
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


378.794
G43455
WP-505

A

A.

WORKING PAPER NO. 505

PORTFOLIO CHOICES MT THE PRESENCE OF OTHER RISKS

lit

by

Israel Finkelshtain and James A. Chalfant

TME
ESO
•

WAIITE MEMORIAL BOOCZ COLLELTM
DEPT. OF A. AND APPLED ECCMOROCS

1) SSA BUFO RD AVE. - 232 COD
UNNERSMY OF NNNESOTA
ST. PAUL, MN15511108 USA.

ICULTU
CE EC

BERKELEY

S
AL

LI[FOR.N]IA AG1HCU1LT1U AL EXPERIMENT STATION

University of C



376P, 79 ti

C S 955

PORTFOLIO CHOICES IN THE PRESENCE OF OTHER RISKS Lifl 506
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ABSTRACT

The effects of multivariate risk are examined in a model of portfolio choice. The conditions

under which portfolio choices are separable from consumption decisions are derived. Unless

the appropriate restrictions hold on investors' preferences or the probability distribution of

risks, the optimal portfolio is affected by other risks. This requires generalizing the usual

measures of risk aversion. With two risky assets, the choices made by investors coincide if

and only if their generalized risk aversion measures are identical. An extension of Ross's

notion of stronger risk aversion is used to characterize the effect of risk aversion on the s

investment level in the riskier asset. Finally, in a mean-variance model, the matrix measures

of risk aversion are used to generalize the results of Arrow and Pratt concerning the effects of

risk aversion and wealth on the optimal portfdlio.

The authors are Ph.D. candidate and Associate Professor, Department of Agricultural and Resource Economics,

University of California at Berkeley.



Portfolio Choices in the Presence of Other Risks

1. Introduction

The effect of risk aversion on the level of investment in a risky asset is a well 'mown result.

An individual whose utility function defined over wealth is more concave than another's will

pay a higher risk premium (Arrow (1965), Pratt (1964)) and will invest a smaller portion of

his initial wealth in a risky asset (Pratt (1964)). If risk aversion decreases with wealth, then

the larger is initial wealth, the larger is the investment in the risky asset (Arrow (1965)). If

the choice set includes more than one risky asset, the Arrow-Pratt measure is not sufficient to

rank investors' choices (Cass and Stiglitz (1972). In the absence of a risk-free asset and when

the choice is between two risky assets, Ross (1981) suggested a stronger measure of risk aver-

sion and showed that an investor who is strongly more averse to univariate risk than another

would choose a lower level of investment in the more risky asset.

These studies make use of the expected utility hypothesis, in which an investor makes

decisions so as to maximize the expected value of his utility function. An additional implicit

assumption is that the utility function is defined only on the level of terminal wealth. The

process by which wealth produces utility, presumably through the consumption of goods, is

left implicit.

Assuming that the investor derives utility from the consumption of goods purchased from

his wealth, there are many situations where his objective function is multivariate, defined on

several random arguments, rather than a univariate functiOn of wealth alone. A generalization

of the Arrow-Pratt theory of behavior under uncertainty is then required, and indeed was car-

ried out in a sequence of papers—Stiglitz (1969), Kihlstrom and Mirman (1974), Epstein

(1975), Karni (1979) and others. in this paper, we apply some of the results from these

papers to the analysis of portfolio choices.

In the presence of univariate risk, when the utility function is assumed to be defined on

wealth alone (or if it is only wealth that is uncertain), the investment decision is not affected

by preferences for consumption goods (ordinal preferences), but it is affected by the degree of



risk aversion, which is a cardinal property of preferences. owever, in the presence of mul-

tivariate risk, where the return on investment and other arguments of the utility function are

uncertain, the portfolio choice is affected by both properties of preferences, and the familiar

separability between consumption and investment decisions breaks down. In other words, the

results in this paper show that the investment decision is affected by cardinal properties of the

utility function representing the investor's ordinal preferences and the ordinal preferences

themselves. This finding is analogous to the results of Finkelshtain and Chalfant (1989), who

showed a similar non-separability with regard to production and consumption decisions in the

presence of uncertain prices. These findings are examples of the general results of Kihlstrom

and Mirman (1974) and Karni (1979)----ordinal preferences play an important role in agents'

attitudes toward multivariate risks.

