B.  As with comparison (5), in the empirical analysis we

will test for condition (10), and we will abstract from the particular point of evaluation.  When

(10) is true in the " direction, then we state that hypothesis  is accepted and so we conclude

that  where the  are coefficients of risk aversion for utility

function , and where .  In earlier work, MacMinn and Holtmann demonstrated that

if  has a positive cross derivative then an increase in risk aversion reduces optimum b.  As

Proposition 2 shows, it suffices that the less structured expression  possess the

property.

To see how Propositions 1 and 2 relate, note that inequality (7) may be written as

Thus, as should be the case, condition (7) is less restrictive than (10).  In Proposition 1 we

compare an arbitrary risk averse agent with a fixed agent in the equivalence class of risk neutral

agents.  It is because the degree of risk aversion for one agent is fixed that the fixed value 

arises in (11) and (7).  The comparison in Proposition 2 is more general, and therefore more

demanding, in that neither agent is fixed at a point along an ordering of degrees of risk aversion. 

This added generality is purchased at the expense of the more restrictive condition (10) relative

to (7).9  If an econometric test accepts (10) in a given direction of inequality, then it is likely to
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accept (7) in the same direction.  But it should be no surprise if a version of (7) holds when the

corresponding version of (10) is not supported by data.  A rejection of (7) is, however, possible

even if (10) is accepted.  This would occur if there exists overwhelming evidence in favor of (10)

on  while the data in the neighborhood of  does not support (10). 

 Data

We test for the direction of inequality (7) using Iowa corn yield data that was collected from four

different Iowa farms during 1987-1991 using ten different nitrogen application levels from 0-300

lbs./acre.  The data has previously been used by Babcock and Hennessy.  The overall sample

consists of 600 observations and we have subsamples of 60 observations per nitrogen application

rate.  The data comes from four distinct regional locations over a time period of five years.  Table

1 gives the means and standard deviations of yield observations by site.

A statistical analysis of state-level Iowa corn yields shows a clear time trend in the data due

to technical progress.  Hence, we postulate a deterministic component of yield depending on time

t, as well as location effects and a stochastic component.  To account for changes in yield due to

technical progress, the data is corrected by estimating a linear time trend for Iowa corn yields

from Iowa average yield over the period 1973-1994 (Iowa Dept. of Agriculture).  Corn yields are

estimated to increase by 1.526 bu./acre/year.  The parameter to this linear time trend has a t-value

of 2.326 and the regression R2 is 0.213.

Denote observation i at site j for year t at a nitrogen application level b as .  The

average yield across years and sites is formed as , and the estimated mean yield for any

given year is given as  where the linear time trend t is centered at t = 0

in 1989.  The observations are then realized as the sum of the mean and a residual component,

.  Using this series of residuals, we tested for equality in mean across sites,

and we rejected the hypothesis of equality at the 1% level with an F statistic . 

Therefore, we proceeded by correcting for the differences across sites.  The resulting yield



10

(12)

deviations, as functions of the level of nitrogen applied, are estimated as  where

and where  is the site j mean given nitrogen level b.  The mean of the  is zero by

construction, and the resulting standard deviations are shown in Table 2.  It appears that the level

of yield variability increases with the quantity of nitrogen applied.  This gives a first indication

that the character of the distribution, in terms of higher moments, changes as b changes, and so

there is circumstantial evidence to hypothesize that the level of risk aversion may dampen the

level of input choice.  But a more formal analysis is required.

Empirical Procedures

We have shown that a risk averse agent will tend to decrease factor use relative to risk neutrality

if  is increasing in b, while factor use will be ordered by degree of risk aversion if 

has a cross-derivative that is uniform in sign.  Using the corn-yield data, we wish to find

empirical evidence for or against these attributes.  Equation (7) compares two corrected

conditional means.  In varying the point s of truncation for the conditional mean we are

comparing two distributions that, without practical loss of generality, can be assumed to spread

over a finite interval and can thus be transformed to take values on the [0,1] interval.  An

examination of Eqn. (7) or Eqn. (10) shows that we are in fact comparing two quantile

distributions when we study  across s at two different levels of b or when we study 

 across s at two different levels of b.  In the case of , the quantile can be read

immediately as .  For , with  then the quantile is .

