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Abstract

Rising suppression cost and severity of wildfires in the US has prompted debate
over federal wildfire management policy. The empirical economic literature on
wildfire has sought to identify the factors that contribute to wildfire growth
and cost without directly modeling the role of resource allocation over the
course of the fire. Without a model of suppression resource allocation, it is
difficult to understand how policy will impact wildfire outcomes. We fill this
gap in the literature by estimating an econometric model of suppression resource
allocation, wildfire expenditures, growth, and home damage using a dynamic
panel dataset on over 500 wildfires in the Western U.S. Our econometric model
is grounded in a theory of resource allocation that shows how individual fire
managers communicate their need for resources to a regional command unit
through the resource’s shadow price. This model allows us to parse the complex
incentives of wildfire managers, and disentangle direct from indirect impacts of
threatened assets, environmental conditions, and resource scarcity on wildfire
expenditure, growth, and damage. Among other results, we find that the use
of aircraft increases daily wildfire expenditures by 35% while highly trained
ground crews mitigate the daily damage to threatened homes.
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1 Introduction

For the past century, wildland fire has been one of the most common and costly

natural disasters in the U.S. Suppression costs have increased over the last couple of

decades to the point where the federal government routinely spends over one billion

dollars per year managing active wildfires (NIFC, 2014). The recent escalation of

wildfire management cost has focused the attention of policy-makers and researchers

on the factors that contribute to large expensive wildfires. While, there is a growing

literature on wildfire cost and size (Gebert et al., 2008; Abt, Prestemon, and Gebert,

2009; Yoder and Gebert, 2012), few studies focus on the important role of emergency

resource allocation and the incentives faced by managers during a response effort.

The objective of this study is to develop a theoretical and empirical framework to

analyze emergency resource allocation over the course of a suppression effort and

quantify the subsequent impact of those decisions on policy-relevant outcomes.

We develop a model of wildfire response that explicitly incorporates the interaction

between fire managers and regional command units.1 We then develop and estimate

an econometric model of wildfire expenditures, growth, and damage to homes with

endogenous resource allocation. The model enables us to identify the causal effect of

economic and environmental conditions on relevant wildfire outcomes. Thus, we are

able to parse the direct effect of environmental conditions such as weather on wildfire

growth from the indirect effect of weather on resource allocation, which affects wildfire

growth.

Several studies have documented the connection between the growing wildland ur-

1The term fire manager describes the individual decision maker “on the ground” at any single fire.
This individual, or group of individuals depending on the size and complexity of the fire, is called
the incident commander or incident management team. The term regional command unit refers
to Geographic Area Coordination Centers (GACC) who coordinate the distribution of response
resources within a geographically defined area.

2



ban interface (WUI) and recent increases in wildfire growth and expenditures (Gude

et al., 2013; Yoder and Gebert, 2012). Simulation studies, such as Fried, Gilless, and

Spero (2006), suggest that an emphasis on home protection diverts firefighting re-

sources away from containment efforts leading to larger fires. Yet, this hypothesis has

not been tested using observed data on firefighting resource allocation. We exploit

a dynamic panel dataset on wildfires in the Western US from 2003-2010 and show

that resources adept at home protection are dispatched to a fires with more threat-

ened homes while other resources respond to expected fire growth. This evidence

reveals that protection of homes is an important objective of fire managers but also

implies dynamic feedbacks between the evolution of the fire and firefighting resource

allocation.

Individual fire managers face a complex set of objectives throughout the course

of a fire (Calkin et al., 2013). Fire managers, operating in an uncertain environment,

accumulate information and develop, implement and update management plans over

the course of a fire. When multiple wildfires are burning within a region, a regional

command unit allocates response resources between fires. Since Sparhawk (1925),

theoretical models of wildfire response management have focused on the cost plus

net loss framework for a given fire or fire season (Bratten, 1970; Mees and Strauss,

1992; Donovan and Rideout, 2003; Donovan and Brown, 2005; Mercer et al., 2007).

However, few studies model the complexity of managing multiple wildfires simultane-

ously; notable exceptions include Kirsch and Rideout (2005) and Petrovic, Alderson,

and Carlson (2012). Of these studies, none have explicitly modeled, theoretically or

empirically, the interaction between individual fire managers and the regional com-

mand unit. In this setting, fire managers compete for resources allocated through the

central dispatch center by conveying the “need” or usefulness of firefighting resources

for application to their fire at a particular time. Abstractly, this is equivalent to
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and modeled as conveying the shadow value of resources for a fire, which the central

dispatch compares to shadow prices for those resources for other fires as conveyed by

competing fire managers. Our model yields a set of structural equations from which

we derive a set of estimable reduced-form resource allocation equations.

Wildfires are numerous but occur over a period of time such that frequent and

detailed data can be collected on actions taken and wildfire outcomes. However,

most empirical studies of wildfire outcomes rely on data aggregated over a fire, or

even an entire fire season (Liang et al., 2008; Prestemon and Donovan, 2008; Yoder

and Gebert, 2012).2 The few studies that have used micro-level panel data to study

wildfire outcomes do not include resource allocation (Donovan, Noordijk, and Rade-

loff, 2004; Finney, Grenfell, and McHugh, 2009; Gude et al., 2013). Such models

offer insights into the factors that contribute to wildfire expenditures and growth,

but are unable to identify the policy-relevant mechanisms by which environmental

and economic factors impact observed wildfire outcomes.

Our results have direct policy implications. We find that resource allocation is in-

fluenced by emerging threats to property and expectations about future fire behavior.

For instance, fires with extreme growth potential receive additional aircraft, which

raises daily expenditure by over 35%. In contrast, threatened homes encourage the

dispatch of highly trained ground crews and engines, which reduce damage to threat-

ened homes. While the actions of these resources can significantly influence wildfire

outcomes, environmental factors such as temperature, precipitation, and wind still

pose risks that cannot be completely controlled. These results highlight the impor-

tance of modeling the dynamic feedback between management decisions and wildfire

2Another class of studies construct models of wildfire response, and simulate response strategies
(Fried, Gilless, and Spero, 2006; Haight and Fried, 2007; Petrovic, Alderson, and Carlson, 2012).
While the policy implications of these studies are comparable to empirical studies based on data,
the method of analysis is not.
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outcomes.

The remainder of the paper is outlined as follows. Section 2 develops a model

of wildfire response to explicitly characterize the interaction between individual fire

managers and a regional command unit. Section 3 describes the data and econometric

model of daily wildfire growth, expenditures, and damage to homes. Section 4 presents

the results and section 5 provides a discussion of the policy implications.

2 Model

Consider an individual fire manager that allocates response resources over the course

of a single fire, subject to a set of resource constraints determined by the regional

command unit. Individual fire managers convey all relevant information about the

marginal value of firefighting resources to the regional command unit through its

shadow price. The regional command unit aggregates this information and allocates

a finite set of firefighting resources to each fire such that the marginal value of an

additional resource is equal across all simultaneously burning fires.

We model wildfire response over the course of a fire as a two-period problem in or-

der to clarify the interaction between individual wildfire managers and their regional

command units, as well as the highlight the feedbacks between human intervention

and fire growth. In the first period, threatened assets are identified and available fire-

fighting resources are allocated by the incident commander. In the following period,

the damage and growth of the fire is realized and is considered sunk by the incident

commander. This two-period model is consistent with our dataset and is useful for

our empirical identification strategy. Sections 2.1 and 2.2 describe the individual fire

manager’s and regional command unit’s problems, respectively.
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2.1 Wildfire Manager

Fire managers face complex tradeoffs. They do not own the resources that they are

protecting. Instead, these assets are often owned by numerous private owners or man-

aged by public agencies. Nor do fire managers face the costs of firefighting, which are

fiscally borne by the agency for whom he or she works.3 Nonetheless, they are respon-

sible for allocating scarce firefighting resources, often under emergency conditions in

which timeliness is crucial. Under these conditions, fire manager decisions are based

on their preferences and a complex set of indirect incentives, including employment

consequences, political pressure, and legal threats. We model the fire manager as a

loss minimizer, where the loss function is specified in general terms as

`t(dt, ct).(1)

Loss at time t is increasing in damages, dt, and expenditures, ct realized at time

t. This general specification of the objective function allows for several important

features of wildfire management not present in the often used linear cost plus loss

specification. Expenditure on response effort assigned to protect a specific structure

or structures may exceed the value of the structure receiving protection (Troyer et al.,

2003; Calkin et al., 2005; Calkin et al., 2013), which suggests that wildfire managers

place unequal weights on expenditures and damage. Expenditures on response are

ct = y′tw,(2)

3Donovan and Brown (2005) argue that wildfire managers are not subject to a budget constraint,
but rather face disincentives for grossly exceeding reasonable levels of expenditure. Calkin et al.
(2013) also recognize the lack of a true budget constraint in a choice experiment study of wildfire
manager incentives.
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where yt is the (J×1) vector of firefighting resources allocated in time t and w is the

(J × 1) vector of corresponding prices. Resource prices include wages for firefighters

and the rental rate of capital assets such as dozers and aircraft. These prices are

generally arranged prior to the beginning of the response effort and are assumed

fixed over the duration of the fire.