The first attempt to analyze the effect of multivariate risks on portfolio choices was made

by Li and Ziemba (1989), who characterized the choices of investors with multi-attribute util-

ity functions facing multivariate normal risks. Using a formula from Rubinstein (1973, 1976)

for the covariance between two functions of normally distributed random variables, they

showed that investors with identical multivariate Rubinstein measures of risk aversion will

choose the same portfolios. In addition, they showed that if the vector of "attributes" of

wealth follows a distribution that is independent of the asset returns, then the univariate

Rubinstein measure is sufficient for characterization of portfolio choices. Below, we use

multivariate generalizations of the Arrow-Pratt absolute and relative measures of risk aversion

to generalize the first result to hold for arbitrary distributions, and show that the latter result

need not hold without the normality assumption. Using the multivariate measures of risk

aversion, we consider comparisons between investors with different risk attitudes. In addition,

we show that Ross's (1981) measure of strong aversion to univariate wealth risk, surprisingly,

is sufficient to characterize portfolio choices, even when the utility function is a multiattribute

one. However, the multivariate case requires either a special case of stronger risk aversion or

an additional restriction on the probability distribution.
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The paper proceeds as follows. In section 2, we present a model of the investor's deci-

sion problem and, discuss the cases in which his objective function is equivalent to the ordi-

nary indirect utility function defined on wealth and prices. We then describe the conditions

under which it will reduce to a function of wealth alone. In section 3, we derive necessary

and sufficient conditions under which portfolio choices are separable from the consumption

decisions made by the investor. It is shown that these conditions are very restrictive. How-

ever, if goods' prices are independent of asset returns, separability is restored with plausible

assumptions about preferences. Following that, in section 4, we establish the main results of

the paper concerning investment decisions under multivariate risk. We use a multivariate risk

premium and corresponding measures of risk aversion to characterize the relationship between

aversion to wealth risk and portfolio choices. Finally, we show that a version of Rosi's meas-

ure of risk aversion is sufficient to indicate the relationship between the level of investment in

the more risky asset and the investor's degree of risk aversion.

2. Modeling Investor Behavior Under Multivariate Uncertainty

In situations involving temporal risks, aggregation over goods may be misleading, as noted by

Epstein (1975), who conducted a disaggregated .analysis of consumer choices under risk. Li

and Ziemba (1989) augmented the usual univariate objective function, utility defined on

wealth, with a vector of "attributes" of wealth, denoted by F in their paper; as they noted, an

obvious choice for an element of F is a measure of the real purchasing power of the nominal

value of wealth. However, disaggregation suggests an important particular choice for the vec-

tor of attributes—the vector of prices of goods consumed by the investor. This case was con-

sidered by Finkel.shtain and Chalfant (1989), who made use of the entire vector of prices of

consumption goods, reflecting the fact that the Composite Commodity Theorem may not hold.

The model below follows this approach and allows the formal introduction of multivari-

ate risks into the investor's maximization problem. The particular risks which are considered

are wealth and price risks; the latter seem to be the most natural example of random



attributes. owever, the analysis in the reminder of the paper is conducted for arbitrary vec-

tors of attributes, with prices presumed to make up a part of the vector.

We consider a one-period model of an investor engaged in both investment and con-

sumption. The investor makes ex ante choices concerning his portfolio and some of his con-

sumption goods and ex post choices of other goods. Hence, there are two types of goods;

those which are precornmitted before the realization of prices and returns on investment, and

those which are chosen when all random variables are known. We denote the N 1 goods of

the first type by Z = (Z1, Z2, ZN) >. 0 and the N2 goods of the second type by

.(Qi, Q2, QN) O. The prices of these goods are denoted by p = (pi, p2, . • PN,)

and by p =(p 1, p 2,.. ,PN2), respectively. We assume that the investor's objective function

is his Von Neumann-Morgenstern utility function u (Z Q), defined over both types of goods.

u (Z, Q) is assumed to be continuous in Z and Q, non-decreasing, and quasi-concave for

Z, O.

