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The Public R&D and Productivity Growth in Australian Broadacre 

Agriculture: A Cointegration and Causality Approach 

 

Abstract: This study investigates the nexus between research and development expenditure 

and productivity growth in Australian broadacre agriculture using country-level time-series 

data for the period 1953 to 2009. Using standard time-series econometrics data are analysed 

to examine the dynamic relationships between research and development expenditure (R&D) 

and total factor productivity (TFP) growth. Findings here provide econometric evidence of a 

co-integrating relationship between R&D and productivity growth, and a unidirectional 

causality emergent from R&D to TFP growth. Moreover, employing variance decomposition 

and impulse response function the dynamic properties of the model are explored beyond the 

sample periods. Findings suggest that R&D can be readily linked to the variation in 

productivity growth beyond the sample periods. Further, forecasting result suggests a 

significant out-of-sample relationship exists between the public R&D and productivity in 

broadacre agriculture. We used a novel method MIRR which is conceptually superior than 

the conventional IRR to obtain a credible estimate of returns on public research investment. 

We found MIRR of 10.06% per year for the reinvestment rate of 3% per year. Therefore, 

results establishing long run relationship between productivity and R&D in Australian 

agriculture shed light on the future policies in R&D investments in Australia. 

 

Keywords: Public Research & Development (R&D), Productivity, Australian Broadacre  

        Agriculture, Cointegration, Internal Rates of Return. 

JEL Classification: C32, Q16 

 

1. Introduction 

Research investments in agriculture are the central to the improvements in agricultural 

productivity growth, which is a crucial means for achieving economic prosperity and 

development in an economy (Pardey et al., 2006; Mullen, 2010). A number of studies have 
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been examined the effects of research and development (hereafter, R&D) on total factor 

productivity (hereafter, TFP) in the agricultural sector. Many of them provide empirical 

evidence that R&D, both domestic and foreign, is one of the main sources of productivity 

growth (Hall and Scobie, 2006; Griliches, 1979, 1988; Coe and Helpman, 1995). In recent 

decades, the concern has been that productivity in agriculture is falling particularly in 

developed economies.  

The declines in the agricultural productivity have renewed interest in the productivity 

analysis, particularly in the estimation and explanation of the effects of R&D in agriculture. 

Few studies examining the possible causes of the recent declines in the agricultural 

productivity growth find the falling public R&D investment in agriculture over past decades 

as one of the possible causes (Mullen, 2010; Alston and Pardey, 2001; Bervejillo et al., 

2012). For example, Piesse and Thirtle (2010) mention a slowdown and retargeting of public 

R&D as one of the key factors that is primarily causing a slowdown in TFP growth in the 

United Kingdom. Similar evidence of slowing productivity is also found in the US agriculture 

(Ball et al, 2013) in recent periods. Studies also provide empirical evidence of long run 

relationship between research expenditure and agricultural productivity growth in the 

developed countries such as UK agriculture (Thirtle et al., 2008; Schimmelfenning and 

Thirtle, 1994) and US agriculture (Wang et al., 2013; Alston et al. 2011).  

The falling productivity growth is also evident in Australian agriculture. Recent 

studies found a slowdown in productivity growth in Australian agriculture over the recent 

decade compared to earlier periods (Nossal and Sheng, 2010; Sheng, Gray and Mullen, 2011; 

Khan, Salim and Bloch, 2014). Keating and Carberry (2010) stated that one recent challenge 

for Australian agriculture is that it has been facing slow agricultural productivity growth in 

recent periods. They suggest that this decline in productivity growth can be attributed to the 

lagged impact of the public investment in agricultural research, which is stagnated since 

1970s. Some previous studies estimated the rate of return to R&D expenditure in Australian 

broadacre agriculture and indicated that public investment in agricultural R&D is 

contributing to TFP growth. In the early 1990s, Mullen and various co-authors conducted a 

series of econometric research with agricultural R&D and productivity in Australia. Using a 

unique data set, they found R&D is a major source of productivity in Australian agriculture. 

Extending their previous data set, Mullen (2007) revisited their previous study and found no 

evidence that rates of return were declining over the years 1953-2003.  
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Though previous studies on Australian broadacre agriculture have estimated the 

growth of TFP over recent decades, the empirical evidence with regard to what determines 

the slowing TFP growth is apparently very little. Besides, most of their studies have 

emphasised returns to agricultural research and thus could not confirm the existence of a 

stable long-term co-integrating relationship between research and productivity growth. To 

date, there have been very few studies undertaken in Australia that examine the long-run 

relationship between R&D and productivity growth in Australian broadacre agriculture. To 

the best of our knowledge, we only find Salim and Islam (2010) explored long-run 

relationship between R&D and agricultural productivity in broadacre agriculture in Australia. 

They applied standard time series techniques to investigate the long-term and causal 

relationship between R&D and TFP but their results are limited for Western Australian 

broadacre agriculture and do not based on a large time-series data.  

This study, therefore, aims to fill this empirical gap examining the relationship 

between public R&D spending and productivity growth in Australian broadacre agriculture. 

To achieve this objective this study applies cointegration and Granger causality in order to 

investigate the relationship between R&D and TFP and the direction of causality running 

between them. Moreover, it applies variance decomposition, impulse response function and a 

forecasting exercise to explore the dynamic properties of the relationship beyond the sample 

periods.  

The rest of the study proceeds as follows. The next section gives a short overview of 

public R&D and agricultural productivity in Australia. Section 3 presents econometric 

methodology of cointegration and causality tests. A model is specified on what factors affect 

total factor productivity in section 4. A discussion on data source is followed by in section 5. 

Section 6 presents empirical estimates and analysis of results. The penultimate section 

estimates the benefits of research. Finally, Section 8 concludes the study. 

 

2. The Public R&D and Broadacre Agricultural Productivity in Australia 

Australian agriculture is primarily based on extensive cropping and livestock farming 

activity, which is generally termed as ‘broadacre’ agriculture. Broadacre agriculture is a 

significant contributor to the country’s agricultural and economic growth. It generates more 
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than 85% of the country’s gross value of agricultural production. The economic prosperity of 

the rural community depends upon the growth of the country’s agriculture. Moreover, 

Australia exports around 60% of its agricultural production, which represents 10.9% of total 

export earnings in 2010–2011.  