Wildfire damage is realized in the second period and is

dt+1 = d(vt,yt, at+1(yt,pt+1) + εat+1) + εdt+1,(3)

where damage is an increasing function of a (K × 1) vector of threatened assets at

time t, vt, a decreasing function of firefighting resources allocated at time t, yt, and

an increasing function of fire growth over the interval {t, t + 1}, at+1(·), which itself

is a decreasing function of currently assigned firefighting resources and a vector of

exogenous environmental and geographic characteristics over the interval {t, t + 1},

pt+1. Damage in t+ 1 depends on firefighting actions and environmental conditions,

both of which are uncertain. Uncertainty with regard to environmental conditions is

captured by a mean zero random variable εat+1. The effectiveness of the firefighting

resources is idiosyncratic and captured by the mean zero random variable εdt+1.

The vector of threatened asset values may include homes and other private struc-

tures, watersheds, harvestable timber, and wildlife habitat. Response resources reduce

damage through two channels: 1) by taking actions to protect specific threatened as-

sets reducing the likelihood that they burn, and 2) by mitigating the growth of the fire.

Environmental characteristics may facilitate or hinder the productivity of response

resources. Difficult terrain may severely limit the productivity of engines and dozers,

while precipitation may complement the efforts to suppress fire growth. (Hirsch and

Martell, 1996; Plucinski et al., 2012).
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The fire manager allocates the resources available to him or her at time t. The

resources are dispatched by regional command unit at the beginning of time t creating

a short term constraint, ȳt ≥ yt. The resource constraint and the associated Lagrange

multiplier in the constrained optimization problem serve as the point of connection

between the individual fire manager and the regional command unit.

In each planning period, the fire manager develops a strategy, yt, to solve

Lt =
{

min
yt≥0

`t(ct, dt) + Et { `t+1(ct+1, dt+1) } : s.t. ȳt ≥ yt

}
(4)

where `t(·), ct, and dt are defined in equations, (1), (2), and (3), respectively. Equation

(4) states that fire managers allocate a constrained set of firefighting resources at time

t to minimize contemporaneous and expected losses. Damage at time t is a function

of past allocation decisions and the realization of a random variable and is effectively

exogenous at time t. However, expenditures at time t are a function of firefighting

resources allocated at time t, which reduce expected losses in t+ 1 through expected

damage. The expectation is conditional on the information set at time t.

The first order conditions of the fire manager’s minimization problem are

Zyt ≡
∂`t
∂ct

w + Et

[
∂`t+1

∂dt+1

(
∂dt+1

∂yt

+
∂dt+1

∂at+1

∂at+1

∂yt

)]
− λt = 0;(5)

yt ≥ 0; ȳt ≥ yt; λt ≥ 0; Zyi,tyj,t = 0 and λj,t[ȳj,t − yj,t] = 0 ∀ j,

where λj,t is the Lagrangian multiplier of firefighting resource j at time t. Equation

(5) is a (J×1) vector where for each firefighting resource: the first term is positive and

captures the losses due to increasing expenditures, the bracketed term is negative and

captures the expected reduction in future losses from allocating more resources today,4

4The expected marginal damage reduction of resource j, ∂dt+1

∂yt
, captures the sum of mitigated
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and multiplier is positive and captures the net marginal benefit of an additional unit

of response resource j at time t.5 This system of equations implicitly defines an

equilibrium at time t, {y∗t (ȳt; xt),λ
∗
t (ȳt; xt)}, for each planning period where xt =

{vt,pt+1,w}. This model describes a range of wildfire scenarios from the case in

which threatened assets justify large firefighting efforts to the case where few or no

assets are at risk leading to little or no response.

2.2 Regional Command Unit

The federal contract for securing firefighting resources states that resource are as-

signed based on “best value” conditional on meeting a minimum set of requirements

(NIFC, 2011). In the context of our model, “best value” refers to the largest net

marginal benefit of receiving an additional resource of all individual fire managers.

Individual fire managers communicate their need for response resources to the re-

gional command unit through the shadow price λji for each resource j = 1, . . . , J

and fire i = 1, . . . , I. Once resources are committed to a fire, they remain committed

for the entire planning period (e.g., a day), after which they may be reassigned to

another fire. While tactics and strategies may vary idiosyncratically across individ-

ual fire managers, their primary objectives remain consistent. We assume that the

regional command unit knows the loss function of each individual fire manager and

the information set over which expectations are formed.

The regional command unit chooses I sets of J resources to minimizes the sum of

damage across all assets threatened at time t, vt.
5The resource constraint is binding only when the manager would use the additional resource,

i.e., the marginal benefit exceeded the marginal cost. In equilibrium, λ is equal to the expected
marginal benefit less costs, which can be positive or zero when the constraint is not binding.
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expected losses across all wildfires I burning during time t,

min
ȳi,t

I∑

i=1

Li,t(ȳi,t; xi,t) : s.t. ¯̄yt ≥
I∑

i=1

ȳi,t,(6)

where Li,t(·) is the indirect loss function of fire manager i at time t defined in equa-

tion (4) and ¯̄yt denotes the constraint on resources available to the region at any

given point in time. This resource constraint may follow from a budget constraint, or

because of the importance of timeliness, and shortages imposed by insufficient pre-

season preparedness and resource contracts and acquisition. Wildfires begin and end

throughout the year, so the regional command unit repeatedly solves this minimiza-

tion problem in each planning period. For simplicity, we assume that once pre-season

investments are made, the regional command unit does not plan for or attempt to

predict the spatiotemporal distribution of new fire ignitions, but does consider them

once ignited. The regional command unit and individual fire managers share the

same information set and thus, form the same expectations about future wildfire out-

comes embedded in Li,t(·). The first-order conditions of the regional command unit’s

problem are

Ri,t ≡
∂Li,t(ȳi,t; xi,t)

∂ȳi,t

= µt; ȳi,t ≥ 0; ȳi,tRi,t = 0 ∀ i(7)

¯̄yt −
I∑

i=1

ȳi,t ≥ 0; µj,t

[
¯̄yj,t −

I∑

i=1

ȳi,j,t

]
= 0; µj,t ≥ 0 ∀ j,

where µt is a (J × 1) vector of shadow prices corresponding to each resource type.

Equation (7) implies that in equilibrium, the net marginal benefit of an additional

resource, ȳi,j,t, which is equal to the individual fire manager’s shadow price, λi,j,t,
6 is

6Differentiating (4) with respect to the constraint, ȳt, yields λ′t both prior to and after optimiza-

tion. This result implies that
∂Li,t

∂ȳi,j,t
≡ λi,j,t even out of equilibrium.
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Figure 1: Regional Command Unit’s Problem.

equal to the regional command unit’s shadow price of the resource µj,t. This condition

implies that the regional command unit strives to allocate resources efficiently by

equating the net marginal benefit of each resource j across all fires i at time t, i.e.,

∂Li,t

∂ȳi,j,t
= λi,j,t = µj,t for all i, j, and t.