When comparing quantiles, the randomness arises because the empirical distribution

constructed from the data consists of random draws from the true underlying distribution.  Tests

for comparing quantile distributions have been discussed in the literature in relation to stochastic

dominance (e.g., Tolley and Pope, and also KMM).  Recently, as in Anderson and in Maasoumi



10 A process  is !-mixing if there exists a sequence  such that
 and  for each event A regarding the behavior of the

process up to time n and each event B regarding the behavior of the process after time  (see
KMM).  As such the !-mixing property can be viewed as the requirement of asymptotic
convergence toward independence as the lag along dimension n increases. 

11 An example of generalized exchangeable random variables  is 
 where  are independent random variables with mean zero and

variance one, where   are identically distributed, and where the , , and 
are parameters (see, again, KMM).
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and Heshmati, such tests have been applied to compare the Lorenz curve representations of

income distributions.

We implement the test proposed by KMM because this test can accommodate dependence

between the distributions being compared.  Two types of regularity conditions are required for

the test.  These are that: (a) the observations from each yield distribution are strictly stationary

and !-mixing10; and (b) the random variables satisfy the generalized exchangeability property.11 

The !-mixing assumption is required to establish asymptotic convergence via the appropriate

version of the strong law of large numbers (White and Domowitz).  Because the underlying

problem of establishing order dominance, or not, among distributions is innately symmetric, the

generalized exchangeability property is convenient in that it admits symmetric treatment of the

data when seeking to approximate test statistic confidence intervals.  The conditions are very

general and it seems reasonable to apply the test to our data.  Concern might arise with regard to

condition (b), and so we present the correlation matrix of the data in table 2.  It is clear that the

general structure is very stable for input levels other than the extreme values  and

.

The test proposed by KMM is an extension of the Kolmogorov-Smirnov test to multivariate

distributions.  For a pair of random variables  with respective cumulative distribution

functions and , it compares the distributions with respect to their first-degree

stochastic maximality property.  A set of distributions is defined as first-degree maximal if no
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(13)

(14)

distribution in the set is first-degree weakly stochastically dominated by another distribution in

the set, i.e., neither  nor .  Therefore, the random variables

 are first-degree stochastically maximal if

  over the index set.  That is, first-degree maximality

requires that all distributions in the maximal set cross.  Comparing the distributions for first-

degree stochastic maximality is a two-sided test.  By contrast, tests on

 are one-sided tests.  These one-sided tests are also computed in the

procedure.  

Identify now empirical distributions constructed from N observations by an appended

subscripted N, i.e., .  The test statistic should then test for the sign of 

KMM derive the statistical properties of the test statistic and provide a computational algorithm

to test for both first-degree stochastic dominance and maximality.  Since the distribution of 

is not analytically tractable, their procedure is based on Monte Carlo simulations that calculate

the critical value of the test statistic.  In this sense the test is exact.  Upon subjecting the test to

Monte Carlo experiments over varying hypotheses and sample sizes, KMM conclude that their

statistic for first-order dominance performs reasonably well even at sample sizes as small as 50.  

Turning to our application, the empirical distributions yield the random variables to compare

in Proposition 1 as

where the subscripted N on the expectation operator identifies a mean generated from the data.  If

 for all s, then the distribution of  in a sense dominates the

distribution of .  For each nitrogen application level we observe an ordered sample of
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(15)

(16)

, where we use the subscript N to denote the observed sample

statistics.  For the test we use the empirical distribution functions of  which is denoted

by .  Applying this notation to equation (13) results in the inequality to be tested for,

where .

For the test of the condition underpinning Proposition 2 we proceed similarly and form the

sample equivalent to  as

Equation (16) gives effectively the observations to be compared for b and , so that each test

entails  quantile comparisons.  The test statistic  for (16) then follows in

the way that (15) was constructed from (14).