The public sector plays a dominant role in R&D investment in Australian agriculture, 

which accounts generally more than 90 per cent of total agricultural R&D. This statistic 

strongly contrasts to other OECD countries where the share of private R&D is more than half 

of the total investment in agricultural R&D (Sheng et al., 2011). Thus, the level of public 

investment in agricultural R&D and its impact on agricultural productivity have been an 

important candidate in terms of public policy issue in Australia. However, the concern is that 

it has been falling in recent periods apparently since 1994. Before 1994, broadacre has 

experienced about 2.2 per cent of growth in productivity a year, but it has faced a slowdown 

in productivity growth thereafter. Since 1994, it has declined to 0.4 per cent a year. However, 

some recent studies indicate that the sluggishness in public R&D since the mid-1970s may 

have contributed to the slowdown in agricultural productivity growth in recent periods 

(Sheng et al., 2011; Mullen, 2010). 

 

3.   Econometric Methodology: Cointegration and Causality 

3.1. Testing for the Order of Integration of the Variables 

To test the presence of unit roots, two most popular methods applied in recent literature are 

the Augmented Dickey-Fuller (ADF) test and the Phillips-Perron test. The three different 

forms of simple relationships allowing various possibilities in economic time series are the 

random walk, random walk with a drift and trend stationary processes. The equation that 

nested all the three models is 

ttt uYY  121                           (1) 

This equation is used for the Dickey-Fuller unit root test where the null hypothesis is that   

= 0, i.e. there is a unit root and thus the time series tY  is non-stationary. If    is significantly 

different from zero, there will be no unit root and tY will be stationary in the levels, or 

integrated of order zero, I(0).  If  tY  is non-stationary in the levels, but it becomes stationary 
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at first differences, then the series is to be integrated of order one, I(1). However, if  tY  is not 

a first-order autoregressive process, then more lagged values of the dependent variable will 

need to be added to ensure that the error term is a white noise. By adding m lagged values of 

dependent variable the equation for the augmented Dickey-Fuller (ADF) test is 

t

m

i

ititt uYYY  




1

121       (2) 

Phillips and Perron have developed a more comprehensive test of unit root non-stationarity. 

Their tests are similar to ADF tests, but they address the issue of autocorrelation by 

incorporating an automatic correction to the Dickey-Fuller t-test statistic, which allows for 

unspecified autocorrelation in the disturbance process.  Most of the cases the tests give 

conclusions similar to the ADF tests.  

3.2. Testing for Cointegration 

The Johansen technique based on VAR Model 

This VAR-based cointegration test proposed by Johansen (1995) uses the Maximum 

Likelihood estimation methodology to test for the cointegration rank r, which represents the 

number of independent cointegrating vectors. It is more generally applicable than the 

traditional Engle–Granger two-step methodology to explore a single cointegrating 

relationship. The VAR approach models every endogenous variable within the system. The 

following mathematical form gives the VAR of order p in standard form: 

tptptt yAyAy   ...11       (3) 

where ty is a k vector of endogenous variables that are integrated of order one, I(1), and 1A …

pA are (k x k) matrices of coefficients to be estimated, and t  is a vector of disturbances that 

are serially uncorrelated with all the right-hand side variables. The issue of simultaneity does 

not arise in this specification as all endogenous variables of (3) are only predetermined 

lagged variables. Hence, each equation in the system can be estimated using OLS technique, 

which gives consistent and asymptotically efficient estimates.   

http://en.wikipedia.org/w/index.php?title=Engle%E2%80%93Granger_test&action=edit&redlink=1
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In order to use Johansen test, the VAR model is reparameterized into a vector error 

correction model (VECM) of the following form: 

   tit

p

i
itt yyy  




 

1

1
1    (4) 

where 



p

i

i

1

  and  



p

ij

ji A
1

.  

The Johansen test examines the coefficient matrix,    as the key interest to note is the 

rank of the matrix. According to Engle and Granger (1987), if all variables of the vector ty

are integrated of order one, I(1), the coefficient matrix has rank 0 ≤ r <k, where r is the 

number of linearly independent cointegrating vectors. If rank ( ) = 0, there is no 

cointegrating vector. But, if 1 ≤ r <k, there is a single or multiple cointegrating vector in the 

system. If all variables of the vector ty are integrated of order one, the coefficient matrix has 

reduced rank r < k. 

The number of cointegrating vectors can be obtained based on significance of the 

number of characteristic roots   of the coefficient matrix , as the rank of a matrix is equal to 

the number of its characteristics roots. Johansen proposes two types of likelihood ratio test: 

the trace test and maximum eigenvalue test for the number of characteristic roots using the 

following two statistics: 





k

ri
itrace T

1

)ˆ1ln(     (5) 

)ˆ1ln( 1max  rT     (6) 

where ̂  is the estimated values of the characteristic roots (also called eigenvalues) obtained 

from the  matrix and T is the number of usable observations. The null hypothesis for the 

trace test is r cointegrating vectors, and the alternative is k cointegrating vectors. The 

maximum eigenvalue tests the null hypothesis for the trace test is r cointegrating vectors 

against r+1 cointegrating vectors. 

 

http://en.wikipedia.org/wiki/Eigenvalue
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3.3. Vector Error Correction Model 

The evidence of cointegration only suggests an existence of a long-term, or equilibrium 

relationship
1
 between time series variables under consideration. It does not consider the 

short-term dynamics of the model explicitly. However, the presence of cointegration among 

variables does not necessarily rule out short-term disequilibrium among them. The Granger 

representation theorem states that a cointegrated system of variables can be expressed as an 

error correction model (ECM) (Engle and Granger, 1987). The ECM reconciles the short-run 

behaviour of variables with its long-run behaviour using the error term of the cointegrating 

equation, which is also termed as ‘equilibrium error’.   

As a simple example, for the two-variable case with only one lagged difference the 

ECM can be written as: 

tttttt yyyyy 1121211111111211 )(      (7) 

tttttt yyyyy 2122211211111222 )(      (8) 

where  denotes the difference operator, 1y and 2y are the two variables of integrated of order 

one, and t is a random error term which is independently and identically distributed. The 

inclusion of lags of the dependent variable as the explanatory variable to the regression is 

necessary as the dependent variable itself may be correlated with its lags. Note that the error 

correction term )( 11112   tt yy  is one-period lagged value of error 1tu  from the cointegrating 

equation, which equals zero in a long-run equilibrium relationship. However, if it is non-zero, 

variables adjust in the short run to correct the equilibrium error to make the model 

equilibrium. In the short-run, the error correction term is non-zero and each variable adjusts 

to restoring the equilibrium. The coefficients 1 and 2 are the adjustment parameters, which 

represent the speed of adjustment in error correction mechanism. The ECM has both long-run 

property, which is built in error correction term, 1tu and short-term property, which is 

captured by the error correction coefficient . 

