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1 INT ODUCTION

1 Introduction

2

The Bayesian method of moments (BMOM) was introduced to permit investigators to com-

pute post-data densities for parameters and future observations when not enough informa-

tion is available to formulate a satisfactory likelihood function; see Green and Strawderman

(1996) for a study in which the authors did not have enough information to formulate a

likelihood function and use was made of the BMOM. The BMOM approach provides a so-

lution to the famous inverse problem posed by Bayes (1763) and hence the name Bayesian

method of moments. BMOM has been studied and applied to various models in Zell-

ner (1995,1996,1997b), Green and Strawderman (1996), Zenner and Sacks (1996), Currie

(1996). and Zenner Mm, Dallaire and Currie (1994). In the BMOM approach, two basic

assumptions are made that permit evaluation of post-data moments of parameters from a

given set of data. Then, from among various methods of determining densities from given

moments, the maximum entropy (maxent) approach is used to choose a proper density with

the given moments that maximizes entropy. For discussion and applications of maxent,

see e.g. Jaynes (1982,1988), Shore and Johnson (1980), Cover and Thomas (1991), and

Zenner and Highfield (1988). Also, see Zenner (1997) for coherent procedures for updating

BMOM maxent post-data densities for parameters and future observations.

The methods developed in this paper augment previous BMOM analyses of location, multi-

ple regression. multivariate regression and simultaneous equations models with or without

autocorrelation or heteroscedasticity. In the current paper we review and extend the exist-

ing theory Of BMOM in analysis of the standard multiple regression model. In particular,

we derive post-data densities for parameters and future, as yet unobserved observations

using various moment side conditions and show how use of alternative moment side con-

ditions affects the shapes and properties of maxent densities. For certain moment side

conditions, post-data densities are very similar to those derived in a traditional Bayesian

approach based on improper diffuse prior densities for parameters and a normal likelihood

function. Further, as in Chaloner and Brant (1988), Zenner and Moulton (1985), and Zell-
ner (1975), the ZMOM approach yields moments and densities for realized error terms and

functions of-them that -are very useful for dia.:-Aastic checking purposes. Last, it is shown
how posterior odds can be computed to compare m dels produced by MOM and those
produced with a traditional tayesian approach.
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After presenting the above and pointing out key relations between BMOM results and

traditional Bayesian results, we analyze generated data and data from a famous study by

Haavelmo (1947) to illustrate BMOM empirical results. Also, we compute various mea-

sures. including traditional Bayes' factors to compare models produced by approaches based

on different assumptions. As discussed in Min and Zenner (1993) and Palm and Zellner

(1992). posterior odds can be utilized to compare and/or combine alternative predictive

models. On this capability, Barnard (1997) has commented favorably on the value of being

able to compare and select among BMOM and TB approaches.

The plan of the paper is as follows. In Section 2, we review the BMOM assumptions

relating to the multiple regression model and demonstrate how various moment conditions

are derived. Then these moments are .used as side conditions in deriving proper maxent

post-data densities for parameters and future observations. Included is a demonstration of°

the moment side conditions for the variance parameter that lead to a maxent density in the

inverted gamma form, a form that is encountered in a traditional Bayes approach based on

an improper diffuse prior and lid normal error terms. Also, the dependence of the variance

of the variance parameter on the sample size is investigated. Finally, some comments on

sampling properties of BMOM and traditional Bayes estimates are provided. Section 4 is

devoted to presenting the results of analyses of generated data and data from Haavelmo's

(1947) paper. Similarities and differences of results produced by various BMOM and

traditional Bayes approaches are discussed. In Section 4, various measures including Bayes

factors are employed to compare alternative models. The paper concludes with a summary

in Section 5.

2 Review and Extension of BMOM

2.1 Post-Data Moments for Regression Parameters

Let y, an n x 1 vector of given observations be assumed to be related to X, a given n x k

matrix of rank k. as follows

(1) y = Xti + u,
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where i3 is a k x 1 vector of regression coefficients with fixed but own values. and u is

an n x 1 vector of realized error terms. As in earlier work on the analysis of realized error

terms (see Chalon& and rant (1988), Zenner (1975) and Zenner and Moulton (1985) ),

we regard (3 and u to be subjectively random. We shall introduce assumptions that will

enable us to obtain the moments of the elements of (3 and u and then use the principle of

maximum entropy to obtain proper post data densities.

Rom equation (1) we have

(2) = (xix)-1x'y + (xix)--1 rue

On taking the post-data expectation of both sides of (2) given the data D = (y, X).

(3) E(0 D) (X' 2)-1 E(u

where E denotes the subjective, post-data expectation operator. We now introduce the

following assumption,

Assumption]. X1E(u I D)

namely that the columns of X are orthogonal to the vector E(u I D). This assumption

would not be satisfied if relevant variables correlated with X are omitted from (1), if the

included independent variables are measured with error, or if other errors are made in

formulating the foim of (1). Given that assumption 1 is satisfied, we have from (3),

(4) E(L3 I D) = (3 (X' X) 1 Xiy.

That is. the post-data mean of (3 is equal to the least squares estimate. Also, the mean of

11 given in (4) is an optimal point estimate relative to a quadratic loss function. L(0, (3) =

(11 IVQ(d - 13). where (-I is some estimate and Q is a given positive definite, symmetric

matrix. The value of t t minimizes expected loss is the mean given in (4).

Rather, assumption 1 yields the following post-data

(5)

ITIiean for u,

E(u I D) = y XE(fi D) = y X =
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where it is the least squares residual vector that satisfies X111 = 0. Note that from (5) we

can write

u - ii = y - X0 - (y - X(3)

= XPCX)-1X`u

= X(XIX)-1Xi(u -ü)

where the last step follows from the orthogonality condition mentioned above, ril = 0.

