C(l)ue Me In - Enhancing Consumers’ Attention to Ingredient List Information

Cheung, Tracy¹; Junghans, Astrid²; Dijsterhuis, Garnt³; Kroese, Floor⁴; Johansson, Petter⁵; Hall, Lars⁶; De Ridder, Denise⁷

¹Self-Regulation Lab, Clinical and Health Psychology Department, Utrecht University, Utrecht, the Netherlands, T.T.L.Cheung@uu.nl
²Self-Regulation Lab, Clinical and Health Psychology Department, Utrecht University, Utrecht, the Netherlands, A.F.Junghans@uu.nl
³Sensory and Consumer Science Section, Department of Food Science, University of Copenhagen, Copenhagen, Denmark, garmdijk@gmail.com
⁴Self-Regulation Lab, Clinical and Health Psychology Department, Utrecht University, Utrecht, the Netherlands, F.M.Kroese@uu.nl
⁵Department of Philosophy, Lund University Cognitive Science, Lund University, Lund, Sweden, Petter.Johansson@lucs.lu.se
⁶Department of Philosophy, Lund University Cognitive Science, Lund University, Lund, Sweden, Lars.Hall@lucs.lu.se
⁷Self-Regulation Lab, Clinical and Health Psychology Department, Utrecht University, Utrecht, the Netherlands, D.T.D.deRidder@uu.nl

March 25 to 27, 2015
Naples, Italy
C(l)ue me in - Enhancing consumers’ attention to ingredient list information

Abstract

Food manufacturers and policy makers have been tailoring food product ingredient information to consumers’ self-reported preference for natural products and concerns over food additives. Yet, the influence of this ingredient information on consumers remains inconclusive. The current study aimed at examining the first step in such influence, which is consumers’ attention to ingredient information on food product packaging. Employing the choice-blindness paradigm we examined whether consumers detected covertly made changes to the naturalness of ingredient lists throughout a product evaluation procedure. Results revealed that only few consumers detected the changes on the ingredient lists. Detection was improved when consumers were instructed to judge the naturalness of the product as compared to evaluating the product in general.

These findings challenge consumers’ self-reported use of ingredient lists as a source of information throughout product evaluations. While most consumers do not attend to ingredient information, this tendency can be slightly improved by prompting their consideration of naturalness. Future research should investigate the reasons for consumers’ inattention to ingredient information and develop more effective strategies of conveying information to consumers.

Keywords: Choice-blindness paradigm; food choice; ingredient information; attention; clean label

Topic: Consumer behavior: preference analysis
Introduction

When it comes to food products, many consumers often report preferring natural products (Rozin et al., 2004), and assume that products based on natural ingredients without additives are healthier (Bredahl, 1999; Dickson-Spillmann, Siegrist, & Keller, 2011; Evans, de Challemaison, & Cox, 2010; Shim et al., 2011). In response, both policy makers and food manufacturers have spent substantial efforts in tailoring the presentation of ingredient list information on food packaging with the underlying assumption that consumers infer the ‘naturalness’ of a food product by its ingredients. Nonetheless, the effect that ingredient list information has on consumers remains unclear, as there is a lack of scientific evidence demonstrating that consumers actually prefer products with more ‘natural’ ingredients or that they notice whether products contain more or less ‘natural’ ingredients. Accordingly, the first objective of the current study is to examine the degree to which consumers actually attend to ingredient information on food packaging on a behavioral level. In contrast to the previously employed self-report measures the novelty of this study is the employment of the choice-blindness paradigm (Johansson, Hall, Sikström, & Olsson, 2005) to investigate whether consumers pay attention to ingredient information on product packages. As previous research has revealed limited attention to product labels (Grunert, Wills, & Fernández-Celemín, 2010), we furthermore explore whether the provision of subtle external cues could encourage consumers’ attention to ingredient lists. By investigating the effectiveness of cues to consider naturalness, the findings of the current study are relevant for both policy makers and food manufactures attempting to enhance consideration of ingredient list information in order to cater to consumers’ concerns and preferences.