3.4. Granger Causality 

                                                             
1 Long-term relationship measures at the level form of the variables while short-run dynamics measure at the 

first-differences of the variables. 
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Granger causality is used to shed light on the direction of possible causality between pairs of 

variables. According to the Granger representation theorem, there will be Granger causality 

in at least from one direction if two variables integrated of order one, I(1), are cointegrated. 

In a simple model with two variables, y1 and y2, Granger causality tests whether past values 

of y1 help in predicting y2 given the effects of past values of y2 on y2 are accounted for. If they 

do, then y1 is presumed to “Granger causes” y2.  Granger causality can be examined using 

following VAR framework of order-p: 

tptptptptt yyyyy 1211211111111101 ......           (9) 

tptptptptt yyyyy 2121121221221202 ......         (10) 

The equation (9) models y1 as a linear function of its own lagged values, plus lagged values of 

y2. If lagged values of y2 have non-zero effects on y1, then y2 Granger causes y1 conditional on 

the effects of its own lagged accounted for. In this simple VAR, Granger causality testing sets 

the null hypothesis that y2 does not Granger causes y1.  

.0...: 1110  pH   

This joint hypothesis can be tested using a standard Wald F or 2 test, since each individual 

set of parameters restricted is drawn from only one equation.  Similarly, in equation (10) the 

null hypothesis that y1 does not Granger causes y2 can be expressed as 

.0...: 2210  pH   

If y1 cases y2, lags of y1 should be significant in the equation for y2. If it does so and no vice 

versa, they indicate that there exists unidirectional causality from y1 to y2. On the other hand, 

if y1 cases y2, lags of y1 should be significant in the equation for y2. If it does so and not vice 

versa, they indicate that there exists unidirectional causality from y1 to y2.  

 

4. Model Specification  

On modelling the relationship between total factor productivity and research expenditures, 

this paper employs a production function approach of the following form: 

321 &&

ttitt ENROLDFRDRA

t
TFP          (11) 
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where t is a time index; R&D is lagged domestic public R&D expenditures (or R&D stocks) 

in broadacre agriculture; FR&D is foreign public R&D, which is proxied by US R&D in 

agriculture; ENROL is a measure of farmer education, which is proxied by school enrolment; 

and TFP is total factor productivity. A is the part of TFP not caused by the included variables 

and  s are the respective weights to the factors mentioned. The functional form is specified 

as log-linear - the four variables are all in logarithmic term. Given limited guidance in the 

economic theory regarding the short-run and the long-run dynamic relationships between 

TFP and R&D, we adopt a modelling strategy based upon the information provided by the 

time-series data. Hence, we use an unrestricted VAR model that allows data to speak to the 

possible links and directions among the variables of interest.  

To control the spillover effects of foreign research this study uses R&D expenditure 

in US agriculture as a proxy for the foreign R&D expenditure. US play a significant role in 

global agricultural R&D in relation to its investment and in terms of research spillovers 

(Alston, 2002; Sheng et al., 2011). Besides, Australia maintains a considerable economic and 

trade relation with US. Moreover, assuming the effects of foreign research and development 

usually depend on how the country is exposed to foreign trade, we construct and use an 

import-share-weighted US R&D variable to the model following Coe and Helpman (1995) 

rather than simply using US R&D as a crude proxy for foreign R&D. Because, it is often 

assumed that the transfer of knowledge and technology between countries depend on trade 

channel, which facilitates access to the outputs of foreign R&D, thereby enhance productivity 

(Ang and Madsen, 2013).  

Another control variable is farmers’ education, which is proxied by school enrolment 

(ENROL) i.e. the proportion of primary school-age students in the total population enrolled in 

primary schools in rural areas. Inclusion of human capital is natural in the TFP regressions 

because education makes people better to organize work, communicate, and help to be 

innovative, all of which contribute to a higher productivity level. 

 

5. Data  

This study uses the country-level time-series data for the period 1953 to 2009. The broadacre 

TFP index is measured by the Australian Bureau of Agricultural and Resource Economics 
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Society (ABARES), which is estimated as the ratio of a Fisher quantity index of total output 

to a Fisher quantity index of total input. Empirically, TFP growth is measured as a part of 

farm output growth, which is not contributed by growth of the factor inputs to the control of 

farmers (Solow, 1957). TFP thus includes the effects of advances of knowledge or 

technological progress along with other factors affecting it (Jorgenson and Griliches, 1967). 

A complete description of how ABARES constructs TFP index for the broadacre industries 

can be found in Gray et al. (2011).  

The domestic public investment in R&D in broadacre agriculture series builds on data 

calculated by Mullen (2010) and from the Australian Bureau of Statistics (ABS) biannual 

Australian Research and Experimental Development Survey. Mullen assembled the data from 

various public sources, including Australian Bureau of Statistics (ABS) R&D data, and from 

a previous dataset developed by Mullen et al. (1996). The real public R&D expenditure is in 

2009 dollars based on the GDP deflator. This data considers investment on plants and 

animals and excludes for the fisheries, forestry, environment and processing. Finally, based 

on broadacre agriculture’s share of the total value of production in agriculture, the R&D in 

broadacre alone is derived from the R&D investment in Agriculture.     

Total R&D expenditure on agricultural production in US to proxy for foreign R&D 

expenditure is collected from US Department of Agriculture (USDA). This data is weighted 

by trade openness, the percentage of the agricultural imports to the agricultural gross value of 

farm production (GVP) in Australia. Agricultural GVP is obtained from ABARES and 

imports of agricultural crops and livestock products are obtained from FAO statistics. 

However, trade openness data is extrapolated backwards for the period 1953 to 1960 using 

actual data from 1961 to 2009. Similarly, school enrolment is also extrapolated backwards for 

the period 1953 to 1970 using the actual data. This study uses the World Development 

Indicators database to obtain data on the proportion of primary school-age students in the 

total population enrolled in primary school in Australia to proxy for the level of education of 

broadacre farmers.   