The investor is subject to the following constraints. Initial wealth is Wo (assumed to be

non-random) and the budget constraint is gi../en by

W = p7 +p'Q,

where total wealth is given by

W = Wo[ax (1—a)y] = Wo[a(x

and a and 1—a are the shares of initial wealth which are -invested in the assets with returns x

and y respectively. Finally, we assume that the ex ante knowledge of the investor concern-

ing p, p x and y can be summarized by a subjective probability distribution function

F (p,p ,x ,y) with finite moments.

The investor must choose a and the levels of Z and Q so as to maximize the expected

value of his utility function:

max fu(Z,Q) dF(P,P,x9Y)
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subject to the above constraints.' The maximization problem can be solved in two

stages—maximization with respect to Q for a given realization of prices, returns and prior

choices of Z and -a, and then maximization with respect to Z and a. As Epstein (1975)

argued, since consumption plans for Q can be revised when prices and asset returns are real-

ized, the first maximization problem may be taken inside the integral to obtain a revised

objective function, the variable indirect utility function2 g(Z,s,p), where s represents

savings—the amount of total wealth available for consumption of the goods in Q—and is

defined by

s(W,Z,p) = W(x,y, a) — p7.

The objective becomes

max E[g(Z,s(W,Z, p),p)]= fg (Z,s(W,Z,p),p) dF (p,p,x,y).
05as.1;Z?.0 ppxy

Without additional restrictions, the objective function g(•) does not reduce to the tradi-

tional objective function of investors—utility defined on wealth. Both include wealth as an

argument, but the former also includes the vector of consumption goods Z and the random

vectors p and p. The maximization problem is therefore a multivariate risk problem; the util-

ity function depends on more than one random argument.3

Two assumptions are required for g( • ) to reduce to the univariate objective function

defined on wealth alone. First, all consumption decisions must take place ex post, so that Z

and p can be ignored. Second, the price vector p must be known when the investment deci-

sion is made. If the first assumption holds, g( • ) reduces to the ordinary indirect utility func-

tion V(W, p). If, in addition, p is known to be fixed at some level /3, then the objective

1 To avoid the possibility of bankruptcy, we assume that the choice of Z is constrained by Pr (p'Z W ) = 1
(see also Epstein (1975)).

2 The variable indirect utility function was investigated and used by Epstein (1975), who established its duali-
ty with the direct utility function u.

3 Randomness of attributes other than prices would have exactly the same effect on the objective function, as
is easily seen by adding other random variables of interest to the functions g and F.



function is V(W,15). This, of course, may be treated as a function of wealth alone.

The second assumption seems unrealistic, since it is hard to imagine that the prices of all

consumption goods (or other attributes) are known in advance. The first assumption is more

plausible, since situations which involve ex ante consumption decisions are relatively rare.

Below, we adopt the first assumption and consider the effects of relaxing the second.

In order to keep the notation close to that of Li and Ziemba (1989), we use U(W, C) to

denote the investor's indirect utility function defined over wealth and a vector C, of M ran-

dom attributes.4 As noted earlier, goods' prices are assumed to be included in C.5

3. Separability of Portfolio Choices from Consumption Decisions

We showed above that, in the presence of price risk or other random attributes, the investor's

objective function need not reduce to the traditional objective function, utility defined over

wealth alone. However, with certain types of preferences and/or probability distributions, the

investor's portfolio choice is not affected by the introduction of the additional risks, i.e. the
•

levels of a in the two environments coincide. In this section, we derive necessary and

sufficient restrictions on the form of the utility function under which portfolio choices are

identical under univariate risk (wealth risk alone) and under multivariate risk. Characterizing

these conditions is of interest, since they imply that the familiar separability between the port-

folio choice and preferences for consumption goods or other attributes, which holds under

univariate risk, is preserved under multivariate risk.