We illustrate the equilibrium condition with an example of two concurrently burn-

ing fires in Figure 1. The regional command unit allocates a single resource, ¯̄y, across

Fire 1 and Fire 2. Fire 1’s marginal benefit, λ1 is decreasing in ȳ1, while Fire 2’s

marginal benefit, λ2, is increasing in ȳ1 (and decreasing in ȳ2). The optimal alloca-

tion of ¯̄y occurs where µ = λ1 = λ2. If the total available number of resources in

a region increased, the x-axis would expand, possibly to the point where λ1 and λ2

no longer intersect in which case, more resources are available than requested and

the regional command unit’s constraint would not bind µ = 0 (each fire receives the

resources requested). If, in contrast, a Fire 1 requested more resources than available,

µ = λ1 at the vertical intercept.
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2.3 Resource Allocation Equations

The optimal allocation of resources within any fire i is y∗i,t(ȳi,t; xi,t) with equilibrium

shadow price λ∗i,t(ȳi,t; xi,t). Substituting the equilibrium vector of shadow prices into

the first order condition of the regional command unit’s problem (equation (7)) yields

a system of (I + 1) ∗ J equations in (I + 1) ∗ J unknowns (ȳi,j, µj)

λ∗1,1,t(ȳ1,t; v1,t,p1,t+1, w1,1) = µ1,t

λ∗1,2,t(ȳ1,t; v1,t,p1,t+1, w1,2) = µ2,t

...

λ∗I,J,t(ȳI,t; vI,t,pI,t+1, wI,J) = µJ,t(8)

I∑

i=1

ȳi,1,t = ¯̄y1,t

...

I∑

i=1

ȳi,J,t = ¯̄yJ,t ∀ t.

The solution to the system of equations yields the optimal allocation of J resources

to each fire {ȳ∗i }i∈I . At any point during the management effort, the quantity of

resource j dispatched to fire i is a function of expected conditions on fire i as well

as expected conditions on all other fires −i burning within the region. Equations (8)

imply the following reduced-form equations

ȳi,j,t = ȳj(

Demand Factors︷ ︸︸ ︷
wi,vi,t,pi,t+1,

Supply Factors︷ ︸︸ ︷
¯̄yj,t,w−i,v−i,t,p−i,t+1, ε

y
i,j,t ) ∀ i, j,(9)

where ȳj(·) denotes the unique resource allocation function for each type of resource

j, and εyi,j,t captures unobserved heterogeneity. The unobserved heterogeneity in-
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cludes a fire-specific component that captures unique feature of a particular fire or

management strategy, and a time-varying component that captures unobserved daily

characteristics of the fire. The conditions on fire i influence the demand for resources

while the same conditions on fires −i influence the supply of resources because all con-

currently burning fires compete for a finite set of resources. In reality, the conditions

on each of the other concurrent fires may have variable impacts on fire i. However, an

econometric model must be specified consistently across all fires. We sum the number

of threatened homes on all other fires and assume that weather conditions are cor-

related within a region. Equation (9) provides a structural link between threatened

assets, environmental conditions, and resource allocation while the underlying model

provides the intuition for how threatened assets and environmental conditions impact

resource allocation.

2.4 Wildfire Growth, Expenditures, and Damage

Ultimately policy makers are interested in the factors that increase wildfire size,

expenditures, and damage. However, parsing the effect of firefighting actions and

environmental conditions is challenging. Our two-stage model of wildfire response

provides a structural foundation for a set of estimable equations of wildfire growth, ex-

penditures, and damage. Substituting the equilibrium resource allocation, y∗i,t(ȳ
∗
i,t; xt)

back into the fire growth, expenditure, and damage functions yields

ai,t = a(y∗i,t−1,pi,t) + εai,t(10a)

ci,t = y∗′i,twi + εci,t(10b)

di,t = d(y∗i,t−1, a(y∗i,t−1,pi,t) + εai,t) + εdi,t,(10c)
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where εa, εc, εd are equation-specific disturbances. The growth and damage distur-

bances are described in equation (3). The disturbance in the expenditure equation,

εc, follows from the unobserved heterogeneity not captured by the resource allocation

model. The timing of the model informs the use of lagged resource allocations in the

growth and damage equations (10a) and (10c). The following section describes the

data and the empirical model used to estimate equations (9, 10a, 10b, 10c).

3 Data and Empirical Methods

The data used in this study are compiled from several publicly available datasets.

Dynamic panel data on wildfire outcomes, resources used, and conditions are based on

daily Incident Status Summary reports (ICS-209) completed by incident commanders

over the course of the fire (FAMWEB, 2012). Ignition-point and final summary data

come from National Interagency Fire Management Integrated Database (NIFMID)

(KCFAST, 2012). County- and climate division-level weather conditions are collected

from the National Oceanic and Atmospheric Administration, National Climate Data

Center (NOAA, 2014). Additional housing data is collected from the US Census

(United States Census Bureau, 2011). Table 1 contains the data sources and a brief

description of the data gathered from each source. Table 2 contains summary statistics

of the variables used in the analysis.
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Table 1: Variable Descriptions and Source Information of Compiled
Dataset

Datasets

(ICS-209) SIT Reports Time-varying wildfire data 2003-2010 (FAMWEB, 2012)
NIFMID Reports Summary wildfire data 2003-2010 (KCFAST, 2012)
NOAA NCDC Weather and drought data by county 2003-2010 (NOAA, 2014)
U.S. Census Housing and urban data 2010 (United States Census Bureau,

2011)

Variable name Brief description and source

Crew 1 Number of type 1 crew firefighters (ICS box 43)
Crew 1−i Number of type 1 crew firefighters on all other fires −i (ICS

box 43)
Crew 2 Number of type 2 crew firefighters (ICS box 43)
Crew 2−i Number of type 2 crew firefighters on all other fires −i (ICS

box 43)
Aircraft Number of type 1, 2, and 3 helicopters (ICS box 43)
Aircraft−i Number of type 1, 2, and 3 helicopters on all other fires −i

(ICS box 43)
Dozer Number of bulldozer and tractor plow crew persons (ICS box

43)
Dozer−i Number of bulldozer and tractor plow crew persons on all other

fires −i (ICS box 43)
Engine Number of engine and water tender crew persons (ICS box 43)
Engine−i Number of engine and water tender crew persons on all other

fires −i (ICS box 43)
lnCost Natural log of suppression expenditure to date (ICS box 19)

in dollars.
lnArea Natural log of the total area burned to date (ICS box 15) in

acres.
Damaged Homes Number of residential structures damaged and destroyed (ICS

box 24).
Threatened Homes Number of residential structures threatened (ICS box 24).
Threatened Homes−i Number of residential structures threatened on all other fires

−i (ICS box 24).
Count (I) Number of other fires −i burning in the region within the past

48 hours
Growth Subjective measure of future fire behavior {Low, Medium

(baseline), High, Extreme} (ICS box 39a)

continued
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continued
Variable name Brief description and source

Inaccess Subjective measure of access difficulty based on terrain {Low
& Medium (baseline), High, Extreme} where extreme is most
difficult (ICS box 39b)

lnMedValue Natural log of county-level median home value in which the
fire began (Census).

lnDistance Natural log of distance from ignition to nearest Census Desig-
nated Place (Census).

Hdensity20 Distance weighted home density within 20 miles of ignition
point (Census).

Wind Average reported windspeed in mph over current operational
period (ICS box 30).

Temperature Mean daily maximum temperature in county where ignited in
Fahrenheit (NOAA).

Relative Humidity Average reported relative humidity on scale of 0 − 100 over
current operational period (ICS box 30).

Precipitation Mean daily precipitation in county where ignited in inches
(NOAA).

PDSI Average monthly Palmer Drought Severity Index matched at
climate division (NOAA).

Percent Contained Subjective estimate of containment (ICS box 16).
Day of Year Report date (ICS box 1) converted into radians and trans-

formed with sine cosine functions.
Year Categorical variable for each year (baseline=2004).
FS Region Categorical variable for each USFS region in the Western US

{North (MT, ND, N.ID), Southwest (AZ, NM), Intermountain
(NV, UT, S.ID), Rocky Mountain (WY, CO, KS, NE, SD), Pa-
cific Southwest (CA), Pacific Northwest (WA, OR) [baseline]
}.

Lightning Binary equal to 1 if wildfire was caused by lightning (base-
line=human) (ICS box 8).

Fuel Model NFDRS fuel models Timber (baseline)= {H, R, E, P, U, G},
Grass= {A, L, S, C, T, N}, Brush= {F, Q, B, O}, Slash= {J,
K, I} (NIFMID).