 

6.  Empirical Results and Discussion 

 

6.1.  Unit root test 
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We investigate the time-series properties of the variables using two widely used unit root 

tests, the Augmented Dickey-Fuller (ADF) and the Philips-Peron tests. Table 3.1 reports the 

test statistics for the time-series data covering the period 1953-2007 in their natural form. The 

results show that all variables TFP, public agricultural R&D expenditures, farmer education 

and foreign R&D expenditures are non-stationary in their levels, but they are stationary in the 

first differences, or integrated of order one, I(1). We also find similar integration order for all 

variables by Phillips-Perron tests statistics.  

Table 3.1 Unit Root Tests: ADF and Phillips-Perron 

Variables ADF Test 

 

Phillips-Perron Test 

 

Order of 

Integration 

 P-value Intercept, 

Trend and Intercept 

P-value Intercept, 

Trend and Intercept 

 

TFP 0.75 Intercept 0.67 Intercept  

∆TFP 0.00 Both 0.00 Both I(1) 

R&D 0.36 Both 0.99 Both  

∆R&D 0.00 Both 0.00 Both I(1) 

FR&D 0.42 Intercept 0.08 Both  

∆FR&D 0.00 Both 0.00 Both I(1) 

ENROL 0.20 Intercept 0.54 Both  

∆ENROL 0.01 Both 0.01 Both I(1) 

Note: In case of Both test statistics are reported for Trend and Intercept. 

Table 3.2 Zivot Andrews Unit Root Tests 

Series Level Break at First diff. Break at Lag length 

TFP -7.985*** 1999 -7.935*** 2001 1 

R&D -4.173 1980 -5.497** 1984 1 

FR&D -3.018 1983 -12.082*** 1979 1 

ENROL -6.110*** 1975 -4.739 1981 1 

Critical values: 1%: -5.57 and 5%: -5.08; *** significant at 1% level, ** significant at 

5% level. Note: Breaks are considered both in intercept and in trend. All variables are 

in logarithm form.  

However, the standard unit root tests may not be appropriate if the concerned series 

contain any structural breaks (Bloch et al., 2012; Shahiduzzaman and Alam, 2012). The 

results of ADF or PP tests might lead to conclude a non-stationary series as stationary 

because of not allowing breakpoint in the series if any. Considering the possibility of a 

structural break in the data series this test can be treated as a cross check of the other usual 
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unit root tests. Table 3.2 shows the results from the Zivot-Andrews tests (Zivot and Andrews, 

1992) considering structural breaks in the series if any. Similar to the Dickey-Fuller test, the 

Z-A test also maintains the null hypothesis of a unit root in the process, i.e., non-stationary 

series. The Z-A test suggests to reject the null of I(1) for all variables as the t-statistics are 

larger than the critical values, which substantiate the unit root results of stationarity in first 

difference found in two other tests ADF and PP. However, for TFP and Enrol variables, we 

cannot reject the null of I(0) suggesting they are integrated in the levels while we consider the 

structural break in the series.   

 

6.2.  Cointegration and VEC Model  

6.2.1. Cointegration test: Johansen Approach based on VAR 

To test for cointegration using Johansen approach, we need first to specify how many lags to 

include in the VAR model with I(1) variables. Table 3.3 presents the statistical results for 

determining optimal lag length. As there is no explicit theory to guide optimal lag lengths, we 

rely on different statistical techniques commonly applied to the literature in selecting the 

optimal lag for the VAR model. Results indicate that the sequential modified likelihood ratio 

(LR) test, the Schwarz information criterion (SC) and the Hannan-Quinn information 

criterion (HQ) suggest for only one lag in the model, as indicated by “*” in the table. Results 

reported in Table 3.3 show that according to LR and AIC methods the number of optimal lag 

is three though two other tests SC and HQ favour two lags.  

Table 3.3 Selection of the number of VAR lags 

Endogenous variables: LnTFP LnR&D LnFR&D LnEnrol 

 Lag LR AIC SC HQ 

0 NA  -4.693   -4.636   -4.544   

1   523.26    -13.962 -13.676  -13.218 

2  279.19    -18.626 -18.112*   -17.288*   

3  39.546*    -18.768* -18.025   -16.835   

4  17.821    -18.501 -17.529   -15.973   

* indicates lag order selected by the criterion at 5% level 

Determining the common integration properties of all the variables in the model as 

well as selecting the number of optimal lag, we can proceed to test the presence of 
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cointegrating vector. However, as all the variables are stationary in the first difference i.e. 

I(1), there may present a cointegrating relationship in the model.  We use multivariate 

maximum likelihood approach of Johansen and Juselius (1990) which allows estimation of 

multiple cointegrating relationships. The results for trace test and eigenvalue test are 

presented in Table 3.4. The results suggest rejecting the null hypothesis of no cointegrating 

vectors but cannot reject the hypothesis of at most one cointegrating equation according to 

the tests statistics. Both Trace test and Max-eigenvalue test indicate one cointegrating 

equation at 5% significance level.  

Table 3.4 Cointegration Tests: Johansen and Juselius Approach  

Series Tested: LnTFP LnR&D LnFR&D LnEnrol  

Hypothesized   5%  
No. of CE(s) Eigenvalue Statistic Critical Value Prob.** 

Trace Test 

None *  0.445  52.426  47.85613  0.0175 

At most 1  0.217  20.632  29.79707  0.3810 

At most 2  0.0894  7.407  15.49471  0.5308 

At most 3  0.0425  2.348  3.841466  0.1255 

Max-Eigenvalue Test 

None *  0.445  31.795  27.58434  0.0135 

At most 1  0.217  13.225  21.13162  0.4318 

At most 2  0.0894  5.059  14.26460  0.7343 

At most 3  0.0425  2.348  3.841466  0.1255 

 * denotes rejection of the hypothesis at the 0.05 level 

 **MacKinnon-Haug-Michelis (1999) p-values  

     

6.2.2.  Vector Error Correction Model: Johansen and Juselius Method 

Having established cointegration, we can proceed to test the short-run dynamic relationship 

between variables. Table 3.5 presents the test results for error correction by using Johansen-

Juselius vector error correction method for different lag specifications of R&D. In the table, 

Panel A shows result for 12 years of lag value of R&D, following a study by Thirtle et al. 