We can thus write

Var(u I D) = E {(u - fi) (u - itY I D] = X(X1X)-1X1E ku - ft) (u - itY I D] X (X' X) i X' ,

which defines a functional equation that the post-data covariance matrix for u, V(u I D)

must satisfy. Since there are only k free elements of u in the equations in (1), V(u I D)

must be of rank k. In view of these considerations, our second assumption is 1

Assumption 2 Var(u I (72, D) = cr2 X (X' X)-1 X' ,

where (72 is a variance parameter to be defined below. We use assumption 2 to evaluate

the post-data covariance matrix of 0 as follows

Var (0 I a2. D)

(6)

=

= (X1X)-1X`E{(u- 11)(u- it)' 1D] X(X1X)-1

=

Assumption 2 will also enable us to evaluate the post-data moments of a2. In the argu-

ments of this section, we assume that an intercept appears in the regression matrix. From

assumption 1. observe that the presence of an intercept implies that the post-data mean of

ii. = Ein_, uan is zero, which simplifies the derivations to follow. We define the expectation
of a2 given the data as follows

E[0.2 1 Di a E [En  D))2 I D] = E 
(ulu

(7) 
__. 1 D) .

n n
i=1

'Note that substituting assumption 2 in to the formula for Var(ta, I a2, D) solves the fixed point problem.
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We also note that

E(uitg

(8)

EXTENSION OF MOM

nE(a2 D) x) x) E

+ tr PCXE {(i. — i3) (0 — 4)/ I D}] .

kE(o2 I D),

— 13)1X1X (f3 — I D]

where the first line follows from (7). Solving (8) for E(c2 I D), we obtain the result

(9)
E(0.2 D) 82

n k °

Thus relative to quadratic loss, L(a2, 6'2) = (a2 6.2)2, the estimate 5.2 which minimizes

post-data expected loss is E(a2 I D) = s2, with 32 defined; in (9). Note that this po
st-data

expectation differs from the post-data mean of (72 in a diffuse prior - normal likelihood

traditional Bayesian approach, namely ETB(cr2 I D) = vs2/(v — 2), with v = n = k> 2.

For small values of v, the last expression is much larger than 32.

The results in equations (6) and (9) yield

Var(i3 I D) = 
s2(xix)--1

Nior that the results in (4) and (10) are what one might use for moments of parameters

in a large sample. approximate traditional Bayesian approach when there are difficulties

in formulating a likelihood function and/or prior density. Here the results in (4) and (10)

are lbxart results and are not large sample approximations.

We will now explain how maximum entropy is used to compute a density nction from

given moment conditions. We will show that using the first and second moments in (4)

and (1(i) aN constraints, the proper density that maximizes entropy is the following normal

density for 11 given D 2

— N(1-3..s2(X'x)—' ).

'Note that if 8 and ci2 we assumed a priori independent given the data, D, then the entropy of their

joint density, p((i, a2 ) = f((3 D)g(a2 D) is If(p) = Mfg) = Ii(f)+11(g). Thus, f in (13) maNimizes

the first term of the entropy of the joint density and a proper g that maximizes the second term, 11(g),

slibjert to moment constraints can be derived. See below for examples.
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The entropy, or negative information, of a density function relative to uniform measure is

defined as

(11) H(f) = I f(x) log f (x)dx.

Thus. it is seen that entropy measures the average log height of a density function. Viewed

as an objective function, maximizing the entropy of a given density is to minimize the

amount of information in that density. We can then consider the problem

max — f f (r) log f (x)dx

(12) subject to f xi f (x)dx = j, i = 0 , 1, • • • n

with mo = 1. That is, we seek to find the most conservative, or least informative density

that incorporates the information in the moment side conditions. Using the calculus of

variations, we find that the maxent density solving (12) is of the form

(13) 
f*()

= exP (—(Ao + Aix + • + Anrn))

where Ai is the Lagrange multiplier associated with the moment side condition E[xij in

(12). Substituting this maxent density into the n + 1 moment conditions in (12) defines

n +1 nonlinear integral equations in n +1 unknowns. Zenner and Highfield (1988) describe

an iterative solution to this problem by taking a first-order expansion of the system of

moment equations about initial values for the A's. They show existence and uniqueness

of a solution and provide applications of the procedures. We apply this algorithm in the

application of section 4 and find that for all models used, convergence is achieved to a

tolerance of 0-4 in under 50 iterations.

It is also interesting to note that if the moments E(log(x)) and E (14) are employed as

side conditions. the proper maxent density is

A2

f*(x) = exP (—(Ao log(x) + A21)) cx x-Al exp 
(—),

which has the form of an inverted gamma density with parameters Ai and A2. The inverted

gamma is also the form of the traditional Bayesian posterior density for cr2 based on a diffuse

prior and iid normal likelihood function. We shall return to this case when discussing post-

data densities for the scale parameter.
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Adding more moment conditions imposes more constraints on the problem, and hence,

the entropy of the resulting maxent density will be reduced (unless the constraints are

redundant). Given the post-data moment conditions we have described thus far, we can

impose these conditions as constraints and find the maxent density which is as "fiat" or

uninformative as possible given these conditions. By minimi7ing the amount of information

in the density, we are letting the shape of the post-data densities be determined only by

the data via derived moment conditions. A natural question, then is to ask why not

add as many moment conditions as possible? Some additional moment conditions may be

redundant, and it may be that we are overfitting the model by adding too many constraints.

We will address this issue in discussing model selection techniques and the computation of

posterior odds in sections 3 and 4.

Given the above maxent results, the proper maxent density for given (4) and (10) is

multivariate normal,

(14) f(3 D) N(/3, s2(XIX)-1).

This exact finite sample density can be employed to compute optimal point estimates,

marginal densities, intervals, etc.. Further, inequality restrictions on the elements of

can easily be imposed in a traditional Bayesian approach wing the methods described in

Geweke (1986). That is, by making draws from the normal density in (14) and accepting

only those draws that satisfy the given inequality constraints, post-data densities can be

obtained that incorporate information regarding the restricted values of the elements of the

coefficient vector. We can also impose these inequality constraints in the BMOM approach

by restricting the region of integration so that the inequality constraints are satisfied. We

can then maximize the entropy of our density over the appropriate region subject to given

moment side conditions. Last, as shown below in computed examples, for moderate sample

sizes. the BMOM post-data density in (14) is very similar in form to traditional Bayesian

posterior densities derived using a normal likelihood and a diffuse prior.