Slope Percent grade of slope at point of ignition (NIFMID).
Elevation Elevation in thousands of feet at point of ignition (NIFMID).
Wilderness Binary equal to 1 if fire was ignited on land designated for

wilderness management (NIFMID).
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Table 2: Summary Statistics for Wildfires in Western U.S 2003-2010

Obs. Mean Std. Dev. Min Max

Crew 1 2,800 130.82 199.12 0 1,337
Crew 1−i 2,800 106.87 1,434.29 0 28,346
Crew 2 2,800 79.15 106.49 0 2,011
Crew 2−i 2,800 10.75 161.13 0 3,864
Aircraft−i 2,800 5.08 5.79 0 47
Aircraft−i 2,800 0.27 2.78 0 91
Dozers 2,800 14.18 23.44 0 348
Dozers−i 2,800 0.41 6.47 0 152
Engines 2,800 158.49 214.08 0 1,448
Engines−i 2,800 8.89 73.33 0 1,151
Cost 2,748 457,270 1,934,820 1 80,700,000
Area 2,800 1,696 5,065 1 135,000
Damaged Homes 841 3.02 33.39 0 613
Threatened Homes 2,800 279.55 1,811.46 0 55,000
Threatened Homesi 2,800 145.32 1,921.38 0 34,500
Count (I) 2,800 6.74 4.56 1 31
Growth Potential Low 2,799 0.12 0.33 0 1
Growth Potential High 2,799 0.43 0.49 0 1
Growth Potential Extreme 2,799 0.21 0.41 0 1
Inaccessibility High 2,800 0.38 0.49 0 1
Inaccessibility Extreme 2,800 0.51 0.50 0 1
MedVal 2,800 237,570 149,143 27,862 685,700
Distance 2,800 14.45 9.26 0 59
Hdensity20 2,800 192.40 229.61 0 1,309
Temperature 2,800 86.24 9.20 42 114
Precipitation 2,800 0.01 0.05 0 1.19
Wind 2,800 9.67 7.13 0 86
Relative Humidity 2,800 25.35 15.38 3 100
Palmer Drought Index 2,800 -2.05 2.19 -7.49 10.35
Percent Contained 2,800 31.45 29.01 0 100
Day of Year 2,800 218.55 38.99 37 339
Year 2003 2,800 0.18 0.39 0 1
Year 2004 2,800 0.08 0.27 0 1
Year 2005 2,800 0.08 0.27 0 1
Year 2006 2,800 0.21 0.41 0 1
Year 2007 2,800 0.23 0.42 0 1
Year 2008 2,800 0.13 0.33 0 1

continued
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Obs. Mean Std. Dev. Min Max

Year 2009 2,800 0.05 0.22 0 1
Year 2010 2,800 0.04 0.19 0 1
FS Region North 2,800 0.22 0.41 0 1
FS Region Southwest 2,800 0.15 0.36 0 1
FS Region Intermountain 2,800 0.13 0.34 0 1
FS Region Pac. Southwest 2,800 0.28 0.45 0 1
FS Region Rocky Mountain 2,800 0.04 0.20 0 1
FS Region Pac. Northwest 2,800 0.18 0.38 0 1
Fuel Model Timber 2,800 0.62 0.48 0 1
Fuel Model Grass 2,800 0.18 0.38 0 1
Fuel Model Brush 2,800 0.16 0.36 0 1
Fuel Model Slash 2,800 0.04 0.20 0 1
Slope 2,800 42.32 24.68 0 100
Elevation 2,800 5,232.76 2,221.61 160 10,000
Wilderness 2,800 0.24 0.42 0 1

The ICS-209 data contain the number of response resources y ={Type 1 Crews,

Type 2 Crews, Aircraft, Dozers, and Engines} committed to fire i by agency. We ag-

gregate resources allocated over agency because regional command units coordinate

the distribution of units amongst various agencies during large fires. We then aggre-

gate over groups of similar resources (e.g., engines and water tenders are aggregated

to form the variable Engine). We do not aggregate Type 1 and 2 firefighting crews

because of a significant difference in training, autonomy, and expected productivity.7

Incident commanders report the number of single resources and strike teams of

each resource type.8 Moreover, engines and dozers require crews to operate. We

combine single resources and strike teams into a single measure of resources dispatched

to reduce the number of highly correlated regressors. We estimate a fixed effects

regression of total active persons on the single resource and strike team resources to

7Type 1 crews are usually full-time employees with high-level training, whereas type 2 crews are
often comprised of seasonal firefighters with limited training.

8A strike team is a defined set of resources with a common leader (FIRESCOPE, 2012), which
implies that one strike team consists of more than one single resource.
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derive appropriate weights for combining the two sets of variables.9 The results are

presented in the Supplementary Material. The regression coefficients represent the

number of firefighters associated with each resource reportedly dispatch to the fire.

We adopt this approach because ignoring the crew would underestimate the resource’s

contribution to daily expenditures.

Wildfire suppression expenditures and size are reported in the ICS-209. We ob-

serve wildfire expenditures and size as frequently as ICS-209 reports are filed, which

are generally daily but can be more or less frequent depending on activity. We nor-

malize the change in wildfire expenditures and size (growth) to daily outcomes by

dividing the change by the duration between reports. Daily growth and expendi-

tures are both log transformed as in Yoder and Gebert (2012). We omit observations

where the fire is reported as 100% contained. We include only fires managed under

full suppression to exclude instances where the fire is purposely left to burn. We limit

our analysis to fires in the Western U.S. (Forest Service Regions: North, Intermoun-

tain, Rocky Mountain Pacific Northwest, Pacific Southwest, and Southwest) because

wildfire management conditions and strategies in the South differ from the West.

The ICS-209 expenditures data have been criticized for inaccuracies and inconsistent

reporting when compared with the NIFMID final fire outcomes (Gude et al., 2013;

Gebert, Calkin, and Yoder, 2007). However, there is no reason to believe that missing

data or input errors occur systematically in the data. Therefore, the consequence on

inference should be one of efficiency rather than bias.

The count of homes threatened, damaged, and destroyed are reported in each

planning period. Damage is the sum of damaged and destroyed homes in each plan-

9When resource j data is missing at time t within a fire for which other resource −j data is non-
missing, the missing observations are assumed to denote a lack of change in the number of resources
committed to fire i and are filled by resource data at t− 1. If there is no prior non-missing data, the
observation is replaced with a zero. Without replacement of intermittently missing data, the entire
observation would be excluded from the estimation.
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ning period. Fire managers also report the expected wildfire behavior in a categorical

variable, Growth Potential. The variables Threatened Homes and Growth Potential

closely capture potential damage, dt+1, and expected fire growth, at+1, developed in

the theory.

Weather and environmental conditions influence wildfire behavior and thus, re-

source allocation. The ICS-209 data contain temperature, wind speed, and relative

humidity reported by the incident commander at the time the report is completed. We

verify the ICS-209 records and fill in missing data with daily county-level maximum

temperature, average wind speed, maximum relative humidity from the National

Oceanic and Atmospheric Administration, National Climate Data Center (NOAA,

2014). We also include mean daily precipitation from NOAA. We use these weather

data as instruments for expected fire growth and to control for exogenous variation in

the second-stage fire growth and damage regression equations (equations (10a) and

(10c)). We supplement the ICS-209 data with environmental and geographic ignition-

point data from the NIFMID. The ICS-209 and NIFMID data contain many of the

same fires but share no common identifier that would facilitate a simple merging of

the two datasets. We develop an algorithm to match fires from both datasets based

on an index comprised of fire name, location, expenditures, size, and start date. A

detailed description of the algorithm is in Supplementary Material.

The resource allocation equations (9) imply that the resources committed to fire i

depend on the same conditions that affect all fires −i within the region. We construct

a measure of conditions on fires −i by aggregating the conditions across all wildfires

burning in the region within the past 48 hours. Details of the algorithm can be found

in Supplementary Material. We use this aggregation method to construct the total

number of resourcej committed to other fires −i, count the number of other fires −i,

and sum the number of threatened homes on fires −i.
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3.1 Econometric Model

We use a dynamic panel model, commonly referred to as the Arellano-Bond (AB)

systems estimator (Arellano and Bover, 1995; Blundell and Bond, 1998), to estimate

daily wildfire growth and expenditures with endogenous resource allocation. The

AB model uses the dynamic structure of the panel to find internal instruments for

endogenous regressors (response resources). Moreover, the estimator is robust to

within-panel serial correlation and heteroskedasticity. Damage is reported in terms

of the number of homes damaged and destroyed. Homes cannot be damaged unless

previously declared threatened. We develop a two-part model of home damage to

analyze the impact of resources in these two situations. We instrument endogenous

resources in the damage model based on the resource allocation equations.