(2008) in UK agriculture where they used 12 years lag structure. This type of lag structure 

has been fitted to other studies as well, including Salim and Islam (2010), Piesse and Thirtle 

(2010), and Schimmelpfennig and Thirtle (1994). The result of statistically significant and 
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non-zero equilibrium error term provides the evidence of the adjustment of the short-run 

disequilibrium condition towards the long-run equilibrium for the model. 

In addition, Panel B and Panel C report results based on R&D stocks constructing by 

two alternative specifications of R&D lag structure: perpetual inventory method (PIM) and 

gamma distribution, respectively. Under the PIM method, R&D stocks are calculated 

assuming a depreciation rate fixed at 5%. In panel C, R&D stocks are calculated assuming a 

gamma distribution with 30-year research lag length. Given the data limitation and 

considering the relatively applied nature of public agricultural R&D in Australia, we allow 

30-year lagged specifications of the research impacts on productivity, which is consistent 

with previous studies in Australian broadacre agriculture e.g., Cox et al., (1997). Following 

Alston et al. (2011) the parameters of the gamma lag distribution are assigned with values of 

 = 0.70 and  = 0.90. Results show that in ∆TFP equation the equilibrium error term is 

statistically significant and non-zero reflecting adjustment of the short-run disequilibrium 

condition towards the long-run equilibrium. The negative value to the adjustment coefficient, 

which gives the required sign, suggests that ∆TFP will be negative about restore the 

equilibrium for the system. This implies that agricultural TFP growth responds to shocks 

from the R&D spending.   

Table 3.5 Error-correction model 

Panel A. 12-year Lag R&D  

alpha Coef. Std. Err. z P>z [95% Conf. Interval] 

∆TFPt       

_ce1 L1. -.9045544 .203866 -4.44 0.000 -1.304125 -.5049843 

∆R&Dt-12       
_ce1 L1. .134605 .1946363 0.69 0.489 -.2468751 .5160851 

∆FR&Dt        

_ce1 L1. -.12445 .4385757 -0.28 0.777 -.9840427 .7351426 
∆ENROLt        

_ce1 L1. -.0032984 .0193497 -0.17 0.865 -.0412231 .0346264 

 

Panel B. With R&D Stocks (PIM) 
alpha Coef. Std. Err. z P>z [95% Conf. Interval] 

∆TFPt       

_ce1 L1. -1.02207 .1928832 -5.30 0.000 -1.4001 -.644026 
∆R&DS

PIM 
      

_ce1 L1. .0219243 .0264405 0.83 0.407 -.02989 .0737468 

∆FR&Dt        

_ce1 L1. -.0176685 .3991445 -0.04 0.965 -.79997 .7646404 
∆ENROLt        
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_ce1 L1. -.0139582 .0169274 -0.82 0.410 -.04714 .0192189 

Panel C. With R&D Stocks (Gamma distribution) 
alpha Coef. Std. Err. z P>z [95% Conf. Interval] 

∆TFPt       

_ce1 L1. -.57612 .16401 -3.51 0.000 -.89757 -.25467 

∆R&DS
gamma 

      

_ce1 L1. .05386 .01226 4.39 0.000 .02983 .07790 

∆FR&Dt        
_ce1 L1. .09381 .28146 0.33 0.739 -.45783 .64545 

∆ENROLt        

_ce1 L1. -.00985 .01211 -0.82 0.416 -.03359 .01388 

The detail results of the cointegrating equations are reported in appendix Table A.3.1 

with Johansen’s normalization restriction is imposed on TFP to be unity. The estimated 

parameters of the cointegrating vector are exactly identified, and the model fits well. Overall, 

the outputs indicate the existence of an equilibrium relationship between the TFP and R&D. 

The results of normalized cointegrating coefficients are presented in the following 

cointegrating relationship for different specifications: 

***84.0&028.0***
12

&156.023.7
t

LnENROL
t

DLnFR
t

DLnRLnTFP 


        (12) 

**91.1&019.0***&187.025.11
t

LnENROL
t

DLnFRPIM
t

DSLnRLnTFP              (13) 

**022.3&105.0
***

&306.07245.16
t

LnENROL
t

DLnFR
gamma
t

DSLnRLnTFP     (14) 

The normalized cointegrating equation (12) considers 12 years of R&D lag. Equations 

(13) and (14) specified with research stocks based on PIM and gamma distribution, 

respectively. In all specifications, the beta coefficients for R&D are positive and statistically 

significant across different R&D lag length structure. This beta coefficient indicating positive 

relationship between lagged R&D and TFP can be considered as long-term marginal effects 

on TFP. As we used double logarithmic functional form, the beta coefficients can be 

interpreted as long-term elasticity. In addition, foreign R&D is positively related to TFP, 

though the coefficients are not significant. However, though it is likely that the enrolment 

coefficient is positively related to TFP in the long run, but in the model, the result shows a 

negative relationship between them.     

We use the LR test for linear restrictions to see whether the beta coefficients are 

significant in the cointegrating relationship. Table 3.6 reports the chi-squared test statistics 

for zero restrictions (coefficient restricted to zero) tests to see whether each of the variables 
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can be excluded from the cointegrating space. Results suggest that R&D (both 12-year lagged 

R&D and research stock based on gamma distribution) contributes significantly to the 

cointegrating relationship.  This outcome does valid our model that R&D has a long-run 

impact on the TFP. The result also shows that TFP and Enrol variables enter the cointegrating 

relationship significantly since each restriction is rejected at the 5% level. In addition, foreign 

R&D cannot be excluded from the model at 10% significant level.  

Table 3.6 LR test for exclusion of variables from cointegrating space (zero restriction) 

  12 Years R&D Lag  R&D Stocks Gamma 

distribution 

  chi2 p-value  Chi2 p-value 

LnTFPt  13.828 0.000  21.19 0.000 

LnR&D  4.087  0.043  19.85 0.000 

LnFR&Dt   3.029  0.082  2.665 0.103 

LnENROLt   6.781 0.009  5.346 0.021 

z statistics in the parentheses 

 

6.2.3. Specification testing 

We conduct a series of diagnostic tests to check specification of the model, which is crucial 

for the validity of the estimates and inferences of the model. Table 3.7.a reports result for 

checking the stability condition of VECM estimates. The results suggest that we have 

correctly specified the number of cointegrating equations as we find K – r (K endogenous 

variables and r cointegrating equations) unit moduli in the stability tests and the remaining 

moduli are strictly less than one. In addition, we also perform LM test for autocorrelation in 

the residuals. Result reported in Table 3.7.b suggests that we cannot reject the null hypothesis 

that there is no autocorrelation in the residuals at either lag order one or two.  Thus, test 

indicates no evidence of autocorrelation in the model.      