Next. using moment con

for given (72 and D,

*:dons in (4) and (6). the following is the proper maxent density

(15) f(i6 I (72,D) - N((3.6,2(x'x)')

This density can be employed when the value of 0.2 is known. When its value is unknown, it
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is interesting to note that use of (15) in conjunction with the first ex
pression in (8) permits

us to evaluate higher-order moments of cr2. That is, from the definition of 
a 2, we have

(16) a2
1

= = (vs2 + n n

1 ,7 2
= —(vs- + a Q),

where v = n k and Q (1.3 1:3)'(X1X)(43 4)/a2, which has a chi-square density with

k degrees of freedom provided that 13 has the normal density in (15). This fac
t can be

employed to evaluate the moments of (72 as illustrated below.

First. note that the powers of cr2 are defined from (16) as

(17)
cr2j = 1(vs2 cr2Q)j, 9

• — •
ni k -

The right-hand side of this equation can be simplified using the binomial expansion. Taking

expectations through the expanded equation produces an equation to be solved for E(a2j 
I

D). Using the moments of the chi-square variable and solving the resulting expression, we

obtain the following recursive formula for obtaining the desired moments for all j> 1,

E(r23 I D) =

(18)

(vs2)-i Ei--'i=1 (vs2)3-1E(cr21 I D)[k(k + 2) • • (k + 2(i —1))]

71.7 {k(k -4- 2) • • • + 2(j 1))1

From this expression we find that the first two moments are given as

••

(19) E(.72 I D) = 52
.54 (v2 + 2vk) 

and E(cr4 Li) = n2 — k(k + 2)-

Hence. the posterior variance of (72 is given by

(20) Var(a2 I D) =s4 (  2k  )

It is seen that for given s4 and k. the post-data variance of (72 declines with rate n2 given

the assumptions above. Further, the variance of the scale parameter is increasing with k,

the dimension of the regression coefficient vector. To compare this to the TB result, we

note that the traditional Bayes posterior variance for (72 when a normal likelihood function
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and diffuse prior are employed is 2s4v2/(v — 2)2(v — 4). If cf2 has an exponential density

(a case w will be described in the following sections), then a2 will have a post-data .

variance of 34. Thus we have a range of alternative densities will' ow the sample size to

have different effects on the post-data variance of cr2. We shall describe in sections 3 and

4 how to compute posterior odds for these alternative models and thus select the model

which is most supported by the data.

Higher-order moments of cr2 can be obtained recursively by evaluating the above expres-

sion. Further, moments of functions of cr2, say g(a2) can be evaluated numerically by

making draws from the chi-square density with k degrees of freedom and noting from (16)

that g(c72) g (vs2 (n Q)). Hence, for each draw from the chi-square distribution, we

can compute g(-). Repeating this process and averaging over the resulting values will give

an approximation to the mean of g(a2). These can be used in connection with impos-

ing E(log(cr2) I D), and E (11(72 I D) as side conditions and deriving the proper maxent

post-data density. We can evaluate the values of these moments numerically and then

proceed to solve for the Lagrange multipliers as discussed previously. In Table 1 below,

we consider the assumptions used and the resulting post-data densities for o2 in selected

BMOM and TB models. These models will then be used in the application of section 4.

Table 1 3

Restrictions and Post-Data Densities for cr2

: Model Restrictions Density Function ]
BMOM(1) E(cr2 I D) = $2 -27 exP (-4)

•MOM(2) E(a2 E(c74 sni-12(t7:-(12,-u2k}1) exP (—(Act + Aloi + A2a4))1 ii)= S2. 1 =

BMOWIG) E(logo2 I D) .= pi, E (-2,7 I D) = /22 exP (—(A0 + Ai log(02) +

Tz(lG) p(L3,0.2 111) ,,,N ( y I O. 0.2 )p(f39 472) 2+ (—e27)
, 

oc exP

As seen from Table 1, when just the LC_ sit moment of cr2 is employed, the proper maxent

density for 0.2 is in the exponential form, and when two moments of cr2 are employed, the
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maxent post-data density is in a truncated normal form. Finally, when means of log cr2

and of 1/a2 are used as side conditions, the maxent post-data density for (72 is in the

inverted gamma form, just as in the case in a diffuse prior, normal likelihood traditional

Bayesian analysis. From the table, it is seen that the values of the moments of a2 are

different in small samples. For example, the mean of o2 under BMOM(1) and BMOM(2)

is .52. whereas in the diffuse prior, normal likelihood function approach, the posterior mean

of cr2 is vs2/(v — 2) which is larger than $2. Under BMOWIG) the mean will be functions

of the Lagrange multipliers Ai and A2. Although the densities are both of the inverted

gamma form, the Lagrange multipliers may depart from the corresponding parameters of

the T13(1G) density, producing different values for moments of (72 (see, for example Table

4 and Figure 1 in the appendix). Of course, for large n, the difference between the values

of the means is negligible.

Since use of alternative assumptions leads to different densities for (72, a question as to

which assumptions to employ naturally arises. In some applications, higher order moments

may be redundant and in others their use may lead to a better model. In sections 3 and

4 we describe and implement model selection techniques using predictive densities and

standard Bayesian procedures. In this way, we can choose the model which incorporates

the appropriate amount of information regarding the variance parameter (72.