Results

The results for testing Proposition 1 are summarized in tables 3 and 4.  Table 3 shows p-values

for the test statistic that the row first-degree stochastically dominates the column.  For instance

the p-value in the cell (column 1, row 3) is the p-value testing the hypothesis that .

.  The value is 0.0764, and therefore the hypothesis that  dominates

 is not rejected at the 5% level.  Similarly the p-value in the cell (column 2, row 1)

tests the hypothesis that .  It assumes a value of zero and hence this

hypothesis is rejected.

To aid in interpreting the general implications of the test outcomes reported in the tables, we

shade the cells in which the hypothesis of FSD  is rejected at a significance level of 0.05.  In the

upper right triangle, 9 of 45 tests are not rejected whereas in the lower triangle 14 out of 45 are

rejected.  The overall picture indicates that in most cases  , i.e., for
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most distribution comparisons, inequality (7) should be of the direction " and then we accept

 with inference that .  Exceptions occur notably for the distributions arising from

factor levels  and , which we could interpret as the upper end of suitable

nitrogen levels.  Actual nitrogen application rates on commercial Iowa corn vary between 125-

200 lb./acre and, of course, application rates that are of no commercial relevance should be of

little policy relevance.  Also, at high values exceptions occur for small ", i.e., close to the

diagonal of the table.  Then shifts in distributions according to increased fertilizer levels may not

be clear because the intra-distribution spread might not be clearly distinguished from inter-

distribution spread.

Table 4 reports the p-value for the hypothesis of not stochastic maximal, i.e., that one of the

two distributions compared in a test is first-degree stochastically dominated by the other. 

Consistent with the results in Table 3, where we found support for  in most cases, we cannot

reject the ‘not first-degree stochastically maximal’ hypothesis in most instances.  There are 9

exceptions among 45 tests at the 5% level of significance, and so in only 9 comparisons do we

conclude that the pair of distributions compared is first-degree stochastic maximal.  And 7 of

these 9 exceptions coincide with distribution comparisons where Table 3 indicated a test

outcome which was out of step with the generally supported hypothesis .  This suggests that

the shaded boxes in the lower left triangle of Table 3 represent incomparabilities in the partial

order of distributions rather than reversals of the intuitive dominance relation.  A rejection of 2

tests among a set of 45 comparisons should not be surprising at the 5% significance level.

The results of the test for the stochastic structure underlying Proposition 2 are given in tables

5 and 6.  Consistent with the observation that we could nest Proposition 1 as a special case of

Proposition 2, the test outcomes do not as clearly support , i.e., that the technology

conditions are sufficient to assert that the privately optimal use of fertilizer decreases as risk

aversion increases.  However, the general picture is supportive of .  Notice, though, that

while more cells are shaded in Table 5 than in Table 3, the set of shaded cells in Table 5 need not
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contain the set of shaded cells in Table 3.  This is because, in contrast to the theoretical

comparison where violation of Proposition 1 implies violation of Proposition 2, the statistical

comparison allows for violations.  And violations at  may be covered over by a

preponderance of non-violations on .

Discussion

This paper has provided quite strong evidence that, for stochastic corn production technologies in

Iowa, optimizing risk averters use less nitrogen than do optimizing risk neutral producers. 

Weaker evidence was found in favor of the claim that there is a monotone decreasing relation

between the degree of risk aversion and the optimal nitrogen application rate.  We did not

directly test whether nitrogen is a ‘risk increasing input’ because we would then have to settle on

a formal definition of that attribute.  Suppose that we define a risk increasing input as one that

falls with the choice-taker’s risk aversion index.  Then we find that nitrogen is likely risk

increasing, and so our results corroborate the conclusions of Just and Pope (1979), of Love and

Buccola, and of Nelson and Preckel.

We complete our study by making two points concerning the interpretation of our findings. 