Favoring ‘natural’ over ‘unnatural’ ingredients

While consumers report having a preference for more natural food (Rozin et al., 2004), it is unclear whether they actively seek out information to evaluate the ‘naturalness’ of different food products. Existing literature has mainly focused on examining consumers’ use of ingredient list information on food packaging for nutritional value (see Grunert and Wills, 2007 for review), but not consumers’ use of ingredient list information to deduce the naturalness of food products. In order to address this research gap, the current research adopts a novel approach by examining consumers’ consideration of E-numbers on ingredient lists of food packaging. The topic of E-numbers is currently highly discussed in the public discourse and the media, as it captures the popularized trend amongst consumers for more ‘natural’ food products and concerns over food additives, as well as the responses of food authorities and
food manufacturers (Evans, de Challemaison, & Cox, 2010). On one hand, while E-numbers were initially designed by the European Food Safety Authority to identify all food additives that have been extensively tested against potential health risks (Van Dillen et al., 2003), consumers often perceive them with negative associations of undesirable, harmful, and unhealthy chemicals (Evans, de Challemaison, & Cox, 2010; Hoogenkamp, 2012; McCarthy, Brennan, Kelly, Ritson, de Boer, & Thompson, 2007; Varela & Fiszman, 2013).

Previous findings show that only a minority of consumers look at food labels for nutritional information (Grunert, Wills, & Fernández-Celemín, 2010). Nevertheless, manufacturers have been increasingly pushing for clean label products (Bobe & Michel, 2011; Hoogenkamp, 2012), which are defined by being free of ‘chemical’ additives, having easy-to-understand ingredient lists, and being produced by use of traditional techniques with limited processing (Edwards, 2013). Indeed, between 2003 and 2012 the number of products with such clean labels has more than quadrupled universally displaying what is believed to be consumers’ increasing demand as well as manufacturers willingness to cater to consumers’ wishes by producing more natural-appearing products (Edwards, 2013). In consideration of these efforts aimed at accommodating consumer demand for more natural food products, there is a pressing need for scientific evidence to justify these initiatives.

The validity of self-report measures

While previous studies have indeed reported negative attitudes towards additives and E-numbers (Edwards, 2013; Drichoutis, Lazaridis, & Naygar Jr., 2006; Holm & Kildevang, 1996) the majority of these studies are based on self-report measures. However, self-report measures have been criticized for being vulnerable to task demands and social desirability influences, which result in low predictive power of reported attitudes for actual behavior (Herbert, Clemow, Pbert, Ockene, & Ockene, 1995, Azjen & Fishbein, 2005; Vermeir & Verbeke, 2006). Previous research has shown that, particularly in the realm of health, responses are assimilated towards the socially desired answer (Herbert et al., 1995; Kristiansen & Harding, 1984; Klesges et al. 2004).

These biases can similarly occur due to people’s motivation to consider and present themselves as healthy individuals (Lindeman & Stark, 1999; Malhotra, 1988; Bailis, Segall, & Chipperfield, 2003). Furthermore, surveys could require participants to provide opinions to topics they do not have stable opinions about. In those cases the resulting answers may be strongly influenced by external sources of information, such as the public discourse (Reed II, Wooten, & Bolton, 2002). Considering that the public discourse about food additives is mostly negative, participants’ answers may be influenced by a negativity bias (cf. Dijksterhuis,
The media attention to food additives has mostly been framed in terms of risks involved in consuming additives and the contamination of an otherwise natural product (Evans, de Challemaison, & Cox, 2010). Consequently, when opinions are spontaneously formed under the influence of such external sources it is not surprising that the resulting opinions do not correspond with behavior.

These issues suggest that product evaluations may depend on whether consumers are specifically asked about whether unnatural-appearing ingredients in product are appreciated (i.e. where the consumer is directly pointed at the fact that the naturalness is the key factor in the evaluation) or whether consumers are asked to evaluate a product that comes with ingredient information but without the trigger to judge the product on its naturalness.