We use the AB systems estimator to estimate the set of response resource al-

location equations defined in equation (9). The resource allocation equations are

interesting in their own right and provide context for the growth and expenditures

models. To summarize, we estimate the wildfire growth, expenditures, and damage

models independently. The next section describes the AB model used to estimate the

resource allocation equation.

3.1.1 Firefighting Resource Allocation Equations

Response resource allocation is based on the evolution of the wildfire over time, which

implies that resource allocation is a dynamic process. Frictions also exist in the trans-

portation of response resources, which contribute to the dynamic nature of the prob-

lem.10 In addition, many factors that influence the allocation of response resources

10Arellano and Bond (1991) study firm-level employment, which they argue is dynamic because
it is costly to hire and fire workers. In fact, the allocation of resources within a firm provides a
direct analogy to the resource transfer frictions faced by regional command units and individual fire
managers.
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are themselves influenced by the use of response resources over the course of the

wildfire, which implies that several regressors are likely endogenous.

The AB systems estimator jointly estimates a system of two equations: one in

levels, and one in first differences.

ȳijt = αj ȳij,t−1 + [vit ¯̄y−it]βj + p1ijtγj + p2ijδj + εijt where εijt = uij + eijt(11)

∆ȳijt = αj∆ȳij,t−1 + ∆[vit ¯̄y−it]βj + ∆p1ijtγj + ∆eijt(12)

where ȳijt is the number of resources of type j = {Crew 1, Crew 2, Aircraft, Dozers,

and Engines} committed to fire i at time t, vit is a vector of endogenous covariates,

¯̄y−it is a vector of endogenous resources dispatched to all other fires, p1ijt is a vector

of time-varying control covariates, p2ij is a vector of time-invariant control covariates,

αj,βj, γj, and δj are coefficients for resource j, and ∆ is a first-difference operator.

Covariates in v are endogenous and are instrumented by a vector of covariates z that

include l lags of y and covariates in v, p1, and p2.

Based on the theoretical model, wildfire managers respond to threatened assets

and expected damage. Therefore, the covariates in v include Threatened Homes, a

categorical variable Growth Potential measured on a four-point scale (low, medium

(baseline), high, and extreme), and Percent Contained. Resources allocated to all

other fires, ¯̄y, capture resource constraints. Strictly exogenous time-varying covari-

ates, p1, include the Day of Year (sin and cosine transform), Count (I) (the num-

ber of fires currently burning within the region), and a measure of Inaccessibility

(low and medium (baseline), high and extreme). Strictly exogenous time-invariant

covariates, p2, are measured at the point of ignition and include the Palmer Drought

Severity Index, Cause, Elevation, Slope, Fuel Model, Wilderness designation

indicator, lnMedVal median home value, Hdensity20 home density within 20 miles,
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lnDistance distance to nearest Census Designated Place, Year, and Region.

The AB systems estimator forms two sets of moment conditions: one set for

the levels equation, and another set for the equations in differences. Instruments

in the levels equation (11) include exogenous covariates, p1, p2, and weather con-

ditions (Temperature, Precipitation, Wind, and Relative Humidity), as well as

first differences of lagged endogenous covariates, ∆vt−l for l > 2. Instruments in the

difference equation (12) include differenced exogenous covariates, ∆p1
11 and weather

conditions, and levels of lagged endogenous covariates vt−l for l > 2. Use of lag l

of endogenous covariates as instruments is valid when the error vijt is not correlated

with eij,t−l (Roodman, 2006). Arellano and Bond (1991) construct a test of autocor-

relation in l lags of first-difference residuals to determine the validity of lags l and

greater.12 While the moment conditions corresponding to equations (11) and (12)

can be consistently estimated separately by GMM, joint estimation yields efficiency

gains (Roodman, 2006).

When the system is overidentified, not all moment conditions may be satisfied

and the problem amounts to choosing a weighting matrix to obtain the most precise

estimates. We use the two-step version of the estimator, which is robust to within-

panel heteroskedasticity and autocorrelation (Roodman, 2006).13 Standard errors of

model parameters are estimated based on the two-step estimator correction proposed

11Covariates p2 are time-invariant and not available as instruments in the difference equation.
12The instrument matrix is constructed such that E[z′ê] = 0 which implies a set of moment

conditions
∑

i yij,t−2êijt = 0 for each j, and t > 2. By construction, the number of moment condition
is quartic in T , which can be almost 50 on large fires in the dataset. A theoretically consistent way
to reduce the number of moment conditions without dropping these large fires from the dataset is to
“collapse” the instrument matrix such that moment condition becomes

∑
it yij,t−2êijt = 0 for each

j since the sum of zeros is zero. This method reduces the likelihood of overidentification (Roodman,
2006).

13Any symmetric positive semidefinite weighting matrix A yields consistent parameter estimates,
which implies that one can estimate a preliminary regression (first step) to obtain estimated errors.
The covariance matrix of the preliminary estimation is inverted to provide a robust second-step
weighting matrix Ar = (z′Ωz)−1.
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by Windmeijer (2005) and are clustered at the fire level.

3.1.2 Wildfire Expenditures and Growth

We estimate the expenditure and growth equations described in equations (10a) and

(10b) independently using the AB systems estimator. Daily wildfire growth and

expenditures are logged because the empirical distribution of the variables is skewed.

The system GMM estimator for daily fire growth is

ln(a)it = α1 ln(a)i,t−1 + ȳi,t−1β + p1itγ + p2iδ + εit where εit = ui + eit

∆ ln(a)it = α1∆ ln(a)i,t−1 + ∆ȳi,t−1β + ∆p1itγ + ∆eit

where lagged growth is included to capture natural fire dynamics, ȳi,t−1 are resources

dispatched during the previous planning period as specified in equation (10a), p1 is

a vector of exogenous time-varying covariates including Day of Year, Temperature,

Precipitation, Wind, Humidity, and Inaccessibility, p2 is previously defined

excluding lnMedVal, Hdensity20, and Distance, which are assumed to influence

resource allocation but not fire growth directly.14

Similarly, the estimator for daily wildfire expenditure is

ln(c)it = α1 ln(a)i,t−1 + ȳi,tβ + p1itγ + p2iδ + εit where εit = ui + eit

∆ ln(c)it = α1∆ ln(a)i,t−1 + ∆ȳi,tβ + ∆p1itγ + ∆eit

where daily fire growth is again included to capture fire dynamics, ȳi,t are contempo-

raneous endogenous resources as specified in equation (10b), p1 is vector of exogenous

14As a robustness check, we estimate a model with endogenous resources, lnMedVal, Hdensity20,
and Distance; then, estimate a model without endogenous resources but include lnMedVal,
Hdensity20, and Distance. The home and distance variables are statistically significant in the
model without endogenous resources but not significant in the model with endogenous resources.
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time-varying covariates that includes Day of Year, Inaccessibility, and a Count (I),

p2 is a vector of exogenous time-invariant covariates previously defined. Response re-

source covariates are instrumented in both models based on the equations described

in section 3.1.1. We implement the Arellano-Bond systems estimator with xtabond2

for Stata 13 (Roodman, 2006).

3.1.3 Homes Damaged

We observe the number of homes damaged and destroyed in each planning period.

Conceptually, damage to homes occurs in two steps. Consider a wildfire under active

suppression in which no homes are threatened at t = 0. At t = 1, homes can be either

threatened or not depending on fire activity and the proximity of homes. If homes

become threatened at t = 2, the fire can either damage the threatened homes or not.

Assigning suppression resources to protect homes may mitigate the home damage.

We develop a two-part econometric model to estimate damage to homes as a

function of endogenous suppression resources. Part one consists of a probit regression

of whether homes were threatened at t = 1 as a function of suppression resources

dispatched at t = 0 conditional on no threatened homes at t = 0. The objective

of this specification is to discern whether resources dispatched while no homes were

threatened reduces the probability that any homes become threatened. Part two of

the model consists of a probit regression of whether any homes were damaged at t = 2

as a function of suppression resources dispatched at t = 1 conditional on threatened

homes at t = 1. This specification compares the impact of resources on the subset of

observations with at least one threatened home.