The first is of an empirical nature, and is relevant for the data we have studied.  The Agricultural

Markets Transition Act, signed into law in the U.S.A. in 1996, replaced a price-contingent

subsidy of the form  where A and  are parameters and p is the market price

of certain crops.  The crops in question included corn.  Instead of this price-contingent subsidy,

growers were to receive a fixed annual transition payment, which we will denote by T.  This

subsidy was to decline towards zero over seven years.  Chavas and Holt have provided evidence

in support of the assertion that U.S. corn and soybean growers exhibit risk preferences that are

decreasing absolute risk averse (DARA).  And so the gradual elimination of transition payments

would, ceteris paribus, induce an increase in the degree of risk aversion.  The evidence in

support of our Proposition 2 would suggest that a drawback in the use of nitrogen would occur as
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the transition payments are phased out.

Our findings also have relevance when agents are exposed to multiple sources of risk.  Work

by Gollier and Pratt has considered the effect of introducing an actuarially adverse wealth shock. 

For example, suppose that the stochastic payoff  changes to  where y is random

with nonpositive expected value and where the random variables are independent.  Then, for a

given value of x, construct the indirect utility function , i.e., the

expectation conditional on x.  A study of the impact of the introduction of wealth risk y on

welfare and optimal actions is equivalent to a study of the impact of preference function mapping

 on welfare and optimal actions.  Thus motivated, Gollier and Pratt studied the

properties of risk vulnerability.  For utility functions  and  mentioned above, and

assuming that y has nonpositive expected value,  is said to be risk vulnerable if  has a

larger coefficient of risk aversion than , pointwise, over the relevant domain of x.  While an

exact characterization of the  that are risk vulnerable is rather involved, simpler necessary

and also simpler sufficient conditions are identified by Gollier and Pratt.  DARA is necessary. 

Concerning sufficiency, if , which is called

the standardness condition, then vulnerability is assured.  Here, the superscripted term in

parentheses identifies the order of differentiation.  Hyperbolic Absolute Risk Averse risk

preferences together with DARA are sufficient for adherence to standardness.  Returning to

Proposition 2, our test for the impact of an increase in risk aversion converts immediately to

sufficient conditions on the technology such that the introduction of an independent, actuarially

unfair, background risk induces a reduction in optimal input use when risk attitudes are standard.
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(A1)

Appendix A

Proof of Proposition 1.  The forward implication follows immediately from noting that if

 is uniform in sign over , then expression (3) has the opposite sign.  To

demonstrate necessity, we seek a violation such that a) the expressions in (2) and (3) are strictly

negative, while b) the expression in (4) is strictly positive at a point  but is strictly

negative outside a small metric neighborhood around that point.  Suppose that 

 at .  We have assumed that  is integrable, and so we know that

 is continuous in s.  Therefore there exists an interval  of strictly positive

measure with  such that .  Choose a set of strictly

positive measure, , and a real number  such that 

.  Find an  such that .  Choose 

 and .  Now we can write

Thus, when condition (4) is violated then there exist concave utility functions such that optimal

choice under risk aversion is larger than .    !
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(B1)

(B2)

(B3)

Appendix B

Proof of Proposition 2.  As demonstrated in Mas-Colell, Whinston, and Green (1995,

Proposition 6.C.2), agent # with utility function  is more risk averse than agent ! with utility

function  if and only if there exists an increasing and concave transformation  of U,

i.e.,  so that .  For agent !, the equilibrium choice, ,

satisfies

By concavity of the objective function, we have that , where  optimizes for agent #, if

We will prove the result in the ! direction.  The other result can be demonstrated by

symmetric reasoning.  Integrating the left-hand expression in (B2) by parts, we have the

equivalent expression 

Therefore, we need to find conditions such that 

where  is nonincreasing in x.  A further integration by parts yields the equivalent

requisite condition 
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(B4)

(B5)

And so it would suffice to demonstrate that .  But this is unlikely

to be true for all such s.  In particular, if  then  because .