Consider the study by Noussair and colleagues (2001) that has revealed that self-reported negative attitudes toward genetically modified food did not translate into decreased purchasing of genetically modified food. On one hand, part of this lacking association could be explained by influences on the self-reports in terms of demand characteristics, social desirability, and self-concepts as discussed earlier. On the other hand, it may be that consumers genuinely hold concerns with genetically modified food, but at the actual point of purchase these negative perceptions and attitudes are not acted upon. It has also been acknowledged that consumers do not realize that they make over 200 food-related decisions each day (Wansink & Sobal, 2007), and that many of these consumption decisions are made mindlessly (Bargh, 2002; Dijksterhuis, Smith, van Baaren, Wigboldus, 2005). Consequently, asking people about their attitudes towards additives and E-numbers in food may not provide a good measure of their purchasing behavior of these products.

The current study overcomes these influences of self-report assessments by firstly avoiding the direct reporting of attitudes and by manipulating the degree to which participants are guided towards including naturalness as a factor in their product evaluations. In order to achieve these ends the choice blindness paradigm is used in the current study.

The choice-blindness paradigm

It has recently been shown that people often fail to detect a mismatch between a previously expressed attitude and a (different) attitude they are subsequently presented with as their own, a phenomenon known as choice-blindness (Johansson, Hall, Sikström, & Olsson, 2005). In this research paradigm participants are asked to make choices but are subsequently presented with the rejected option as being their selected option. Interestingly, participants often not only fail to detect the mismatch between their initial, actual choice and the presented choice, but they spontaneously confabulate reasons for having made the presented (never
made) choice. The lack of detection of such a mismatch has been shown on various dimensions, such as attractiveness of faces, in which participants choose a more attractive face, and are subsequently asked to justify their choice of the originally not chosen other face (Johansson, Hall, Sikström, & Olsson, 2005); product preference, in which participants firstly, do not detect a swap of their chosen product and, secondly, confabulate reasons for having chosen the product they never actually chose (Hall, Johansson, Tärning, Sikström, & Detgen, 2010); as well as moral and political attitudes (Hall, Johansson, & Strandberg, 2012; Hall, Strandberg, Pärmamets, Lind, Tärning, & Johansson, 2013).

While these previous studies were designed to examine the stability of choices and attitudes, the current study employs the choice-blindness paradigm to investigate the attention to ingredient lists and its importance for product evaluation while overcoming the above-mentioned disadvantages of self-report assessments. The choice-blindness paradigm allows assessing the degree of attention that is paid towards ingredient lists by presenting the participants with the supposedly same physical product, while in fact changing the ingredient information on the product.

Capturing these advantages of the choice-blindness paradigm, the study provides insights into the degree to which the design of more natural products and the accompanying presentation of more natural ingredient lists actually facilitate consumer choice for the more highly valued ‘natural’ products. It provides a measure of whether consumers pay attention to ingredient lists during actual product evaluations and whether the provision of more natural ingredients increases the overall evaluation of a product. In addition, we explore the possibility that an external cue, in the form of a subtle instruction to evaluate the naturalness aspect of product, could increase the likelihood for consumers to attend to ingredient information on the package, thereby mitigating the change blindness effect if the ingredient information on the packaging of a food product was changed.

Design and Hypotheses

Accordingly, the current study employs the choice-blindness paradigm of Hall and colleagues (2010) and adopts a 2 (instruction: general vs. specific) × 2 (ingredient list: no change vs. change) between subjects factorial design. Participants were first instructed to evaluate two products carefully. Subsequently, participants were instructed to explain their evaluations based on either the general instruction to justify the general rating or the specific instruction to justify specifically the naturalness rating of the preferred product. Unbeknownst to the participant in the ingredient list change condition, the ingredient list of the supposedly
identical product was changed between the first and second step in the experiment. The
detection of these changes was used as indicator for attention to ingredient lists.