Shown below in Table 2 are alternative marginal post-data densities for an element, f3i, of

the coefficient vector f3. For BMOWN) and TB, we know that the vector f3 is distributed

multivariate normal and multivariate Student-t, respectively. 4

'See Zellner (1971) for a discussion of TB results.
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BMOM(1)

BMOM(2)

TB
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Table 2 5

Restrictions and Post-Data Densities for f3i

Restrictions

E(0) Var(fi) = s2(X1X)'

foccPNC8 I 0'2. D)PExP(ci2 I Mdc2

foe° PN(8 I 72,D)PTN(.72 I D)dc72

AO? CT2 I D) Piv(Y J 3sc72)10..72)

Density Function
s?)

oc expss s,

Evaluate Numerically

Student-t

•

If we do not impose an independence assumption with respect to fi and (72, we can write

their joint post-data density as p(#, c2 f D) = f(fl I cr2,D)072 I D) and maximize the

entropy of the joint density with respect to the choice of f and g subject to their being

proper and to moment side conditions such as considered above. When this is done, the

maxent density for 3 given a2. the data and the first two conditional moment restrictions

in (4) and (6) is f(f3 I c2. D) N (4, cr2 (Xs )0-1); Also, the maxent post-data density for

rt. 2 using just the first moment condition, E(a2 I D) = s2 is in the gamma form. Other

Illa )111e'llt conditions can he imposed to provide a range of possible forms for themarginal

post .data density for (72. As mentioned earlier. a draw can be made from the post-data

density for /72 and inserted into the conditional normal post-data density for 0. Repeating

t his in% Dri.!SS and taking a draw from the conditional normal density for each a2 draw enables

numerical estimation of the density function. moments. intervals, and other statistics of

interest for the coefficient vector 0. Also. by ,i-st integrating over elements of but one,

say 3,. in the conditional normal density for given (72 and D, the joint post-data density

for 3, and (72 is obtained that can be analyzed by bivariate integration techniques as an

'In the table, 13MOM(i) i = 1,2 denotes that i moments were employed in deriving the marginal post-
olav aconNity for c72. 1i',M0h/l(N) is the normal maxent density using the post-cata moments in (4) and
(10). In Jibe table. we present the forms of density functions for an element of the .0 vector. Further, we

be Lhe (i, i) element of the matrix s2(X1X)-1. tMOM(IG) is not =dad gong in this table, but the
fracsaaits will be similar in functional form to TB, with the Lagrange multipliers entering as parameters of
the 1rnsity function. For TB, the arguments of the density are the mean, variance, aud degrees of freedom,
respect. avely.
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alternative to the Monte Carlo method mentioned above. In some cases, these integrations

can be performed analytically.

Finally, we note that the post-data densities for (72 can be employed to compute post-data

densities for the realized error terms and functions of the realized errors that are often

useful for diagnostic purposes as has been recognized in traditional Bayesian analyses: see

e.g. Chaloner and Brant (1988). Zenner and Moulton (1985) and Zenner (1975). Since

ui = yi given yi, z, and the post-data density for 0, it is possible to compute

numerically or perhaps analytically the density function, moments and intervals for the ulis

or functions of them. These can be employed to analyze outlier problems or to obtain the

distributions of interesting and useful functions of the u'is, say p1 = ET1L2 ti?

6 That similar analyses can be carried forward when the form of the likelihood function is

unknown is noteworthy.

Having derived a range of post-data densities for parameters and indicating how BMOM

realized error term analysis can be performed, we now turn to derive post-data predictive

densities for future observations.

2.2 BMOM Predictive Densities

lien we assume that a q x 1 vector of as yet unobserved future values of the dependent

variable. denoted yf satisfies the following q equations,

(21) yf = X113 Uf.

where Xf is aqxk matrix with elements having known values, i3 is the k x 1 vector of

regression coefficients considered in sections 2.1 and 2.2, and uf is aqx 1 vector of as yet

unrealized error terms. We shall make the same assumptions regarding the properties of

llf as made in previous BMOM work and from these assumptions deduce the moments of

and maxent densities for yf given the past data, (y, X), Xf, and assumptions. First we

assume that E (u f I D') =0 -which expresses.the -belief that there is no systematic element

in the future error vector. Second, we shall assume that the future, as yet unobserved error

6See Zellner and Hong (1989) and Hong (1989) for analysis using a traditional Bayesian approach.
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terms each have the same variance u2 and are mutually =correlated and also uncorrelated

with the elements of /3.7 With these assumptions, the first two moments of yf given

(y, X, Xf) are

(22)

and
•

(23)

E(yi I D') = Xf 44.

Var(y/ o'2 .D') = M s2

where M 4 + xf(rx)--irf. The proper predictive maxent post-data density for yf
subject to (22) and (23) is

(24) f(yi IV) N(Xf4,Ms2),

which can be used to compute marginal densities, predictive intervals, and other quantities

of interest.

In addition to the result in (24) that parallels that for estimation in (14) we can also derive

the following maxent conditional predictive density for yf given D' that incorporates the

conditional moments E(yf cr2.13`) = X14. and Var(y/ I cr2,D')= Mcr2:

(25) f(yf J cr2,13°) N(Xf 3,Mcr2).

This conditional normal density can be multiplied by any of the marginal post-data maxent

densities for (72 that. are shown in Table 1. The marginal predictive density of yf can

be computed numericallyby drawing a value of (72 from its marginal density, inserting

this drawn value into (25). and drawing a vector yf from the conditional normal density.

Repeating this procedure will provide draws from the marginal density and thus enable

calculation of predictive intervals, moments, etc. of yf. Also, we can compute traditional

Bayesian predictive densities based on. say. normal sampling assumptions and diffuse priors.

As will be shown in the next section, posterior odds can be employed to evaluate alternative

models and to provide a means for combining ter tive odeLs and their predictions as

discussed and applied in a traditional Bayesian sramework by Min and Zeliner (1993). The

BMOM predictive densities that we shall consider are shown in Table 3. We present density

'If the future errors were assumed to have non-zero means and were correlated, we could incorpor,•tte
s information into our analysis.
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functions (when available) for the case in which yf is a scalar. As discussed in Tab
le 2.

BMOM(N) and TB results generalize to the multivariate case.

Table 3 8

Restrictions and Post-Data-Predictive Densities for. a.scalar_yf

Model
BMOM(N)

BMOM(1)

BMOM(2)

TB

Restrictions

E(yi I D) Var(yf I D) =

PN(Y f D)PExP(f72 I D)cler2

PN(Y1 I cr2 .M1'7'1%1(0'2 I D)da2

P(Yi D') = fPN(Yf I 0.0.2 131P(0. 02 I D)dOckg _

Density Function
N(f,$)

Evaluate Numerically

Student-t (uf, 7v74, V)

Given the alternative BMOM models for a scalar yf in Table 3, a vector yf, or predictive

densities based on other moment side conditions, there is a need for model comparison and

selection methods. a problem which we take up in the following section.