To find a more satisfactory condition, note that in our case the statement 

 may be written as .  By condition (10), we have that the

expression  is monotone increasing in s.  Define  such that

.  Clearly, because  is increasing in s, we have

that  and .  And so (B4) is true

for .  For  we have from (10), i.e.,  increasing in s, that

.  Because we are on the interval , we have 

 and therefore .  Note now that the condition 

 may be re-written as 

where the first-order condition for agent ! has been invoked.  We can conclude that 

, and so the proposition is demonstrated.    !
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Table 1.  Mean and Variance of Yield Residuals by Site

Moment Site 1 Site 2 Site 3 Site 4

Mean 122.1 123.5 131.4 117.2

Std. Dev. 34.58 44.38 45.17 32.94

Table 2.  Standard Deviations and Correlations of Yield Residuals by Nitrogen level

N-level 0 25 50 75 100 125 150 200 250 300
Std. Dev. 19.67 21.05 25.32 28.66 31.08 35.58 30.64 35.99 31.28 32.59

Correlation Matrix
0 0.75 0.55 0.54 0.30 0.38 0.43 0.47 0.46 0.49

25 0.63 0.76 0.68 0.72 0.72 0.72 0.72 0.73
50 0.74 0.65 0.70 0.76 0.75 0.73 0.73
75 0.76 0.81 0.80 0.80 0.75 0.74

100 0.87 0.85 0.81 0.80 0.82
125 0.90 0.90 0.86 0.91
150 0.88 0.87 0.90
200 0.84 0.92
250 0.92
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Table 3.  p Values for First-Stochastic Dominance, Proposition 1

N-level 0 25 50 75 100 125 150 200 250 300
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.3759 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
50 0.0764 0.2362 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
75 0.6561 0.8493 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

100 1.0000 1.0000 1.0000 1.0000 0.0000 0.5203 0.0000 0.8831 0.3188
125 0.9569 0.9952 1.0000 1.0000 0.0000 0.9996 0.3080 0.9995 1.0000
150 0.6966 0.8667 1.0000 0.8436 0.0000 0.0000 0.0000 0.0000 0.0000
200 0.9547 1.0000 1.0000 1.0000 0.0188 0.0000 1.0000 0.9998 0.9994
250 0.9635 0.9971 1.0000 0.6504 0.0000 0.0000 0.0306 0.0000 0.0000
300 0.9566 0.9956 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 4.  p Values for ‘Not First-Degree Stochastic Maximal’, Proposition 1

N-level 0 25 50 75 100 125 150 200 250 300
0

25 0.0999
50 0.0031 0.0362
75 0.3752 0.7068 1.0000

100 1.0000 1.0000 1.0000 1.0000
125 0.9134 0.9899 1.0000 1.0000 0.0000
150 0.4394 0.7372 1.0000 0.6908 0.1755 0.9994
200 0.9072 0.9999 1.0000 1.0000 0.0000 0.0313 1.0000
250 0.9266 0.9953 1.0000 0.3683 0.7726 0.9982 0.0000 0.9991
300 0.9107 0.9917 1.0000 0.9999 0.0464 1.0000 0.0000 0.9985 0.0000
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Table 5.  p Values for First-Stochastic Dominance, Proposition 2

N-level 0 25 50 75 100 125 150 200 250 300
0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 0.115 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50 1.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.9999
75 1.000 1.000 1.000 0.998 0.943 0.003 1.000 1.000 1.000

100 1.000 1.000 1.000 0.005 0.000 0.004 1.000 1.000 1.000
125 1.000 1.000 1.000 0.088 1.000 0.059 1.000 1.000 1.000
150 1.000 1.000 1.000 1.000 1.000 0.973 1.000 1.000 1.000
200 1.000 1.000 0.550 0.000 0.013 0.000 0.000 1.000 1.000
250 0.999 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.112
300 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.  p Values for ‘Not First-Degree Stochastic Maximal’, Proposition 2

N-level 0 25 50 75 100 125 150 200 250 300
0

25 1.0000
50 1.0000 1.0000
75 1.0000 1.0000 1.0000

100 1.0000 1.0000 0.9999 0.9972
125 1.0000 1.0000 1.0000 0.8834 1.0000
150 1.0000 1.0000 1.0000 1.0000 1.0000 0.9456
200 1.0000 1.0000 0.2789 0.9998 1.0000 1.0000 1.0000
250 0.9974 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
300 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 0.0114