Table 3.7.a  Eigenvalue stability condition 

Eigenvalue Modulus 

1 1 

1 1 

1 1 

0.7354733 0.735473 

-0.4575463 0.457546 
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                       0.3426255 +  0.1186199i 0.362578 

                      0.3426255  -  0.1186199i 0.362578 

-0.1185675 0.118567 

The VECM specification imposes 3 unit moduli. 

 

      Table 3.7.b Lagrange-multiplier Test 

lag chi2 df Prob > chi2 

1 17.55 16 0.35034 

2 20.21 16 0.21081 

H0: no autocorrelation at lag order 

 

 

6.3. Granger Causality Tests 

To explore the direction of the causality among the variables in the cointegrated vector, we 

applied Granger causality test. The presence of one cointegrating vector implies that there 

should be Granger causality in one direction. Table 3.8.a presents the Granger causality Wald 

test based on vector autoregressions to establish the direction of causality of the cointegrated 

vector. The chi2 statistics in the first row tests if R&D, foreign R&D and enrolment are 

Granger-prior to TFP, the dependent variable in this case. The probabilities in the next row 

show that R&D is Granger-prior to TFP, and this is also true for all explanatory variables 

together, which is an expected outcome. We run similar test for each of the remainder 

dependent variables such as R&D, foreign R&D, and enrolment to find if they are Granger-

caused by any variables. The results suggest no evidence of any feedbacks in the opposite 

direction, which establish the presence of one granger causality running from R&D to TFP. 

Table 3.8.a Granger causality Wald tests – Vector autoregressions 

  
 Dependent  

Variable 

Excluded Variables 

 TFP R&D FR&D ENROL All 

chi2 TFP  14.620 5.421      6.935      32.785      

Prob > chi2   0.001* 0.067     0.031*     0.000* 

chi2 R&D 0.057       0.154      0.167      0.554      

Prob > chi2  0.972      0.926     0.920     0.997     
chi2 FR&D 0.323      0.180       2.739      5.634      

Prob > chi2  0.851     0.914      0.254     0.465     

chi2 ENROL 1.569      0.160      1.189       6.502      
Prob > chi2  0.456     0.923     0.552      0.369     

* denotes rejection of the hypothesis at the 0.05 level 
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Table 3.8.b Toda-Yamamoto Granger non-causality tests  

Dependent Variable Excluded Variables 

 TFP R&D FR&D ENROL All 

TFP  16.970*** 5.079** 0.961 35.161*** 

R&D 0.583  0.121 0.019 0.945 

FR&D 1.153 8.190***  3.591* 11.878** 

ENROL 0.924 0.965 3.722*  7.727 

“***”, “**” and “*” denote rejection of the hypothesis at the 0.01, 0.05 and 0.10 level, 

respectively. 

This study also follows the Toda-Yamamoto (TY) procedure to test for Granger 

causality for sensitivity check, i.e. to make sure that the causality testing is done properly. 

Toda and Yamamoto (1995) indicate that economic series likely to be either integrated of the 

different orders or non-integrated or both. Hence, the usual Wald test statistic does not follow 

its usual asymptotic distribution, which could lead to a flawed inference. Toda and 

Yamamoto (1995), therefore, developed an alternative augmented Granger causality test, 

which is useful when series are even not integrated in the same order. Table 3.8.b reports the 

results of the TY augmented Granger Non Causality test. The test’s results support the view 

that R&D Granger-causes the TFP and evidence of no feedback in the opposite direction. 

From the table, we find in the case of the dependent variable TFP, the result suggests 

rejecting the null hypothesis of Granger non-causality implies the presence of Granger 

causality running from R&D to TFP. On the contrary, when R&D considers as a dependent 

variable result does not suggest rejecting the null, the presence of no Granger causality of 

TFP to R&D. This implies Toda-Yamamoto procedure also suggests that the R&D Granger 

cause TFP. 

6.4. Variance Decomposition and Impulse-Response Function 

The variance decomposition and impulse response function provide more information of the 

dynamic properties to the model and allow predicting the relative importance of the variables 

beyond the sample period (Salim and Islam, 2010). Variance decomposition measures the 

proportion of variation in the dependent variable that is induced by their own shocks or 

shocks emanating from other variables. Table 3.9 presents the variable decomposition 

estimates for TFP for 30 years of the time horizon. The result shows in the case of TFP, about 

90% of the forecast error variances at the fifth-year horizon are accounted for by its own 
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shock, and the R&D, foreign R&D, and Enrolment contribute the remaining 10% of shocks. 

The R&D explains about 7.5% and 14.2% in 10
th

 and 20
th

 year, respectively, which remain 

almost persistent over the future period. The results indicate the future variability to TFP 

largely originate from its own shocks, which is thus appeared to be exogenous. In 30 years, 

71.1% of future variation in TFP is due to its own innovations and R&D explains about 

18.1%. On the other hand, other variables such as foreign R&D and enrolment do not 

considerably explain in the long run.     

Table 3.9 Variance Decomposition of LNTFP 

Period S.E. LnTFP LnR&D LnFR&D LnENROL 

1  20.236  100  0  0  0 

5  23.926  90.359  2.725  0.339  6.574 

10  26.630  82.274  7.450  0.713  9.561 

15  29.434  77.606  11.32  1.635  9.433 

20  32.044  74.647  14.21  2.357  8.777 

25  34.392  72.618  16.405  2.790  8.181 

30  36.517  71.116  18.123  3.039  7.720 

Cholesky Ordering: LnTFP LnR&D LnFR&D LnENROL  

This study, further, uses Cholesky one standard deviation impulse response function 

as part of the robustness checks of the cointegration findings beyond the sample period. The 

impulse response functions provide the response of the dependent variables to the shocks to 

each of the variables in the VEC model. Figure 3.2 shows the impulse response functions 

based upon the VAR estimates. As the main interest of this study is to examine the responses 

of TFP, we only present the effects of shock in all variables to the variable TFP. The impulse 

response functions for the rest of the variables are presented in the appendix Figure A.3.1. 