The investor facing univariate wealth risk is assumed to maximize the expectation, over

the joint stribution of asset returns x and y, of a utility function defined over wealth and a

4 U is assumed to be differentiable, and we assume the existence of unique interior solutions for the
investor's problem, both in the univariate and multivariate models, as well as for the choice of consumption
goods.

5 Note that it would be straightforward to include the goods in Z in the vector of attributes C, should interest
be in e effects of precommitted consumption quantities, but this is beyond the scope of the paper and does not
affect the results we establish.
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fixed vector E, taken to be the mean of the marginal distribution of C when it is random (the

multivariate case). Under multivariate risk, the investor's problem is

max f IU(W,C) dF(C,x,y)
tx y

where F (C ,x ,y) is the joint probability distribution function of C and the returns on assets.

Restrictions on the form of the objective function are needed for equality between the levels

of a chosen under univariate and multivariate uncertainty. This is shown in Proposition I.

Proposition Denote the optimal levels of a under multivariate and univariate risk as am

and a", respectively. Then am = au for all joint probability distributions of returns and attri-

butes if and only if

u 04/ , =- u (v ) + u 2(c ).

The proof is presented in the Appendix.

For portfolio choices to be unaffected by the presence of the additional uncertainty

resulting from the randomness in C, the utility function must be additively separable in W

and C. If the vector C consists only of the prices of consumption goods, U reduces to the

ordinary consumer's indirect utility function defined on wealth (income) and prices alone. In

this case, Finkelshtain and Chalfant (1989) showed that additive separability of U, of the form

in Proposition I, implies that

U(W,p)= log(W)— log[q(p)],

where G(p) is linearly homogeneous in p. This form places strong restrictions on prefer-

ences. The coefficient of relative risk aversion and the income elasticities of demand for each

good must all equal 1, thus excluding the cases of risk neutrality or risk seeking. It also

severely limits the nature of preferences for goods.6

6 If the set of probability distributions under consideration is such that some prices are deterministic, then the
restrictions on preferences are somewhat less restrictive. The term for wealth or income in the indirect utility
function must be separable only from the random prices, and income elasticities must equal R only for the
goods whose prices are random.



Only investors with these preferences will choose am = a for all probability distribu-

tions of returns and attributes. When the returns on assets are statistically independent from

the random attributes in C, however, one is tempted to conclude that the additional risk will

not affect the portfolio choice. Indeed, when these random variables have a multivariate nor-

mal distribution, Li and Ziemba (1989) showed that this is the case. However, if the normal-

ity assumption is relaxed, then am and a" may differ, even under independence. Under

independence, the joint density of returns and attributes equals the product of the two margi-

nal densities (of returns and of C), so the investor solves

max 1 f f U (W , C)g i(C)g 2(x ,y) dC dy dx= max I I Ec[U(W , g2(x,y) dy dx.
05a5.1 "xy

Only for a utility function U ( ° ) which is linear in each element of C (i.e., the investor is

indifferent about instability in the attributes), can the expectation over C in the first integral

yield the function the investor would maximize in the case of univariate uncertainty,

U(W, E(C)) or U(W, C). However, even if U(') is nonlinear in C, so that the investor fac-

ing multivariate uncertainty has a different objective, the choice of portfolio could still be the

same. This requires not only independence, but a particular form for the utility function, spe-

cial cases of which are linear in attributes or wealth.

Proposition II: Given independence between C and the returns on assets, am = a" if and

only if e utility function takes the form

or

U(W ,C)= A(C) + B(C)D(W)

1  N
U(W,C)=L(W)+K(C)+

11(W)

where each bi is an arbitrary constant. The proof is provided in the Appendix.7

7 Again, if C is assumed to coincide with p, more specific forms for the utility function may be derived.
These are given in Finkelshtain and Chalfant (1989), along with the implications of these forms for both ordinal
preferences and e corresponding cardinal properties.
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The results established in this section illustrate that the presence of multivariate risks

changes the optimal portfolio unless restrictions are imposed on preferences and/or the joint

distribution of asset returns and attributes. Only under these restrictions is there separability

between the portfolio choice and preferences for consumption goods. We turn now to charac-

terizing portfolio choices in the presence of wealth and attribute risks, in cases where separa-

bility does not hold.

