

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

A Framework for Modelling Whole-Farm Financial Risk (PowerPoint)

Tom Nordblom ^{1,2} Tim Hutchings ² (Economics & Finance) Richard Hayes ^{2,3} Guangdi Li ^{2,3} (Pasture Agronomy)

- 1. Economic Research, Strategic Policy & Economics, NSW Trade & Investment, Wagga Wagga Agricultural Institute
- 2. Graham Centre for Agricultural Innovation (alliance between Charles Sturt University & NSW Department of Primary Industries), Wagga Wagga Agricultural Institute
- 3. NSW Department of Primary Industries, Wagga Wagga Agricultural Institute

Contributed presentation at the 59th AARES Annual Conference, Rotorua, New Zealand, February 10-13, 2015

Copyright 2015 by Authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

A FRAMEWORK FOR MODELLING WHOLE-FARM FINANCIAL RISK

Tom Nordblom ^{1,2} Tim Hutchings ² (Economics & Finance) Richard Hayes ^{2,3} Guangdi Li ^{2,3} (Pasture Agronomy)

- 1. Economic Research, Strategic Policy & Economics, NSW Trade & Investment, Wagga Wagga Agricultural Institute
- 2. Graham Centre for Agricultural Innovation (alliance between Charles Sturt University & NSW Department of Primary Industries), Wagga Wagga Agricultural Institute
- 3. NSW Department of Primary Industries, Wagga Wagga Agricultural Institute

GRDC

AARES 2015 Feb 10-13 Rotorua, New Zealand

Grains
Research &
Development
Corporation

Q: Can "best-practice" advice be justified using partial budgeting with average conditions, without including risk?

Q: Can "best-practice" advice be justified using partial budgeting with average conditions, without including risk?

We compare sequential multi-variate analysis (SMA) including @RISK (Hutchings, 2013) with a linear programming (LP) analysis (Bathgate *et al*, 2010)

Q: Can "best-practice" advice be justified using partial budgeting with average conditions, without including risk?

We compare sequential multi-variate analysis (SMA) including @RISK (Hutchings, 2013) with a linear programming (LP) analysis (Bathgate et al, 2010)

SMA is a whole-farm multi-period approach, which considers all costs, price & weather variations and equity, over random decades to generate risk profiles of decadal cash balances

Q: Can "best-practice" advice be justified using partial budgeting with average conditions, without including risk?

- We compare sequential multi-variate analysis (SMA) including @RISK (Hutchings, 2013) with a linear programming (LP) analysis (Bathgate et al, 2010)
- SMA is a whole-farm multi-period approach, which considers all costs, price & weather variations & equity, over random decades to generate risk profiles of decadal cash balances

Case study is a rainfed mixed-farm in Coolamon

Q: Can "best-practice" advice be justified using partial budgeting with average conditions, without including risk?

- We compare sequential multi-variate analysis (SMA) including @RISK (Hutchings, 2013) with a linear programming (LP) analysis (Bathgate et al, 2010)
- SMA is a whole-farm multi-period approach, which considers all costs, price & weather variations & equity, over random decades to generate risk profiles of decadal cash balances
- Case study is a rainfed mixed-farm in Coolamon
- Different farm practices (pasture species & stocking rates) are considered in both analyses

Case study farm rainfed mixed-cropping Coolamon area of NSW

		Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7	Year 8	Year 9	Year 10	
	Prices	↑	\downarrow	\rightarrow	\rightarrow	↑	\downarrow	\downarrow	↑	\rightarrow	\rightarrow	
Weather		\rightarrow	↑	\downarrow	\rightarrow	1	1	\rightarrow	\downarrow	\downarrow	↑	
Paddock area												
No.	(ha)											
1.	100	В	P1	P2	P3	P4	w W	C	W	C	В	
2.	100	С	ЛВ	/P1	/P2	/P3	/ P4	/\w	/\^c	/\w	/\^ c	
3.	100	W	/ C	В	/ P1	/ P2	/ P3	/ P4	/ W	/ c	/ w	
4.	100	С	/ W	/ c	/ B	/ P1	P2	/ P3	P4	/ w	_/ c	
5.	100	W	/ c	/ w	/ c	/ B /	P1	P2	P3	P4	W	
6.	100	P4 /	w /	c /	w /	c /	В /	P1 /	P2 /	Р3	P4	ļ
7.	100	P3 /	P4 /	w /	c /	w /	c /	В /	P1 /	P2 /	Р3	ļ
8.	100	P2 /	P3 /	P4 /	w /	_ c /	w /	c /	В /	P1 /	P2	ļ
9.	100	P1/	P2/	P3/	P4/	\mathbf{w}'	c /	w/	C /	В /	P1	
10.	100	PP	PP	PP	PP	PP	PP	PP	PP	PP	PP	
Total	1,000											

Options for the 4-year pasture phase

Average profits, by partial budget (LP) and by SMA considering price & Wx risks

Feed requirements increase with stocking rates and dry conditions

The slides that follow give results from Sequential multivariate analysis (SMA) (Hutchings PhD, 2013)

The slides that follow give results from Sequential multivariate analysis (SMA) (Hutchings PhD, 2013)

These are in terms of probability distributions of decadal changes in whole-farm cash balances, over 1,000 ten-year samples of variable weather and prices.

The slides that follow give results from Sequential multivariate analysis (SMA) (Hutchings PhD, 2013)

These are in terms of probability distributions of decadal changes in whole-farm cash balances, over 1,000 ten-year samples of variable weather and prices.

Expressed as CDFs (cumulative distribution functions)

Annualised decadal cash-flow reductions due to interest (\$'000)

Because the whole-farm SMA results with perennial pasture options (all mainly lucerne) appear to dominate those for annual pastures, we simplify the remaining discussion by focusing only on perennial Option 5 (75% lucerne).

Gross margin, \$/ha/year

CONCLUSIONS

We have shown how whole-farm modelling with SMA, considering all costs, price & weather variations and equity, can generate risk profiles of decadal cash balances for different farm practices (e.g., pasture species & stocking rates)

CONCLUSIONS

 We have shown how whole-farm modelling with SMA, considering all costs, price & weather variations & equity, can generate risk profiles of decadal cash balances for different farm practices (e.g., pasture species & stocking rates)

Advice based only on partial budgeting (e.g., LP) can be misleading

CONCLUSIONS

- We have shown how whole-farm modelling with SMA, considering all costs, price & weather variations & equity, can generate risk profiles of decadal cash balances for different farm practices (e.g., pasture species & stocking rates)
- Advice based only on partial budgeting (e.g., LP) can be misleading

A FRAMEWORK FOR MODELLING WHOLE-FARM FINANCIAL RISK

Tom Nordblom ^{1,2} Tim Hutchings ² (Economics & Finance) Richard Hayes ^{2,3} Guangdi Li ^{2,3} (Pasture Agronomy)

- 1. Economic Research, Strategic Policy & Economics, NSW Trade & Investment, Wagga Wagga Agricultural Institute
- 2. Graham Centre for Agricultural Innovation (alliance between Charles Sturt University & NSW Department of Primary Industries), Wagga Wagga Agricultural Institute
- 3. NSW Department of Primary Industries, Wagga Wagga Agricultural Institute

GRDC

AARES 2015 Feb 10-13 Rotorua, New Zealand

Grains
Research &
Development
Corporation