Figure shows that the response of productivity growth to a one standard deviation innovation 

in research and development is positive and persistent. The graph suggests, in response to a 

shock in R&D, future TFP initially increases, and then it remains positive and nearly 

permanent for the future periods at 3%. Figure also shows a negative and transitory response 

of productivity to the shocks both in foreign R&D and in enrolment as the effects die out in 

the future.  
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Figure 3.2 Generalized Impulse Response Functions in LNTFP Equation 

 

6.5. Forecasting Exercise 

This section presents a forecasting exercise in order to evaluate whether changes in R&D 

stocks contain information about future changes in the productivity of Australian broadacre 

agriculture. We produce forecasts from the estimated VEC model where both lagged values 

of TFP and R&D stocks are used for forecasting. Model also includes foreign R&D and 

enrolment as two exogenous variables. Figure 3.3 shows estimated forecasts of TFP for the 

forecast period 2010 to 2020 along with confidence error bands. Based on the estimated VEC 

model the graph shows that productivity declines over the forecasts period. We use dynamic 

forecasting approach for this out of sample forecasting. This approach uses the forecasted 

value of the lagged dependent variable. As a result, the confidence error bands widen towards 

to the end of the forecast sample because the forecasts errors tend to compound over time.     
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Figure 3.3 Out of Sample Forecasts of TFP for sample 2010-2020 

To see out-of-sample performance of the VEC model we estimate forecast evaluation and 

compares with other models. To obtain out-of-sample forecasting evaluation we reserve part 

of our sample by not including it in the estimation sample. We estimate VEC and other 

models for the sample period 1953 to 2002 (reserving seven years of actual data for the 

evaluation purpose) and perform out of sample forecasting for the period 2003 to 2020. 

Following, Apergis (2014), we compare the VEC-based TFP forecasts with those of the 

random walk model (RW) and basic forecasting model (with constant and trends) by using 

two statistics: root mean squared errors (RMSE) and the Theil coefficients. Table 3.10 reports 

and compares forecast evaluations across different forecasting models.   The results indicate 

that the VEC model that includes R&D knowledge stocks performs better than other two 

models giving smaller values of RMSE and Theil coefficient.  These results necessarily imply 

that inclusion of information on R&D knowledge stocks gives better predictive ability of 

future TFP.  

         Table 3.10 Out of sample forecasting of TFP for the period 2003 - 2020 

 RMSE Theil Inequality 

Coefficient 



22 
 

VEC Model 0.237512 0.021073 

RW Model 0.259072 0.023074 

Basic  0.257132 0.022905 

 

7. Internal Rate of Return 

In this section, we investigate economic performance of the public investments in R&D in 

Broadacre agriculture by applying the measures of benefit-cost ratios, IRR, and MIRR. Three 

main ingredients required to calculate these economic performance measures are the 

elasticity of productivity with respect to a change in the R&D stock, estimates of the real 

value of agricultural output and estimates of R&D stocks that include a simulated increase in 

research investments. Following Andersen and Song (2013), we compute economic 

performance measures applying a straightforward method that uses aggregate national-level 

data and a single estimate of the elasticity of productivity with respect to a change in the 

R&D stock. 

A simulated percentage increase in the R&D stock for the period t can be defined as: 

     ̅̅ ̅̅
    (

  ̅̅ ̅̅  

   
)           (15)  

where     is the actual knowledge stock and   ̅̅ ̅̅
  is the simulated knowledge stock after 

including a hypothetical increase of $1,000 in R&D investment in 1954, the year that 

represents the present value in the analysis at which t = 0. For constructing knowledge stock, 

we assumed gamma lag distribution with the research lag length of 30 years including 

implicit gestation period.  

The present value of benefits from the $1,000 investment in public R&D can be 

computed as: 

    ∑ ( ̂       ̅̅ ̅̅
    )

 
           (16) 

where    denote the real value of agricultural output in period t, r denote a real interest rate, N 

is the research lag length and  ̂  is the elasticity of productivity with respect to a change in 

the knowledge stock in Eq. (11). 
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Now, the benefit-cost ratio for that $1,000 investment is computed by dividing the 

present value of benefits, PVB, by the present value of cost, PVC which is simply the initial 

increase in investment of $1,000 in 1954 is: 

    
   

   
 

∑ ( ̂       ̅̅ ̅̅      )
 
      

      
     (17) 

In addition to benefit-costs ratio, we compute internal rate of return (IRR) which is the 

interest rate received for an investment that makes the net present value equal to zero. Next, 

the future value of benefits after N years is defined as: 

                     (18) 

Finally, the modified internal rate of return is defined as: 

     [
   

   
]

 

 
          (19) 

According to Alston et al. (2011) and Andersen and Song (2013), in evaluating the 

return to public investments in R&D a MIRR is superior to a conventional IRR for a 

conceptual reason. Specifically, the conventional IRR implicitly assumes that the flows of 

benefits that accrue over time can be reinvested in the same initial investment. However, it 

may not be suited for the public agricultural R&D where the benefits that accrue over time go 

to producers and consumers of farm products by reducing production costs and food prices. 

The IRR measure is best suited for an investment situation where the investor reaps all of the 

returns. We compute the modified internal rate of return as an alternative of conventional 

internal rate of return, which has an advantage that it allows for alternative reinvestment rates 

of the stream of benefits.  

Table 3.11 Benefit-cost ratios, IRR and MIRR  

 30 years research lag length 50 years research lag length 

Reinvestment 

rate 

Benefit-Cost 

Ratio 

IRR MIRR Benefit-Cost 

Ratio 

IRR MIRR 

(1) (2) (3) (4) (5) (6) (7) 

  Percent per Year  Percent per Year 

5% 20.79 26 16.31 17.17 23 11.28 
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3% 31.43 26 15.59 26.94 23 10.06 

1% 47.79 26 14.90 42.80 23 8.87 

Our estimates of benefit-costs ratio, conventional internal rate of return and modified 

internal rate of return are reported in Table 3.11. Results show that measure of benefit-cost 

ratios range from 17.17 to 47.79 depending on the assumed maximum lag lengths and 

discount rates. In case of 30 years of research lag length and at an assumed real discount rate 

of 3% per year the benefit-cost ratio is 31.43. The benefit-cost ratios are consistent with other 

recent studies. For example, in US agriculture, Alston et al. (2011) found benefit-cost ratios 

17.5 and 21.9 for 50-years and 35-years research lag length, respectively. Similarly, 

Andersen and Song (2013) also found the estimated benefit-cost ratio for the base model with 

the preferred estimation procedure is 24.38 in the US agriculture.  