3 Model Comparison and Selection Techniques

If we have observed the values of the elements of yf, the predictive post-data densities

discussed above can be utilized to compute Bayes factors. That is, for two alternative

'Here. as in Table 2, BMOM(i), i = 1,2 denotes the use of a rriaxent density for cr2 with the use of just

a first moment constraint and first and second moment constraints, respectively. BMOM(N) is the normal

maxent post-data density using conditions (22) and (23). TB utilizes a normal likelihood function, diffuse

prior and Bayes rule to obtain the joint posterior, p(0, a2 I D). Multiplying this density by the conditional
normal for yf given 3 and cr2 and integrating out the nuisance parameters cr2 and 13 leads to a marginal

predictive density for yf in the univariate Student-t form. The BMOM(IG) density will also be of the

Student-t form with the Lagrange multipliers entering as parameters of the density. We have also defined

.9! = s2(1 +rf(X'Xriz'f).
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predictive densities fi(Y/I D') and /2(Yf I ), the T posterior odds, K12 is given by

(26) K12 =
wich (Yf I D')
1r2i2(Yi ID')

namely the product of the prior odds r1/r2 times the Bayes factor. On inserting yf= y(),

the observed value of yf, and a value for the prior odds, a numerical value for K12 is.

obtained; see section 4 for computed examples. Further as Good (1950) and Kullback

(1959) have noted, on taking logs of both sides of (26), and averaging with respect to

11(yf I D'), the following result is obtained

(27) W12 = f log Ki2f1(Y/ I D')dy f log LI
= fl (Y/ I 

D')10g11(Y! I 19') d
'32 /2(11f I DI) f •

Thus, the averaged log posterior odds minus the log prior odds, or "the weight of the evi-

dence", is equal to the cross entropy of 11 with respect to 12, and is denoted by CE(f1,12),

a non-negative measure of the distance between fi and 12. Further, from (27) we have

(28) W = W12 + W21 = CE(11, i2) CEU2,

The quantity W in (28) above is symmetric with respect to II and 12 and is well-known as

the aleffreys-Kullback-Leibler distance measure. This derivation illustrates the connection

between TB model comparison methods and the concept of entropy and cross entropy. We

make use of the Jeffreys-Kullback-Leibler metric in computing distances between alterna-

tive post-data densities of the scale parameter of section 4.

From (26). K12 = P1/P2, where Pi is the posterior probability associated with model

ii( D'). i = 1.2. Since these two models are not exhaustive, Pi + P2 < 1. Even so,

in the standard two-action, two-state model selection problem, (see egg DeG root (1970)),

if the loss structure is symmetric and K12 = P1/P2 > I, then it is optimal in terms of

minimizing expected loss to choose fl (yf 1 D'). If K12 = P1/P2 < 19 f2(Yf I D') is the

optimal choice. See Palm and Zellner (1992) and Min and Zenner (1993) for application

of these t chniques Lc choosing between or combining alternative forecasting models. Of

course. loss functions such as those described in Dehling et .41 (1996) can ,4i,_frts be employed

in evaluating expected losses associated with choices of alternative densities. Other model

selection criteria can also be employed; see Judge et al (1985) for a discussion of alternative

criteria.
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We now turn to presenting applications of the techniques described in this and the previous

sections to illustrate how BMOM can be implemented in practice.

4 Computed Examples

We apply the techniques of the previous section to the Haavelmo (1947) model of estimating

the marginal propensity to consume 9 . Haavelmo estimates the following reduced form

"investment multiplier" equation that is in the form of a simple regression model,

Yt 02Xt Ut,

where yt is real per-capita income and xt is real per-capita investment. The original study

includes data for the twenty year period 1922 - 1941. These data are presented in Haavelmo

(1947) or Zellner (1971).

We begin with a discussion of the post-data densities for the scale parameter, cr2. As

discussed in section 2, we derive post-data moment conditions for the scale parameter and

then use the principle of maximum entropy to obtain a most conservative density function.

The Lagrange multipliers associated with the moment side conditions enter this density

function and numerical values for them are determined following the algorithm Of Zellner

and Highfield (1988). Given these results, we compare the traditional Bayes posterior

to post-data densities obtained via BMOM. These include the exponential (BMOM(1)),

truncated normal (BMOM(2)), and the BMOM inverted gamma (BMOM(IG))1°. These

results are provided in Figure 1 of the appendix.

9We also perform analysis of the model using generated data which satisfy the iid normal error term

condition. That is, we estimate the model using least squares and then generate a vector of N(0, s2.1..)

error terms. We then generate the per-capita consumption vector using the estimated regression coefficients

and the drawn normal errors. This case is carried along with the analysis of the original data in order to

abstract from the possibility of serial correlation in the error terms. The problem of serial correlation is

taken up in Zenner and Sacks (1996) and ZelLner (1997b), and is not addressed here. We find that the

results of the generated data and the original data do not depart significantly. In what follows, we present

only results for the original data set.
'°When integrations which do not have a known analytical solution were required, the integrations were

estimated numerically in MATLAB using the quadrature routine, "quadir
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We observe that by imposing an ditio side co ditioAi and thus reducing entropy, the

truncated normal distribution is more ormative or "spiked" than the exponential post

data density. MOWIG) also appears more informative than the traditional : ayesian

inverted-gamma counterpart, which results from the departure of the Lagrange multipliers

A1 and A2 from parameters of the TWIG), v + 2 and vs2/2, respectively. This rich class

of density functions for the scale parameter will then translate into a variety of possible

post-data densities for regression coefficients as well as predictive densities. We will use

posterior odds to select the model which is best supported by the data and thus choose the

model with the appropriate amount of information regarding the scale parameter, cr2. We

now present several moments for the post-data densities for (72 in Table 4. We also compute

distance measures for these densities using integrated absolute distance, integrated square

distance, and the Jeffreys-Kullback-Leibler distance measure as alternative metrics. These

tables are provided in the appendix.

fit ,1 TI

Table 4"

Moments of Alternative Post-Data Densities

for o2 in Haavelrno Model

.,
'awl. Bayes BMOM(1) BMOM(2) BMOM(IG)

D) 745 663 663
.