We estimate parts one and two separately because the models are independent by

construction of the sample. Part one is conditional on zero threatened homes while

part two is conditional on at least one home threatened. The log-likelihood function
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for part one is

lnLi =v∗it ln Φ(mit) + (1− v∗it) ln(1− Φ(mit))−
ρ

2
ln 2π − 1

2
ln |Σ22|(13)

− 1

2
(ȳi,t−1 − [pi,t pi,t−1]Π )Σ−1

22 (ȳi,t−1 − [pi,t pi,t−1]Π )′ if vi,t−1 = 0

where mit = (1 − Σ ′21Σ
−1
22 Σ21)

1
2 (pi,tη + (ȳi,t−1 − [pi,t pi,t−1]Π ))Σ−1

22 Σ21), v∗it = 1

if vit > 0, Φ() is the standard normal CDF, ȳi,t−1 is a vector of lagged endogenous

suppression resources, pit is a vector of exogenous covariates at time t some of which

serve as instruments, Σ is the covariance of the Threatened Homes disturbance and

the IV disturbances, where element Σ11 is normalized to one for identification.15

The covariates lnMedVal, Hdensity20, Day of Year, and Inaccessibilityt−1 are

excluded from the Threatened Homes equation to identify ȳi,t−1.

The log-likelihood for part two is

lnLi = d∗it ln Φ(mit) + (1− d∗it) ln(1− Φ(mit))−
ρ

2
ln 2π − 1

2
ln |Σ22|

(14)

− 1

2
(ȳi,t−1 − [pi,t pi,t−1 vi,t−3]Π )Σ−1

22 (ȳi,t−1 − [pi,t pi,t−1 vi,t−3]Π )′ if vi,t−1 > 0

where mit = (1−Σ ′21Σ
−1
22 Σ21)

1
2 (pi,tη+(ȳi,t−1− [pi,t pi,t−1 vi,t−3]Π ))Σ−1

22 Σ21). We in-

clude the three period lag of threatened homes as an instrument for lagged suppression

resources. The choice of this specification is based on difference in Hansen overiden-

tification tests from the estimation of the resource allocation equations. These tests

show that the third lag is deep enough to be exogenous to ȳi,t−1.

The two part model is estimated by full information maximum likelihood (FIML)

using Stata’s ivprobit command. We include only Crew 1 and Engine in ȳ because

15The Cholesky decomposition of Σ is estimated in practice.
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the number of parameters increases with each endogenous regressor causing conver-

gence problems. The resource allocation results provide evidence for this specifica-

tion. We cluster standard errors at the fire level to allow for serial correlation and

heteroskedasticity within a fire.16 Although we observe the counts of threatened and

damaged homes, the counts of damaged homes is sparse in the data. We focus on

the impact of suppression resources on the extensive margin of threat and damage to

homes.

4 Results

The structure of our model assumes that firefighting resources are allocated, and ex-

penditures accrue, in period t while wildfire growth and damage to homes is realized

in period t+ 1. We present the empirical results in that order to facilitate interpreta-

tion. Table 3 contains selected coefficient estimates and associated standard errors of

the covariates in the resource allocation equations where the dependent variable is the

number of response resources allocated to fire i. Full regression estimate tables are

located in the Supplementary Material. The bottom of the table includes the model

χ2 test, the p-value of the Hansen overidentification test, the lag bounds that define

the instrument set, and the total number of instruments used in each equation.17

Arellano-Bond autocorrelation tests are presented at the bottom of the full results

table in the Supplementary Material. All resource allocation equations are based on

2,799 observations on 585 fires.

The lagged dependent variable, ȳi,t−1, the resources dispatched to other fires in the

16Alternatively, each part of the model can be estimated as a two-step estimator (Rivers and
Vuong, 1988) that does not suffer from the instability of the MLE but also does not cluster standard
errors. We present our model with all resources, ȳi,t−1, as a robustness check in located in the
Supplementary Material.

17The null hypothesis of the Hansen test is that the system of moment conditions is not overiden-
tified.

27



region, ȳ−i,t, Threatened Homes (from fire i and fires −i), Growth Potential, and

Percent Contained are all considered endogenous and are instrumented by lagged

values of the endogenous covariates as well as external covariates. The Arrellano-

Bond (AB) test of autocorrelation in first differences guides the depth of lags needed

to ensure exogeneity of the instruments.18 The AB test provides evidence that: lags

three and beyond are valid for Type 1 and 2 Crews while lags two and beyond are

valid for all other resource equations.

Threatened homes are among the highest priority of both individual fire managers

and regional command units. Therefore, we expect that resources trained to protect

structures would be assigned to fires that threaten homes. The positive and statisti-

cally significant coefficients on Threatened Homes in the Crew 1 (0.016) and Engine

(0.007) equations indicate that fires with 1000 threatened homes receive 16 additional

type 1 firefighters and 7 additional engine crew members (there are generally 5 crew

members per engine). Moreover, an increase of threatened homes on other concur-

rent fires −i leads to fewer type 1 crews dispatched to fire i. In contrast, fires with

threatened homes are less likely to receive type 2 crews, aircraft, and dozers. These

results reflect the comparative advantage and strategic use of type 1 and engine crews

to protect structures. Incident commanders receiving limited suppression resources

from the regional command unit would likely apply the type 1 and engine crews to

the section of fire perimeter closest to the threatened homes. Indeed, our result pro-

vides empirical support for the simulation model in Fried, Gilless, and Spero (2006)

in which incident commanders divert resources from containment to home protection

during initial attack.

Resource allocation is also influenced by the incident commander’s perception of

18Intuitively, autocorrelation in the error after the fixed component is differenced out renders
lagged endogenous variables invalid instruments. Therefore, the AB test reveals whether chosen
instruments are far (lagged) enough from the endogenous regressors.
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a wildfire’s growth potential. Extreme growth potential increases the allocation of all

resources except type 1 crews (although only statistically significant in the Engine

model). We find little evidence that more suppression resources are dispatched to fires

during low growth periods as suggested by Finney, Grenfell, and McHugh (2009). The

coefficients on Growth Potential Low in the Crew 2 (31.725) and Engine (10.648)

models are positive but not statistically significant. However, our result is consistent

with our theoretical model in which fire with low expected growth have a marginal

benefit or shadow value lower than another fire in the region with higher expected

growth.

The coefficient estimates on Resource−i provides information on the opportunity

cost and substitutability of resources. We would expect that when resources are

limited, more resources assigned to fires −i increases the opportunity cost of resources

assigned to fire i. The coefficients on Count (I) are negative in all models except

Dozers indicating that more fires within a jurisdiction increase the likelihood that

resource constraints bind at the regional level, ¯̄y. We find additional evidence for

the impact of resource constraints on the dispatch to fire i. While not statistically

significant, the coefficients on resources ȳ−i are negative in Crew 1, Crew 2, and

Aircraft models indicating that more resources dispatched to other fire reduce the

dispatch to fire i. We find less impact of the resource constraints on the dispatch of

Dozers and Engines.

We find strong evidence of wildfire dynamics and reallocation frictions. Frictions

may include logistic and mobility factors such as transport of dozers, but may also

reflect political influence in certain regions. The lagged dependent variable also cap-

tures the fact that a crown fire is rarely suppressed in a single day. The lagged

dependent in each model is statistically significant and ranges from 0.57 (Crew 2)

to 0.87 (Crew 1). These results suggest that type 1 crews, aircraft, and engines are
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more likely than type 2 crews and dozers to remain on their assigned fires over time.

This high persistence of type 1 firefighter captures the fact that these autonomous

and skilled units are often assigned to a fire from discovery until control is imminent.

Other environmental and economic factors influence suppression resource alloca-

tion. Inaccessibility limits the dispatch of resources. Fires that are extremely inacces-

sible receive 3.955 fewer Dozer crew members (and 1-2 associated dozers) and 17.532

fewer Engine crew members (3-4 associated engines). Counties with higher median

home value (lnMedValue) receive more resources. This result could reflect subjective

values of incident commanders and regional command, but could also be due to the

impact of property values on tax revenue and expenditure on local resources.