4. Portfolio Choices Under Multivariate Uncertainty

In this section, we examine in more detail the portfolio choice in the presence of randomness

in wealth and attributes. The analysis requires generalization of the Arrow-Pratt notions of

the risk premium and the measure of risk aversion, as well as an extension of the analogous

Ross (1981) notion. After describing these measures, we turn to comparisons between inves-

tors.

4.1: A Multivariate Risk Premium and Measures of Aversion to Risk

We begin with the generalization of the Arrow-Pratt risk premium and the correspond-

ings measure of risk aversion. Based- on Karni (1979), Finkelshtain and Chalfant (1988)

developed a generalization of the univariate Arrow-Pratt risk premium. They defined the

wealth risk premium as the maximum amount that an individual would be willing to pay to

stabilize wealth with the prices of consumption goods random. An analogous notion may be

defined when other attributes are random, as well. In that case, the multivariate risk premium

is denoted by n(wo,F) and is defined by

EU(W,C)= Eu(17-n,c).

TI depends on the particular risk, F, and on Wo since the individual's willingness to pay

might depend on initial wealth.8

8 If the individual can affect the probability distribution of wealth, as in the case of the investor who chooses
a, then the risk premium !depends not only on F, but also on the choice variable.

4.0
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The inter retation of H as a wealth risk premium under multivariate risk is analogous to

that of the regular Arrow-Pratt risk premium, which appears as a special case of H, when

goods' prices and other attributes are fixed. This can be illustrated nicely for small risks.9 As

shown in the Appendix, a Taylor approximation of the above expression yields

1 
E 

2 UWW Uwc,
cs w 

acjW2 i.1 Uw

where a2w is the variance of W, act. w is the covariance between wealth and the th element

in C, and subscripts of U denote partial derivatives. The first term in this expression is the

Arrow-Pratt risk premium, the amount that the investor would be willing to pay to stabilize

wealth when prices and other attributes are fixed. The second term can be thought of as a

monetary measure of the investor's aversion to the stochastic interaction between attribute risk

and wealth risk. If C is fixed, the second term vanishes, and H reduces to the Arrow-Pratt

(univariate) risk premium. However, ri need not even be of the same sign as the Arrow-Pratt

risk premium when C is random, due to the second term. Note that the covariance matrix of

C does not affect 11—only terms involving--wealth affect the willingness to pay for stabilizing

it.

The risk premium IT suggests the following matrix measure of absolute risk aversion,

when the elements in C are random:

9 Following Karni (1979), we define small risks as those risks such that PrRci, . . ,cm,W) E bj = 1 where
b is an M + 1—dimensional ball centered at ( c-i, . . ,FA,I,W), with radius e which is arbitrarily close to zero.
Note that, in the investor's case, the distribution of W is determined by the distribution of (x,y). For that prob-
lem, then, (x,y) will replace W in the above statement.
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Uw Uw Uw

UWC

Uw

Uwcm

Uw

H is constructed from the first row and column of Karni's (1979) matrix measure of mul-

tivariate risk aversion.10 For small risks, the diagonal element is twice the risk premium per

unit of variance of wealth, while the ith off-diagonal element is the risk premium per unit of

covariance between wealth and the ith attribute. Every term of the form

Ucici
M.M.1.1.1.1.M1=1P

Uw

is replaced with 0; such terms do not affect the risk premium, and, as is illustrated below,

they also do not affect the portfolio choice.

Finkelshtain and Chalfant [1988] showed that 0 for all risks if and only if H is posi-

tive semi-definite, which implies that the utility function is additively separable in C and W,

as in Proposition I. Moreover, if i and j denote two investors, then under small risks," a

positive semi-definite matrix D =Hi -Hi is both necessary and sufficient for IF for all

risks. We state this as Proposition III.

Proposition HI: A positive semi-definite (p.s.d.) difference D =H1 ) (W ,C) is

necessary and sufficient for iT ?_ IF for all small risks with mean (1-47,E).