We also calculate the conventional IRR reported in column (3) and (6) in Table 3.11. 

Although IRR is not a preferred measure, but is common in the literature. Most of precedent 

literature estimated IRR as it is useful for purposes of comparison. The estimated IRR for the 

maximum research lag length of 30 years and 50 years are respectively 26% per year and 

23% per year. This result is consistent with some recent studies in US agriculture, where 

Alston et al. (2011) and Andersen and Song (2013) found the estimated IRR are 

approximately 22.7% per year and 21% per year, respectively. Similarly, in case of Australia, 

Mullen (2007) found the real rate of return of the public research of 15% per year in 

Australian broadacre agriculture. Recently, for all agriculture Sheng et al. (2011) also 

computed an average estimate of real rate of return of 28.4% in Australian agriculture. 

However, this rate is reported to be relatively smaller compare to the results from surveys of 

the numerous studies over the years where the estimate of the rates of return is in the range of 

approximately 20-80 percent per year as reported in Alston et al. (2009). Also, in a meta-

analysis of 292 studies, Alston et al. (2000) reported an overall mean internal rate of return of 

64.6%using a sample of 1,128 estimates.  

A great number of the previous literature used internal rate of return as a common 

summary measure of investment performance in the agricultural R&D evaluation despite of 

its methodological criticisms by economists for more than half a century. We compute the 

modified internal rates of return (MIRR) which addresses the methodological concern with 

using the IRR (Hurley et al., 2014). The estimates of MIRR are reported in column (4) and 
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(7) in Table 3.11 under the assumption of a real reinvestment rate of 1%, 3% and 5% per 

year. Depending on the maximum research lag length and the assumed reinvestment rate, 

results indicate that the estimates of MIRR is somewhere in the range of 8.87% per year to 

16.31% per year. For 50-years maximum lag length, the estimated MIRR is 10.06% per year 

when the reinvestment rate is 3% per year. The estimated MIRR in this study is consistent 

with some recent studies with US agriculture. For example, Alston et al. (2011) computed an 

average of 9.9% per year across US states. Similarly, Andersen and Song (2013) found that 

the MIRR is 9.84% per year for the public investment in agricultural R&D in the United 

States. Our estimates of MIRR of 10.06% per year is also consistent with a recent study by 

Hurley et al. (2014) which re-examined the reported rates of return from 372 separate studies 

from 1958 to 2011. They found that the median MIRR varies from 9.7% to 10.4% per year 

for a range of reinvestment rates of benefits from 0 to 50%.   

 

8.  Conclusions 

This study investigates the long-run relationship between the public R&D and the TFP in 

broadacre agriculture in Australia over the period of five decades. A production function 

approach is used as an analytical model by making total factor productivity a function of 

research and development expenditure. This model also incorporates the variables that 

control foreign technology transfer (foreign public R&D) and human capital (farmers’ 

education level). To ensure that cointegration is possible, first we use the Augmented Dickey 

Fuller and the Phillips Perron unit root tests to determine time-series properties of the 

variables. Then, using the cointegration and causality analysis, we find econometric evidence 

of cointegrating relationship between research and development expenditure and productivity 

growth. Results also show the evidence of a causal relationship between R&D to TFP growth. 

With respect to the direction of causality, the empirical evidence indicates a unidirectional 

causality running from R&D to TFP growth. In other words, research and development 

expenditure Granger causes total factor productivity as current and past values of R&D 

improve predicts of TFP above the past values of TFP alone. This result is robust according 

to the Toda-Yamamoto Granger non-causality test.  

Having established cointegration, an error correction model constructed, which shows 

that lagged R&D is significant in explaining changes in total factor productivity. This result 



26 
 

implies an increased R&D expenditure leads to better outcomes for productivity in Australian 

broadacre agriculture. Further, we explore the dynamic properties of the model using 

variance decomposition and impulse response function. The result suggests that beyond the 

sample periods, the public R&D considerably explain the variation in productivity growth in 

Australian broadacre agriculture. In addition, TFP responses positively and persistently for 

the future period as the effect of shock in the public R&D does not die out over time. This 

study, therefore, establishes the existence of a long-run unidirectional causal relationship 

between R&D and productivity growth in a more dynamic fashion. Further, this study, 

through an out-of-sample forecasting exercise, also indicates that investment in public R&D 

in agriculture does matter in forecasting productivity growth. Results show that information 

on R&D investment improves productivity forecasts significantly.   

Moreover, this study also computed and compared different measures of economic 

performances for the public investments in agricultural R&D. The results show that the 

benefit-cost ratio is 26.94, the internal rate of return is 23% per year, and the modified 

internal rate of returns is 10.06% per year.  The measures of conventional internal rates of 

return are consistent with some recent studies, e.g., Alston et al. (2011) and Andersen and 

Song (2013), yet relatively lower than some previous studies. The estimated modified internal 

rate of returns is approximately 8.87–16.31% per year, depending on the research lag length 

and reinvestment rate of benefits. This estimated modified return to public R&D is lower than 

the reported conventional IRR and is methodologically more justified and plausible.  

These results, indeed, suggest that research affect agricultural productivity in the long 

run as an important source of productivity growth.  The insight behind the relationship 

between the public R&D and productivity in broadacre agriculture in Australia is 

straightforward. An increase in the public expenditure in R&D is likely to lead to higher 

productivity growth in the long run. Finally, R&D should attract more public attention in 

government agricultural policy as an increase in R&D expenditure has a positive and sizable 

rate of return through contributing productivity growth.  

The results may, however, be limited by the nature of the research and development 

data. The model focuses solely on public R&D in broadacre agriculture. Moreover, only the 

effect of US R&D is represented for the effects of foreign R&D on TFP. Hence, the results 

may be limited by any effects of the R&D expenditure in private sectors and in other sectors 

in Australia. Given these practical limitations, our results are still pertinent as our main 
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interest is to investigate the existence of long-run relationship as well as causality between 

the public R&D and TFP, rather than magnitude of that relation. Moreover, the results are 

consistent with the findings of other relevant studies like Cox et al. (1997) for Australian 

broadacre agriculture based on nonparametric approach, Salim and Islam (2010) for WA 

broadacre agriculture, Wang et al. (2013) and Alston et al. (2011) for US agriculture, and 

Thirtle et al. (2008) for UK agriculture.  
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Appendix 

 

Figure A.1: Impulse Response Function 
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