674
STD(a2 1 D) 281 663 66.6 87.9 •
E(rr6 1 D) 6.28 x 108 1.75 x 109 3.00 x 108 3.21 x 108
E(a8 I D) 7.39 x 10" 4.62 x 1012 2.04 x 10" 2.27 x 1011

.E.:(1.og (72 1 D) 6.55 5.90 6.49 6.51

E (r+., I D)
, 1.51 x 10-3 8.87 x 10-2 1.53 x 10-3 1.51 x 10-3

Fr, pm Table 4 we see that 472 I D) is the same under BMOM(1) and BMOM(2) which
must be tile case since the mean enters as a moment side condition in both maxent densities.
13M( )NI(IC ) may not possess the same mean as BMOM(1) and BMOM(2) since BMOWIG)
is TIN. proper maxent density satisfying &flog o2 I = pi and E(1/ D) .g,2 ani does
not confonkt to a mean restriction. For this particular.applicatioic with 20 observations and

" -STD" denotes standard deviation. the log and reciprocal moments for all models and all moments
for BMOM(2) were computed numerically.



4 COMPUTED EXAMPLES 
19

two regression coefficients, v = 18, and thus the mean of the traditional B
ayes posterior

density for cr2, vs2/(v — 2), is much larger than s2, the post-data mean of BMOM
(1) and

BMOM(2). By imposing an additional side condition and thus adding more informat
ion to

the post-data density for o.2, the post-data variance for (72 under BMOM(2) is much 
smaller

than the post-data variance under BMOM(1). It is also interesting to note from Table 4 
the

similarity in log and reciprocal moments between BMOWIG) and the traditional. Ba
yes

inverted gamma. Graphs of these four densities are provided in Figure 1 of the appendix.
t•

We now focus upon estimation of /32 in the regression model. Following the results of

section 2 we obtain the traditional Bayes. BMOM(1), BMOM(2), and BMOWN) densities

and plot them in Figure 2. The BMOWIG) density is not carried along in this analysis.

The resulting posterior density will be similar in functional form to the traditional Bayes

result. and a description of how to compute this density was provided in section 2. With

respect to the BMOM(2) post-data density for 132, we have previously demonstrated how

this density must be evaluated numerically. We draw from the truncated normal for o2,

substitute these draws into the conditional normal for 132 and then draw from this density

to obtain draws from the marginal density for 132. Given these draws, we estimate the

density nonparametrically via kernel density estimation. We choose a Gaussian kernel and

use a fixed bandwith 14, = .18. For a discussion of kernel density estimation and bandwith

selection techniques. see Silverman (1986) and Devroye and GyOrfi (1985).

The object of interest in this analysis may not be the regression coefficient 02, but rather

a transformation of the regression coefficient which defines the marginal propensity to

consume or save_ We note that the marginal propensity to consume is related to the

regression coefficient 02 by the transformation 1.32 = 1/(1 MPC), and similarly, the

marginal propensity to save is defined by i32 = 'AMPS). Provided that the functional form

of the post-data density for /32 is known. we can derive the post-data density for MPG by a

simple change of variable. Since the analytical form of the BMOM(2) density is unknown,

the post-data density for MPG was evaluated numerically. That is, for each draw from

the post-data density for 02, we compute the corresponding value from MPG. Given these

draws. the MPC post-data density was then obtained via kernel density estimation using

a Gaussian kernel with fixed bandwith h = .022. We present the alternative post-data
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Last, we compute alternative predictive densities for the dependent variable given t . t

the future value of the regressor is equal to the sample mean. The graphs are provided

in Figure 4 of the appendix. Again, the BMOM(2) density was obtained numerically via

Monte Carlo integration and kernel density estimation using a Gaussian kernel with fixed

bandwith h = 8.3.

As described in previous sections, use of BMOM and Traditional Bayesian techniques

provides a rich class of predictive densities. We can then choose among the alternative

densities which incorporate varying amounts of information in the data by computing

posterior odds as described in section -3. For this particular problem we split the sample

and estimated the models using the first fifteen observations. Given the estimation results,

past data D and future regressors X1, we derived the multivariate predictive density for

each model considered. The ordinate of the predictive density is then evaluated using the

remaining five values from the sample 13. We compute posterior odds by placing equal

prior probability on an models considered and evaluating the Bayes factors. We present
the computed posterior odds in the Table 5 below.

" . It is interesting to discuss point estimation in the context of this problem. Let us consider the problem
of estimating the marginal propensity to save, which is given as (32 = 1/ MPS. The MLE estimate for this
problem. 11112 does not posses finite moments, and thus has infinite risk relative to quadratic and other loss

functions. To avoid this problem, we can introduce the relative squared error loss function, L((8 —O)18) ,

where 8 = 1/02, and O is our estimate. Zel 4 er and Park (1979) discuss this problem extensively and show
that the optimal point estimate is 8 .z2/,a2 (1 + where is the sampling theory test statistic for
testing 82 F r our problem, the t-statistic is large, and hence both methods of estimation provide
estimates for the ..arginal propensity to save around .3. See also Diebold and Lamb (1997) for an interesting
analysis of the problem of estimating ratios of parameters.
"We do not focus attention here on alternative procedures for splitting the sample.
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Table 5 14

Posterior Odds Calculations Using Last 5 Observations

to Compute Bayes Factors

BMOWN) Traci. Bayes BMOM(1) BMOM(2) '

BMOWN) 1.00 1.14 .760 1.62

Trade Bayes .881 1.00 .670 1.42

BMOM(1) 1.32 1.49 1.00 2.12

BMOM(2) .619 , .703 , .471 1.00 ,

From the table above we conclude that BMOM(2) is the model most f
avored by the

data when the last five observations were used to compute the ordinate of
 the predic-

tive density15. Also. we see that TB and BMOM(N) are very close, with TB being 
slightly

favored over BMOWN) with posterior odds 1.14. Finally, we observe that BMOM(
1) does

not appear to be supported by the data relative to BMOM(2), BMOWN) and TB. R
ecall

that the BMOM(1) predictive density results from averaging the conditional normal for yf

given cr2 over the relatively iininformative exponential post-data density for cr2. Thus i
t

appears that the incorporation of additional information regarding the variance parameter

is supported by the data. These illustrative results indicate that empirical comparisons of

alternative models by use of traditional posterior odds are quite operational.