4.1 Wildfire Expenditures, Growth, and Damage

Table 4 contains the results of the semi-log regressions of wildfire growth, expendi-

tures, and home damage on suppression resources. The timing of the resource alloca-

tion decisions described in the theory implies that contemporaneous resources appear

in the expenditure equation while lagged resources appear in the wildfire growth and

damage equations. The model χ2 statistic is based on a Wald test that all estimates

are jointly zero. The exogeneity test in the Growth and Expenditure (AB) models is

the Hansen overidentification test, for which the null hypothesis is the moment con-

ditions are zero. The exogeneity test in the two-part IV probit model is a Wald test

where the null hypothesis is that elements of the covariance matrix, Σ , are jointly zero

i.e., equations are independent. We reject the null that type 1 and engines crews are

exogenous, which supports the IV specification. The number of instruments indicates

the covariates excluded from the main regression in the two-part model; all exogenous

covariates also serve as instruments for the endogenous suppression resources. The
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number of observations and fires varies across wildfire outcomes because of missing

observations, and because the two-part damage model is conditional on a subset of

observations.

Our results suggest that suppression resources have little impact on daily fire

growth, but do mitigate damage to threatened homes and increase daily expendi-

ture. On average, each additional type 2 crew member increases daily expenditure

by 0.58% (point estimate of 0.006), while each additional aircraft personnel increases

daily expenditure by 35%.19 Type 1 and engines crews are generally assigned to

protect homes when threatened. Conditional on zero threatened homes yesterday,

neither type 1 crews nor engines dispatched yesterday have a statistically significant

impact on the probability that homes become threatened today. If however, homes

are threatened yesterday, one additional type 1 crews dispatched yesterday reduce the

probability that at least one home is damaged today (ME of -0.0004/type 1 firefighter

calculated at means).20

Lagged growth covariates are included in the Wildfire Growth and Expenditure

models to capture the physical dynamics of the fire. These coefficients can be inter-

preted directly as elasticities. The coefficient on lnArea in the Expenditure equation

is 0.383, which implies that a 1% increase in fire growth leads to an increase in ex-

penditures of 0.38% ceteris peribus. This result suggests that expeditures do not

scale linearly with fire growth. The coefficient on lnAreat−1 is 0.78 in the Growth

equation, indicating that unconditional fire growth today is highly correlated with

yesterday’s fire growth due to spatiotemporal correlation in environmental conditions

19Marginal effects (ME) in the semilog models are calculated by f c(β) = [exp(β) − 1] ∗ 100 for
continuous covariates and fd(β) = [exp(β − 0.5V (β)) − 1] ∗ 100 for dummy variables (Kennedy,

1981). Marginal effects in the IV probit models are ∂Φ(xβ̂)/∂xj = β̂jΦ(xβ̂).
20We find no evidence that type 2 crews, aircraft, or dozers reduce damage to households based

on the two-step estimator (results in Supplementary Material). However, the power of the two-step
estimator relative to the preferred FIML is low.
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and heat from the prior day. Including lagged wildfire growth helps to control for

inherent wildfire dynamics and isolate the marginal effects of suppression resources on

wildfire outcomes. The two-part damage model does not include endogenous lagged

fire growth because the IV probit model would not converge.

The control variables reveal that despite management efforts, environmental and

economic conditions still have a statistically significant impact on wildfire growth and

expenditure. Weather covariates are generally consistent with expectation and nearly

all statistically significant in the wildfire growth equation. A one degree increase in

Temperature increases growth by 1.8% while a one mile per hour increase in Wind

increases growth by 2.31%. On the other hand, a 1% increase in relative humidity

decreases growth by 1.1%. Weather is assumed to influence wildfire expenditures

through suppression resources and fire growth. Weather covariates are instruments

in the Expenditure model but do not enter directly. However, weather covariates are

included in the two-part damage model to partially capture the influence of wildfire

growth.

Economic conditions have statistically significant impacts on wildfire expendi-

tures. Our results suggest that an additional fire within the regional command juris-

diction, Count (I), increases expenditures by over 20% per day. While the suppres-

sion resource scarcity effect should be captured by endogenous resources, Count (I)

may also capture additional expenditures or charges such as overtime. The median

home value expenditure elasticity is 0.773 (lnMedVal), which may capture variation

in rental rates and wages across the Western states. We find that an additional 10

homes per square mile (within 20 miles) of the ignition point reduces expenditure

by 1.1%. This result suggests that more densely populated area reduce expenditure,

which may be capturing dynamic effects of more aggressive strategies in more densely

populated areas.
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5 Discussion

Our results suggest that type 1 crews and engines are more likely to be dispatched to

fires with threatened homes, and that at least type 1 crews mitigate the probability

that a home is damaged or destroyed. This result has important policy implications.

It is conceivable that the incentive to protect homes diverts resources from other

management objectives that may include protection of other (possibly public) assets

such as watersheds or endangered species habitat. In this paper, we focus on a very

important private asset, houses. An expansion of our empirical model to include

other threatened assets would permit an investigation of the trade offs that wildfire

managers make when faced with decisions between two assets. In principle, their

decisions could reveal the relative value of assets. Of particular interest might be the

decisions made to protect either private or public assets.

The results support two important features of our theoretical model. First, re-

source allocation is influenced by the incentive to protect threatened assets, and

particularly, residential property. Second, the resources dispatched to achieve protec-

tion objectives do mitigate the risk of damage. Surprisingly, we find little evidence

that type 1 and engine crews used to protect threatened homes dramatically influence

short term wildfire expenditures. One explanation for this result could be due to the

versatility and full-time status of type 1 crew members. If type 1 crew firefighters are

on duty during a suppression effort, they are probably assigned to a fire. The cost

of employing the firefighter accrues to that fire whether they are activity engaged in

home protection or other activities. Further information on each resources assign-

ment during their deployment could help identify the impact of activities performed

by resources on wildfire expenditures.

Our theoretical model of optimal resource allocation simplifies the analytics by as-
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suming perfect coordination and information between a set of individual fire managers

and a regional command unit. While information is far from perfect during an emer-

gency response and expectations may differ between individual fire managers and the

regional command unit, the model provides an analytical framework to understand

the complex coordination of resource allocation under optimal conditions. In real-

ity, though, individual fire managers may benefit by overstating the marginal benefit

of a resource in an incomplete information framework. However, if all individual fire

managers face the same incentive to overstate their marginal benefit, the result would

be “inflated” shadow prices with no impact on the allocation of resources. Further

research could build on this model by relaxing the assumption of perfect information.

Although the empirical results provide a number of important and intuitively plau-

sible results, the relatively weak statistical significance of many coefficient estimates

highlights the critical need for high quality data on resource allocation and wildfire

outcomes. Understanding suppression effectiveness and optimal resource allocation

require complex data-intensive models that along with better data can translate into

more accurate models. Model accuracy would benefit policy-makers as well as fire

managers who increasingly rely on decision support systems to develop management

strategies. Given that more than $2 billion is spent by the federal government each

year on wildfire management, improved data collection efforts by firefighting agen-

cies are likely to be an effective investment in the effort to reduce wildfire losses and

suppression expenditures.

The use of aircraft to manage wildfire is a contentious issue. Incident comman-

ders recognize the limitations of aircraft during a well-established fire, but often face

political pressure to use the resource (Donovan, Prestemon, and Gebert, 2011). Fire-

fighting aircraft are now perceived by the public as the symbol of a fully mobilized

response and provide a sense of comfort when communities are threatened by wildfire.
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Our results suggest that aircraft are not systematically allocated to fires with more

threatened homes. We find that once a fire is beyond initial attack, aircraft (mostly

helicopters) do little to mitigate the growth of fire, but increase daily expenditures by

over 35% per aircraft unit (Table 4). Moreover, we find no evidence that aircraft mit-

igate damage to threatened homes. These results contrast with the findings Holmes,

Huggett, and Westerling (2008) who find that the use of tankers reduce fire size us-

ing single-observation data on fires. While our measure of aircraft consists largely

of helicopters, the contrasting results highlight the importance of dynamic allocation

decisions throughout the fire.