Based on the detection rates found in previous studies using the choice blindness
paradigm, it was expected that few participants would detect the changes in ingredient list
information. However, it was expected that the detection rate would be higher in the specific
instruction condition, in which participants were asked to explain their naturalness rating
compared to the general instruction condition in which participants were asked to explain
their overall rating of the product.

Method

Participants

Participants ($N = 534$) were recruited via a marketing research agency for monetary
reward. Forty-two participants were excluded from the analysis due to not following the
procedures and providing insufficient data. The final dataset consisted of 492 participants;
37.4% were in the ingredient list no change condition and 62.6% were in the ingredient list
change condition. Participants included 53% females and 46.5% males with a mean age of
38.64 years ($SD = 14.17$). Educational levels ranged from 2.7% with basic educational, 55.3%
vocational training and higher secondary education, and 42% with university degrees. At the
time of the study 28.8% were unemployed and 71.2% were employed.

Procedure

Participants were invited to the marketing research agency to take part in a marketing
study on soup. They were randomly assigned to one of four conditions. Upon arrival
participants were greeted by the hypothesis-blind experimenter and guided into an
experimentation room where they were asked to sit at a table on which two cans of soup were
presented next to each other along with a product evaluation form for each of the products.
The products included a can of soup from brand Wouda and one from brand Stijn, two
entirely fictitious brands which were specifically designed for the present study (the
presentation on left and right was counterbalanced). Both products had either ‘unnatural’
(long, elaborated descriptions of ingredients with words and E-numbers) or natural (short, few
word descriptions of ingredients) ingredient lists presented on the backside of the can. The
precise differences between these lists can be seen in Figure 1.

A pre-test with 40 participants who rated the long and short ingredients lists’
naturalness and healthiness on 10-point scales (1 = not at all natural/healthy to 10 = very
natural/healthy) had established that the short ingredient list is perceived to be significantly
more natural ($M = 8.6; SD = 1$) than the long ingredient list ($M = 3.5; SD = 1.7$); $t(39) = 15.52$, $p < .001$ and that the short ingredient list is perceived as significantly healthier ($M = 7.74; SD = 1.37$) than the long ingredient list ($M = 4.9; SD = 1.7$); $t(39) = 7.53$, $p < .001$.

Figure 1

Exemplary natural (left) and unnatural (right) ingredient lists presented on the product packages of brand Stijn.

The precise differences between the experimental condition in which the soup cans (in essence where ingredient list evaluation orders) changed and the control condition in which the soup cans did not change can be seen in Figure 2 and 3. Participants were encouraged to have a close look at the products and to fill out the product evaluation forms. After completion the experimenter removed the products and product evaluation forms from the table and presented the participant with a demographic questionnaire to fill in. While the participant filled in this form, the experimenter examined participants’ overall rating of each product on the product evaluation forms. The experimenter selected the brand that scored higher on this overall rating for further use in the experiment. In cases where both products had the same overall rating, the experimenter chose one of the products to use for the remainder of the experiment but ensured that this choice was counterbalanced between participants (Stijn: 104; Wouda: 114). Once the participant had filled out the demographic questionnaire it was removed, the participant was handed the brand of soup he/she had rated higher (or the experimenter had chosen upon same ratings for both brands) and was handed the previously filled in product evaluation form for the respective brand so that the participant could see his/her own overall- and naturalness rating. In the control, ingredient list no change condition the participant received the product with the same ingredient information they had evaluated before. Furthermore, in the control condition, ingredient list evaluation order was counterbalanced between natural to natural, and unnatural to unnatural. To illustrate, had
participants previously rated the unnatural ingredient lists, they were handed their preferred brand with the unnatural ingredient list and likewise for the natural ingredient list. In the experimental, ingredient list change condition, and the ingredient list evaluation order was counterbalanced between natural to unnatural, and unnatural to natural. For instance, had participants previously rated the unnatural ingredient lists, they were handed their preferred brand with the natural ingredient list. Or if they had previously rated the natural ingredient list, they were handed their preferred brand with the unnatural ingredient list. The experimenter asked the participant to explain why he/she had given the product the respective score on the overall rating question (general instruction condition) or on naturalness (specific instruction condition), while referring to this score on the product evaluation form. Subsequently, the experimenter removed all the materials and provided the participant with a tablet computer to fill in the final questionnaire.