Filially. to investigate how BMOM adjusts to departures from normality, we re-compute

the model with generated iid Student-t errors with 4 degrees of freedom. The last two

figures of the appendix present the posterior distribution for 02 and the predictive density

for income using these generated data. The functional forms of the densities are relatively

unchanged. but the post-data densities with generated Student-t errors are more spread

out than the results presented in figures 2 and 4.

"The model in the column of the table is placed in the numerator of the posterior odds calculation

awl the row is placed in the denominator. For example, the first column Computes posterior odds with

BMON1(N) in the numerator and alternative models in the denominator. Note that the (i, j) entry of the

table is the reciprocal of the (j, i) entry.

"Note that the computation-of posterior odds for BMOM(2) does not involve any type of kernel es-

timation. To compute the Bayes factor we substitute the observed vector yci into the conditional normal

predictive density, pN(yi I cr2, D'). The ordinate of the marginal density for yf is then obtained numerically

by computing f p(y/ cr2 , EY )p- N (a2 I D)dcr2 given that yf =
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5 Conclusion

In this paper we have indicated how to apply the Bayesian Method of Moments in analysis

of the standard multiple regression model when information is not available to formulate

a likelihood function. On introducing simple assumptions relating to the moments of

the realized error terms and the futuree as yet unobserved error terms, we derived post-

data moments of parameters and future values of the dependent variable. Using these

moments as side conditions, proper maxent densities for parameters and future values of the

dependent variable were derived that can easily be computed from the data. Further, the

methods developed in this paper can be used to extend previous BMOM analyses of models

with autocorrelated or heterosceciastic error terms, see e.g Currie (1996), Zellner and Sacks

(1996). and Zenner (1997b), where use is made of the Gibbs sampler to compute post-data

densities. Last, it was shown how alternative BMOM and TB predictive densities can be

compared by use of posterior odds. As shown in computed examples, some BMOM maxent

densities are very similar to TB densities, while others are not. Thus it is fortunate that it

is possible to use posterior odds to ascertain the extent to which alternative assumptions

and models are supported by information in the data.

With respect to future research, we, along with H. Ryu, are applying BMOM techniques

to various semi-parametric models such as considered in Ryu (1993). Further attention is

being given to understanding how alternative assumptions regarding the form of the depen-

dence between regression coefficients and the variance parameter affects results statistically

and economically. It has been recognized that the form of the mean-variance dependency

is a critical factor in explaining decision-making under =certainty in financial economics

and other areas as well as in formulating likelihood functions. Last, work relating to mul-

tivariate regression similar to that contained in the present paper will extend the MOM

inultivariate results in Zellner (1995).
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Table. 6
Distance Between Post-Data Densities
for 0.2. Integrated Absolute Distance

Metric: d(fi, f2) =r (a2) f2(a2) 1 da2

  BMOM(1) BMOM(2) TB(IG)
• 
BMOM(IG)

BMOM(1) 0 1.45 .926 1.38
BMOM(2) 1.45 0 .975 .208
TB(IG) .926 . .975 0 .821

BMOM(IG) 1.38 .208 .821 0 ..

Table 7
Distance Between Post-Data Densities
for cr2. Integrated Square Distance

Metric : d(fi, f2) =J (fi(o-2) f2(cr2))2 dcr2

BMOM(1) BMOM(2) T13(1G) BMOM(IG),
BMOM(.1) 0 .0038 .0010 .0030
BMOM(2) .0038 0 .0020 .0001
TB(IG) .0010 .0020 0 .0013

BMOM(IG), .0030 .0001 .0013 0

27

6̀h is interesting to note that the distance ordering is not invariant to the choice of metric. All distance
measures have BMOM(IG) and BMOM(2) as the "closest" and BMOM(2) and BMOM(1) as the "farthest"
apart. Graphs of these densities are provided in Appendix B
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Table 8
Distance Between Post-Data Densities

for (72. Jeffreys-Kullback-Leibler Distance Measure

Metric: d(fi, f2) --tr. r [f, (0-2) log () + f2(.72) log (33,0)1 do'

13MOM(1) BMOM(2) TB(IG). BMOWIG) '

BMOM(1)' 0 ' 4.02  .567 3.32

BMOM(2) 4.02 0 3.43 .159

TB(IG) .567 3.43 0 1.81

BMOM(IG) 3.32 .159 i 1.81 _ 0
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Figure 1

Traditional Bayes (Inverted Gamma) , BMOM(1) (Exponential), BMOM(IG),

and BMOM(2) (Truncated Normal) Post-Data Densities for cr2

Using Haavelmo Data 17

200 400 600
Sigma Squared

1000 1200

L7The Traditional Bayes density assumes that the errors are iid normal with common variance cr2 and

uses the diffuse prior p(i5, a) oc lir.. BMOM(1) is-a proper -maxent density which has mean E(cr2) = s2 ,

while BMOM(2) is a proper maxent density satisfying the conditions E(cr2) = 32 and E(c4) — in4v2k-tk2:_k2 .