The daily intervals over which resource allocation and wildfire outcomes are mea-

sured is both a strength and weakness of this analysis. We use the high temporal

resolution to identify the causal effect of environmental and economic conditions on

suppression resource allocation. However, this high resolution may also obscure the

impact of the suppression resources on wildfire outcomes. Even though we focus on

fires managed under full suppression, strategies may take more than a day to mit-

igate growth. Incident commanders often plan strategies based on geographic and

man-made features as well as expected wildfire behavior. Our model is designed

to capture very short term fluctuations in suppression resource dispatch and wildfire

outcomes, and may be unable to capture the growth mitigating impact of suppression

resources used on strategies implemented over a longer period. Similarly, the threat-

ened homes measure is a subjective measure determined by the incident commander.

We are unable to distinguish between threat levels or imminence of the threat to

the home. We treat this as a measurement error problem that we address through

instrumenting threatened resources in the resource allocation equations. However,

the additional noise is likely impacting the efficiency of our coefficient estimates on

threatened homes in the resource allocation equations (Table 3).
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The rising size and expenditure of wildfire in the US shows no sign of slowing.

Indeed, climate change is expected to exacerbate the problem in the coming decades.

Despite the extensive literature on wildfire expenditure, few studies have utilized daily

data to study the resource allocation decisions and their subsequent impact on wildfire

expenditure and growth. Moreover, no studies have used daily data on suppression

resource used throughout the management effort to investigate the complex incentives

of wildfire managers and the impacts of their decisions on wildfire outcomes. Evalu-

ating the mechanisms by which wildfire and environmental policy impacts outcomes

is difficult without understanding resource allocation during a management effort.
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Supplementary Material

1 Dataset Merging Algorithm

The ICS-209 and NIFMID are datasets managed by two different organizations that do not use a common
identifier. Therefore, we develop an algorithm to merge the two datasets based on variables common to
both datasets. We use only the final observation from the ICS-209 dataset because the NIFMID data
contain only one observation per fire representing the final ex-post report. The algorithm is outlined as
follows:

1. Let i = 1, ..., n denote observations in the ICS-209 dataset and j = 1, , J denote observations from the
NIFMID dataset. Calculate the following variables between an observation i and all fires j = 1, , J :
number of word matches, euclidean distance (based on latitude and longitude), difference in start
date, % difference in expenditures, and the % difference in size. These measures of deviation will be
used to construct an index of best fit.

• Each dataset contains a variable for the wildfire name. The name variable in each dataset is
broken up into individual words with a each word in a separate variable (e.g., Bear Lake Fire
would span name1=Bear, name2=Lake, and name3=Fire). The longest name contained six
words so name1-name6 are created. Then for each i and j pair, 36 name match variables are
created which take the value 1 if a name variable from the ICS-209 data match a name variable
from the NIFMID data. These 36 variables are then summed and divided by the number of
words in the wildfire for which a match is sought. This number is subtracted from 1 so that a
perfect match gets a score of zero. In keeping with the Bear Lake Fire example, if a fire in the
NIFMID data was named Bear Lake, two of the three words would match and the score would
be 1− 2

3
= 1

3
.

• Distance is based on the latitude and longitude coordinates in each dataset. The pythagorean
theorem is an approximation of the true distance because it does not take into account the
curvature of the globe. We do not perceive this as a problem because of the relatively short
distance between coordinates representing a match.

• The ICS-209 data reports an incident start date which is the approximate date of ignition. The
NIFMID data reports a discovery date, ignition date, and first action date. The difference in
days between ICS-209 start date and each of the three measure from the NIFMID is calculated
and the minimum is used. The difference in days is divided by 10 to reduce the weight in the
index of best fit.

• The percent difference in expenditures is the absolute value of the difference in the final sup-
pression expenditures reported in the ICS-209 and NIFMID data divided by the maximum of
the expenditures figures reported in each dataset.

• The percent difference in the area is calculated analogously to the percent difference in expen-
ditures

2. Potential matches are then screened for large deviations. NIFMID fires only qualify as a match
if the ignition, discovery, or first action date is within 30 days of the ICS-209 start date. An ad-
ditional qualification is that a potential NIFMID match must be in the same state and lie within
approximately 60 miles of the ICS-209 fire.

3. Each of the five components is summed to generate a weighted measure of fit for each i (ICS-209)
and j (NIFMID) combination. The qualifying NIFMID observation with the minimum index of best
fit is chosen as the most likely match.

1



4. The matched data are then “scrubbed” for erroneous matches. The name match variable is recal-
culated after scrubbing the names for common words that often do not uniquely identify a fire. An
online word counter (http://www.wordcounter.com/) recognizes the most commonly used words in
the name variables (e.g., Fire, Creek, Road, etc.) and a simple loop deletes those entries if they
are part of the fire name. The recalculated name match variable provides additional support for the
quality of the match.

The Stata code is available on request.

2 Response Resource Conditions on Fires −i
We utilize the information in the ICS-209 dataset to locate and calculate a number of statistics representing
conditions on other wildfires within the Geographic Area Coordination Center (GACC) region. Not all
resources are necessarily allocated by the GACC, but during large fires or intervals with many fires,
this assumption is not as strong. Since situation reports will be filed almost daily during an active
response effort, we search back 48 hours for fires burning within the region. We collect data on fires
−i for variables j = {Type 1 Crew, Type 2 Crew, Helicopter, Dozer, Engine, Forecasted Temperature,
Forecasted Windspeed, Forecasted Humidity,l Threatened Residential Structures, Potential Evacuation,
and Uncontrolled Perimeter}. The algorithm for collecting the data is outlined as follows:

• The data is sorted by the date and time of the submitted ICS-209 report.

• All wildfires that were documented with ICS-209 reports within a given region over the prior two
days receive an indicator.

• ICS-209 reports may be filed multiple times in one day depending on the behavior and risks associated
with a particular fire. In order to avoid counting resources multiple times, we take the maximum
value of a variable, by fire, over the past 48 hours. The maximum value of the variable from each
fire is then summed over all fires.

nt∑

i=1

maxij(x1ij, x2ij, x3ij, . . . , xZiij) ∀ j = 1, . . . , J

where xziij is the zi observation of variable j associated with fire i, Zi is the number of ICS-209
reports filed within 48 hours of the observation in question, and nt is the number of fires burning at
any time t.

• The forecasted weather variables are then divided by nt to obtain an average rather than a sum.

The Stata code is available on request.

3 Full Regression Tables

2
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4 Resource

Table 3: Coefficient Estimates for Model of Persons per Resource

Coef. S.E. Pvalue
Type 1 Crew (Single Resource) 16.573 2.795 < 0.0001
Type 1 Crew (Strike Team) 29.706 3.168 < 0.0001
Type 2 Crew (Single Resource) 12.568 2.371 < 0.0001
Type 2 Crew (Strike Team) 2.645 2.613 0.311
Aircraft 7.041 1.798 < 0.0001
Engine (Single Resource) 4.373 0.603 < 0.0001
Engine (Strike Team) 18.339 1.588 < 0.0001
Dozer (Single Resource) 3.084 0.951 0.001
Dozer (Strike Team) 1.731 1.316 0.189
Constant 7.071 4.171 0.090

N=18,278, Adjusted R2=0.92

5 Robustness Check
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Table 4: Two-step IV Coefficient Estimates of Damage
with All Endogenous Resources

Coef. S.E. Pvalue
Crew 1t−1 -0.023 0.020 0.250
Crew 2t−1 -0.012 0.018 0.511
Aircraftt−1 0.729 0.749 0.330
Dozerst−1 -0.038 0.061 0.532
Enginest−1 0.012 0.010 0.237
Temperature (F) -0.001 0.015 0.959
Precipitation (in) -1.841 2.436 0.450
Wind (mph) 0.008 0.023 0.714
Humidity (%) 0.010 0.010 0.321
Lightning -0.066 0.394 0.867
lnMedValue -0.757 0.970 0.435
Hdensity20 0.000 0.001 0.727
Day of Year (cos) 0.422 0.928 0.649
Day of Year (sin) 1.396 0.645 0.030
Grass -0.921 0.945 0.330
Brush -0.654 1.197 0.585
Wilderness -1.384 1.091 0.204
PSW Region (CA) 1.809 1.516 0.233
Constant 6.335 11.658 0.587

N=2,508, Exogeneity test pval=0.05
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