Karnes definition was specified in terms of the standard indirect utility function, but easily generalizes to
U(W,C), with attributes other than prices included.

11 Any of the results we obtain for small risks would be exact for quadratic utility functions. However, we
refer only to small risks, given the undesirable properties of such utility functions.
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Proof: From the expression derived for and the definition of H, it can be verified that for a

given small risk with mean (17,ff),

ni-ri tr [D

where n is the covariance matrix of wealth and attributes. Sufficiency follows from the fact

that the covariance matrix is p.s.d. and the product of p.s.d. matrices has a non-negative trace.

Thus, a p.s.d. D is sufficient for a non-negative IT —ni.

To prove necessity, we choose the probability distribution so that the correlation

coefficients corresponding to K/ are either 1 or —1. Under this assumption

implies that

Hi Hi ..>_0

tr [D c2] tr [Dvv']=tr N' Dv I = v' Dv 0,

where v is a vector of standard deviations, premultiplied by either 1 or —1, depending on the

signs of the covariances of the specific argument with the rest of the arguments. Since the

elements in v can take any values,12 the above inequality holds for all vectors v and thus

implies that D is p.s.d.13 •

In cases where a risidess asset does not exist, the Arrow-Pratt measures are not sufficient

to rank choices. Ross (1981) showed that a stronger notion of risk aversion is required to

characterize investors' choices in such cases. By his definition, a univariate utility function

(W) is strongly more averse to wealth risk than a utility function B (W) if and only if there

is a 2.?..0 such that, for any two levels of wealth W1 and W2,

A" (W 1) A' (W2)

B " (W 1) B (W 2)

12 Some of its elements can be equal to zero if the corresponding random variable has a degenerate distribu-
tion.

13 Note that a positive semi-definite difference is a strong condition—the off-diagonal terms in the two ma-

trices must be equ.i! and the first diagonal terms (the Arrow-Pratt measures) differ by.a positive amount.

'40



- 13 -

where ' and " denote first and second derivatives. Ross showed that this property is

equivalent to

A (W) = A.B (W) + G (W),

where X>0, and G" 5_0 (Ross (1981, p. 626)).

This definition can be extended naturally to multiattribute utility functions in the follow-

ing manner. An individual with utility function U (W ,C) is said to be strongly more averse

to wealth risk than one with utility function V(W,C), for any level of C, if and only if there

is a X> 0 such that, for every W 1, W2, and C,

Uww C 
A. 

UW (W2, C) 
liww(Wi,C) Vw (W2, C

This relationship holds if and only if

U(W,C)=XV(W,C)+G(W,C),

and again, Gw 5_0, and Gww 5_0. It can be shown that for every level of C, U would be wil-

ling to pay a higher amount to stabilize wealth risk than V, and if E (x U will invest

less in the more risky asset.

By fixing C, the problem remains one of univariate risk. However, if interest is in com-

parisons when C is stochastic, so that the investor faces multivariate risk, the above definition

must be modified or the set of probability distributions under consideration must be further

restricted. In the next section we show that, in the presence of both wealth and attribute risk,

the form of the above relationship which permits comparisons with no further restrictions on

the distribution is the case where G is additively separable in W and C. This leads us to the

following definition.

Definition: We say that U is strongly more averse to wealth risk than V and has the same

attitude toward covariation of W and. C (in the sense that the partial derivatives U. and

Vwc, are proportional for each attribute Ci) if and only if
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U(W,C)=?V(W,C)+G(W)+H(C),

with G' 0, G" O. We now turn to using these definitions in comparing the portfolio

choices of investors facing multivariate risk.

4.2 Comparisons Between Investors: General Preferences and Distributions

The necessary condition for the investor's optimal choice of a is

E[Uw(x y)] = 0.

The sufficient condition holds for the case of an individual who is averse to univariate wealth

risk, since Uww <0 implies that

E[Uww(x y)2] < 0.

Therefore, in the remainder of the analysis, we assume that the investor is averse to wealth

risk in the univariate sense (i.e. Uww <0).