Finally, BMOM(IG) is a proper maxent density that satisfies the moment conditions glog(a2)) = iti and

E(1/a2) = p2, where the pi are estimated numerically.
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Figurc 2a
Traditional Bayes (TB(Student-t)) and BMOWN)

Post-Data Densities for 02 Using
Haavelmo Data 18
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'Thr B.MONI(N) post-data density imposes that the post-data mem for tO is 4 and the post- Ata
variance,rovaziance matrix is s2(rX)-1. The bivariate TB(Student-t) density results from the integTation
I pN (3 1 a)pic(a)da. The marginal densities for 82 are obtained from the biyariate densities for 0 and
plotted in the figure.

ii
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Figure 2
BMOM(N), TB(Student-t) (Traditional Bayes), BMOM(1)

(Double Exponential), and BMOM(2) Post-Data

Densities for 02 Using Haavelmo Data 19
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"'The BNIONI(N) post-data density imposes that the post-data mean for ig is and the post-data

rdriance-covariance matrix is s2(X'X)-1. The bivariate TB(Student-t) density results from the integration

px (3 I a, D)pic(o I D)dry. From both of these bivariate densities the marginal density for /32 is obtained

and plotted in the figure. BMOM(1) results from f pN(132 I (72, D)pEx p(a2 D)do92, producing the double

exponential density. The BMOM(2) post-data density is estimated via direct Monte-Carlo integration and

kernel density estimation. The marginal distribution for LI is obtained by solving the integral r pN(f) I
1 D)dcr2 . Under BMOM(2) we .draw •from•the •truncated normal; prN(er 2 I D), substitute

these draws into the conditional normal for pN(0 I cr2,D), and obtain 2000 draws from the marginal

distribution for 112. Given these draws, we estimate post-data density for (32 nonparametrically via kernel

density estimation using a Gaussian kernel with fixed bandwith hn = .18.
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Figure 3
BMOM(N), TB(Student-t) (Traditional Bayes), BMOM(1)

(Double Exponential), and BMOM(2) Post-Data
Densities for the Marginal Propensity to Consume Using Haavelmo Data 20
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20 For all posteriors except p)MOM(2), an analytical solution for the post-data density for (32 is available.
Thus. BMOM(N), 113(Student-t), and 1MOM(1) follow from the ,82 posterior densities of Figue 2 using
the change of variable, (32 .= 7.11.rp7.. For MOM(2), we compute 4,,aws from the MPC posterior given
draws from the 02 posterior. The post-data density for MPC is then estimated n.npaommetrically via
kernel density estimation using a Gaussian kernel with fixed bandwith hfr.: .022.
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Figure 4
BMOM(N), TB(Student -t) (Traditional Bayes), BMOM(1)

(Double Exponential), and BMOM(2) Predictive

Densities for Income, X1 = MEAN, Using Haavelmo Data 21
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21The B110M(N) post-data density imposes that the post-data mean for yf is if and the post-data

variance-covariance matrix is s2 (1+ X f (X' X)-- ef). The TB(Student-t) density results from the integration

f f pN (yiI LI, a, EY)p(13, a I D)dcrdi 3, where WI, a I D) is the joint posterior density of the parameters

which is obtained wing a diffuse prior and lid normal likelihood function. Upon integrating f pN(yf 1

a, EnpExp(a2 I D)da2 , the BMOM(1) (double exponential) density is produced. BMOM(2) is estimated

via direct Monte-Carlo integration and kernel density estimation. The marginal distribution for yf is

obtained by solving the integral, jr pN (yf I (72 )Pr N (a2 I Mdcr2. Under BMOM(2), we draw from the

truncated normal, pTN(cr2 I D), substitute these draws into the conditional normal for yf pN(y f I cr2

and obtain 2000 draws from the predictive density for yf. Given these draws we estimate the density

nonparametrically via kernel density estimation using a Gaussian kernel with fixed bandwith 14, = 8.3.
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Figure 5

M I WM, TB(Student -t) (Traditional Bayes), BMOM(1)
(Double Exponential), and BMOM(2)
ensities for /32 Using Data Generated with

Student-t (4 cl.f.) Error Terms 22
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22The BNIOM(N) post-data density imposes that the post-data mean for # is 4 and the post-data
vazianre-covariance matrix is s2(X1X)-1. The bivariate TB(Student-t) density results from the integration
.1PN (3 i cr. D)Ptc(cr I D)da . From both of these bivariate densities, the marginal density for 132 is obtained
and plotted in the figure. BMOM(1) results from f pN(f32 1 a2,D)pExp(a2 1 D)dcr2.,. producing the double
exponential density. The 1;1140M(2) post-data density is estimated via direct M nte-Carlo integration and
kernel density estimation. The MaTiTr 1 Ill .`i distribution for 0 is obtained by solving the integral foe* pN(3 I
a' , D)pr N (a2 I D)0 1 a2 . Under BMOM(2), we iiraw from the truncat,.I normal, prikr(v2 1 D), substitute
these thaws into the eon e itional normal for 0, pN(0 1 0.2 ,D), and obtain 2114 draws from the marginal
distribution for 82. Given these draws we estimate post-data density for 02 nonparametrically via kernel
density estimatio using a Gaussian kernel with fixed bandwith ki = .27.
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BMOM(N), TB(Student -t) (Traditional Bayes), BMOM(1)

(Double Exponential), and BMOM(2) Predictive

Densities for Income, xf = MEAN, Using

Data. Generated with Student-t (4 di.) Erzat Terms 23
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23The BMOM(N) post-data density imposes that the post-data mean. for yf is if and the post-data

v-arianre-covariance matrix is 52(1+z f (X' X)- 1 Xi f) . The TB(Student-t) density results from the integration

f f ps (yf I ti, a, D')p(0,a I Thdada, where p(0, a I D) is the joint posterior density of the parameters

which is obtained using a diffuse prior and lid normal likelihood function. Upon integrating f pN(Yi I

(72, Di )1.1E x p(a2 I Thda2 , the 13M0114(1). (double exponential) density is produced. BMOM(2) is estimated

via direct Monte-Carlo integration and kernel density estimation. The marginal distribution for yf is

obtained by solving the integral, Jr pN(y/ I cr2DlierN(a2 I D)da2. Under BMOM(2), we draw from the

truncated normal, pTN(a2 1 D), substitute these draws into the conditional normal for !if, ppi(yf I a2 D' ),

and obtain 2000 draws from the predictive density for yf. Given these draws we estimate the density

nonparametrically via kernel density estimation using a Gaussian kernel with fixed bandwith hn = 8.8.