Figure 2

A pictorial depiction of the procedural steps in the experimental, ingredient list change condition.
Had the participant detected the swap of ingredient lists in the experimental condition this was coded as an ‘online’ detection (detection level code 1), in which case the participant was asked to fill in the final questionnaire and was thanked for their participation. All participants that had not detected a swap online went through a series of detection assessment questions at the end of the experiment. If the participant voiced any detection of the swap following one of these questions, this was coded as follows: The experimenter first asked whether the participant had any questions or comments about the study (detection level 2); whether they had noticed anything during the experiment (detection level 3); and whether they had noticed anything about the products they had evaluated (detection level 4). Finally, participants were thanked and guided toward the exit.

Measures

Throughout the experiment participants were asked to fill out three questionnaires.
Product evaluation forms. Participants were asked to evaluate the two presented products based on two product evaluation forms; one for brand Wouda and one for brand Stijn. These questionnaires included evaluations of the products in terms of healthiness, expected tastiness, naturalness, authenticity, familiarity, appeal, liking of the package, the amount to which this product is consumed (this question was often misinterpreted by participants to ask for how often any soup is consumed; consequently, the question was excluded from the analysis); and overall rating. All these questions were answered on 10-point Likert scales.

Demographic questionnaire. This questionnaire assessed age, gender, level of education, number of people living in their household, employment status, nationality, and how often participants do grocery shopping (ranging from never to every day on a 5-point scale).

Final questionnaire. The final questionnaire assessed participants’ concern for health, their typical use of sources of information on product packages, as well as current levels of stress and hunger (These variables were assessed and included in the analyses to examine whether these could predict detection or consideration. Since these analyses led to no consistent results they were not included).

Justification scores. Based on the detection assessment participant were categorized as online detectors (detection level 1) if they noticed the swap of the ingredient lists during the experiment; as retrospective detectors if they referred to the swap of ingredient lists during the detection assessment (detection level 2, 3, and 4), and were categorized as non-detectors if they did not notice the swap at all. Considering that only four participants scored as retrospective detectors, this category was not analyzed further. An additional measure of whether participants mentioned the ingredient lists during justification for their previously given overall ratings or naturalness ratings was recorded. This measure largely overlapped with the detection scores. Their analysis did neither provide any additional significant nor meaningful findings and is thus not further reported here but can be requested from the authors.

Results

Randomization check

There were no significant differences between participants in the general and specific instruction condition in terms of age, gender, educational level, and employment. Similarly, there were no significant differences between participants in the control and experimental condition or between participants with the natural and unnatural initial ingredient list information in terms of age, gender, education, and employment.
Detection rates

Overall, there were very few participants who had detected the change in ingredient lists as predicted. Observed frequencies indicate that only 16.2% of all participants from the experimental, ingredient list change condition detected the change. Furthermore, within the general instruction condition 10.7% of participants detected the change in ingredient list, whereas within the specific instruction condition 22.1% of participants detected the change. See Table 1a for an overview of the distribution of online detectors and non-detectors.

Table 1a

<table>
<thead>
<tr>
<th></th>
<th>Within instruction</th>
<th>Of total ingredient list change condition sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>General instruction</td>
<td>17/159</td>
<td>17/308</td>
</tr>
<tr>
<td></td>
<td>10.7%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Specific instruction</td>
<td>33/149</td>
<td>33/308</td>
</tr>
<tr>
<td></td>
<td>22.1%</td>
<td>10.7%</td>
</tr>
</tbody>
</table>

Complementing the observed frequencies that provide preliminary evidence of a higher proportion of online detectors in the specific instruction condition, a logistic regression analysis further tested the hypothesis that predicted detection rates would be higher in the specific instruction condition than in the general instruction condition. Only the participants (N = 308) in the change condition were included in the analysis. Additionally, the brand (i.e., Wouda vs. Stijn) of the final product that participants handled during the second stage of the experiment and the ingredient list evaluation order were controlled for in the regression model.

The logistic regression model was statistically significant, $\chi^2 (3, N = 308) = 6.91, p = .05$. The model was also 83.8% correct in predicting online detection. The predictors and the results of the binary logistic regression analyses are presented in Table 1b. In line with hypothesis, results showed that instruction was a significant predictor of detection ($p = .007$) with an odds ratio of 2.40. This indicated that participants in the specific instruction condition were 2.4 times more likely to be an online detector compared to participants in the general instruction condition.

Consequently, observed frequencies as well as the results of the logistic regression analysis provide support for hypothesis stating that participants in the specific instruction condition detect a larger proportion of swaps than participants in the general instruction condition.

Table 1b

<table>
<thead>
<tr>
<th>Dependent variable: Online Detection</th>
<th>B</th>
<th>Sig.*</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction (base: General Instruction)</td>
<td>.87</td>
<td>.007</td>
<td>2.40</td>
</tr>
<tr>
<td>Ingredient list evaluation order (base: natural to unnatural)</td>
<td>-.12</td>
<td>.72</td>
<td>.89</td>
</tr>
<tr>
<td>Final brand of chosen product (base: Wouda)</td>
<td>-.04</td>
<td>.91</td>
<td>.97</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.05</td>
<td>.00</td>
<td>.13</td>
</tr>
</tbody>
</table>

Nagelkerke R Square = .04

- Based on Wald statistic.

Discussion

In line with the expectations, current findings first show that only a low proportion of participants detected the swap of ingredient lists at all. Second, the observation of a higher proportion of detectors in the specific instruction condition (22.1%) compared to the general instruction condition (10.7%) compliment the results from the logistic model that instruction condition significantly predicted participants’ detection status. These findings are consistent with previous research using the choice-blindness paradigm showing that individuals are generally unaware and do not detect the change when presented back with a choice that was not their own (e.g., Hall, Johansson, Tärning, Sikström, & Detgen, 2010; Johansson, Hall, Sikström, & Olsson, 2005). Moreover, this implies that a fairly low proportion of participants considered the ingredient list a source of information for a general product evaluation as well as for an evaluation of the naturalness of the product. Finally, our findings are particularly interesting because they indicate that consumers do not attend to ingredient list unless specifically directed towards it by a question about ‘naturalness’.

The discrepancy between the often-reported preference for natural products and the here observed lack of attention to ingredient lists could be explained in two different ways. Firstly, the mismatch could be attributed to the characteristics of self-report measures. When engaging in self-report measures consumers may over-report their usage of ingredient information and preference for more natural products in order to present themselves in a positive light that they are critical and healthful agents. The choice-blindness paradigm in the current study avoided the shortcomings of self-report measures and allowed an unbiased measurement of the degree to which consumers attend to and use ingredient list information to evaluate a food product overall and on its naturalness. Thus, the findings could be
interpreted such that consumers are less attentive to the ‘naturalness’ of the ingredients in actual choice-situations than self-reports indicate.

Secondly, it could be that consumers are genuinely concerned with ingredient naturalness, as indicated on self-report measures, but require a specific cue, such as a question specifically about ‘naturalness’ as employed in the current study, to guide their behavioral information search to the ingredient list on the product packaging. This explanation is supported by the finding that detection rates were higher in the specific instruction condition, which may indeed have cued participants to consider naturalness. Such cues therefore may provide an opportunity to increase consumers’ attention to information they may otherwise overlook in rather mindless product evaluation situations.

Consumers have a lot of indirect influence in dictating how food policies are regulated and established, as well as how food products are manufactured and marketed. All food additives used in food products are required by the European Food Safety Authority to be extensively tested against health risks, and subsequently identified by respective E-numbers on the ingredient list of the food-packaging label to further inform and reassure consumers (Van Dillen et al., 2003). However, as the findings in our current study show, consumers generally pay less attention to information on ingredient lists than would be expected based on self-reports. This finding suggests that E-numbers as a source of information do not reach the majority of consumers. On the other hand, our findings do not support the idea that ‘clean labels’, containing a minimum of additives and limited processing, which food manufacturers have increasingly adopted in recent years (Edwards, 2013; Hoogenkamp, 2012), would have a large impact on consumers. Finally, our study also indicates that consumers may require some reminder to attend to the ‘naturalness’ of ingredients to take this information into account. Despite the fact that the instruction to attend to naturalness improved attention to ingredient lists only for a small proportion of the participants, this finding can be considered a starting point for future research investigating the effectiveness of employing various cues that remind consumers to consider factors, they themselves consider important, during actual choice situations. Based on the current results the implementation of subtle cues in the environment may be an effective strategy to shift consumers’ attention to information on food packaging they consider relevant.

Besides providing insight into consumers’ (in)attention towards ingredient lists, the current study contributes to the literature on choice blindness: whereas the paradigm has mostly been used to demonstrate inconsistencies in people’s choices, as well as political and moral attitudes (Hall, Johansson, Tärning, Sikström, & Detgen, 2010; Hall, Johansson, &
The current study shows that it can also be a useful strategy to unobtrusively assess consumers’ attention to visual components of food products. Future research is encouraged to develop strategies to understand the (limited) impact ingredient lists have on consumer evaluation and choice of food products. If the aim is to increase the impact of cues in their guidance of consumers’ attention to relevant information, either on food packaging or elsewhere (e.g. at specialized websites) more specific studies are needed. The framework used in the current study (choice blindness) may be suited for this, as it does not rely on self-report nor does it alert consumers to aspects of the products they would normally not consider. However, it should be acknowledged that the choice blindness paradigm in the current study did not assess the information processes that underlie consumers’ (in)attention to ingredient list information that may have contributed to the low detection rates when the ingredient information changed. Some insight could be drawn from previous literature suggesting that consumer’s lack of consideration of information on food packaging is not necessarily due to an inability to make use of the information, but rather a lack of motivation (Grunert et al., 2010). Furthermore, it has been acknowledged that consumers do not realize that they make over 200 food-related decisions each day (Wansink & Sobal, 2007), and that many of these consumption decisions are made mindlessly (Bargh, 2002; Dijksterhuis, Smith, van Baaren, Wigboldus, 2005). In light of this, it would be useful for future research to extend on the current study in examining the implementation of subtle cues to motivate and remind consumers to be more cognizant of information on food packaging that would useful in guiding their purchase decisions. Finally it should be noted that neither behavioral intention nor actual purchasing behavior was measured in this present study. Previous research has suggested that the reading of ingredient list differs from product to product (Grunert et al., 2010; Nordic Council, 2004), but in this study only one food product was evaluated.

In conclusion this study showed that consumers pay much less attention to ingredient lists than self-reported preferences would suggest, and stresses the limited value of adhering to commonly held beliefs about what ingredient declarations on food products should look like. Cueing considerations of naturalness could be a starting point for increasing consumers’ attention to product packaging information they would otherwise neglect.

Financial Disclosure
The study was commissioned by Unilever R&D Vlaardingen who was involved exclusively in initiating the study design and funding the recruitment of participants for data collection. The funding source was not involved in other aspects of the study. All authors declare no conflicts of interest.

Acknowledgements

We would like to thank Unilever R&D Vlaardingen for collaborative efforts and funding support in this research project. Furthermore, we would like to acknowledge Rene Lion for his support and feedback in enhancing the quality of the manuscript.
References

Noussair, C., Robin, S., Ruffieux, B. (2001). Do Consumers Not Care About Biotech Foods or Do They Just Not Read the Labels?