We begin with a generalization of the Li and Ziemba (1989) result concerning individu-

als with identical measures of risk aversion facing multivariate normal risks. In Proposition

W, we show that the measure of aversion to multivariate wealth risk defined in section 4.1

reveals when two individuals facing the same arbitrary multivariate risks will choose the same

optimal portfolio.

Proposition IV: Let Hi and Hj be the risk aversion measures defined in section 4.1, of indi-

viduals i and j, respectively, and assume that the following conditions hold:

(i) The two investors face the same joint distribution of returns and attributes.

(ii) The two investors have the same levels of initial wealth.

Then, 1-1 = H &bay (for all values of W and C) is both necessary and sufficient for

for all distributions of prices and attributes, where ai* and ai* are the optimal levels of a of

investors i and j, respectively. The proof is presented in the Appendix.
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An interesting observation is that, for Ht H, the two investors need not have the same

ordinal preferences.14 This is demonstrated easily by noting that, for the preferences used to

prove Proposition IV, Roy's Identity implies that the two investors need not have the same

demand functions. Thus, only the attitude toward wealth variation and the covariation

between wealth and attributes affects the portfolio choice, while the attitude toward variation

in consumption prices or other attributes alone is not relevant. The latter is determined by the

sub-matrix of second partial derivatives of the indirect utility function with respect to attri-

butes. This sub-matrix is part of Karni's (1979) measure of multivariate risk aversion, but

does not affect the choice of portfolio, thus illustrating why it is omitted from our multivariate

measure of aversion .to wealth risk.

We turn now to comparisons between individuals with different attitudes towards mul-

tivariate risk. We derive a Ross (1981) type result concerning the relationship between two

investors' utility functions and their corresponding levels of a. In the next section, analogous

results are derived under mean-variance analysis, using the measure H. Following Ross

(1981), we reformulate the portfolio problem as a problem of investment in one risky asset,

Recall that

W = Wo[ax +(l—a)y] = W0y +a14/0(x—y).

The choice of a can be thought of as the choice to move a portion of wealth from an asset

paying random amount y to one yielding (x —y). Woy is random initial wealth, then, in the

sense that it is the uncertain amount carried forward if a equals zero. Following Ross (1981),

we assume that E(z 1We )?.0, i.e. the expected return of the asset, given any level of initial

wealth, is positive.

14 On the other hand, if the assumptions in Proposition IV are strengthened, so that comparisons are restricted
to investors who have the same ordinal preferences, then equality of the univariate Arrow-Pratt measures of
aversion to risk is sufficient to ensure that two investors will choose the same portfolio, even under multivariate
risk. This is a particular case of the above Proposition, where one utility function is an affine transformation of
the other.
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Proposition V: Let Ui and Ui be utility functions such that Ui is strongly more risk averse

than Ui, while both have the same attitude toward covariation of wealth and attributes:

Ui(W,C) = V.P(W,C)+G(W)+H(C), G'

If E (z 1Wcy 0, then ai 5.a.j for all risks.

Proof: The proof is the same as in Ross (1981), and is repeated for completeness. Evaluate

the first order condition for investor i at the optimal value of a of investor j:

E[Uii.z)=EUXU1i+G'Pz)---:E[G'.z],

where the last equality holds since, at the optimal level of a for investor j, To

see that the last expression is negative, note that

ERG' sz)11410]=Cov[G' ,z 1W0yi+E[G' IWoy]-E[z IWoy].

The product of the two conditional expectations On the right hand side is clearly negative.

For a given y, z is random only through x, but G' is decreasing in x. Hence, the conditional

covariance is negative. Therefore, the conditional expectation

E [(G' -z) I 147 ay]

is negative for any y This implies that the unconditional expectation

E[G'.z]

is negative. The first order condition is decreasing in a (an immediate implication of the

second order condition), so it must be the case that at because investor i has an incen-

tive to reduce a at the point a.M

In Proposition V it was shown that, with the assumption that E (x 0, investors that

are strongly more averse to wealth risk will choose a lower a. However, this result requires

that the two investors have the same attitude toward covariation of wealth and other attributes.

To avoid this, one can further restrict the set of probability distributions under consideration.

A natural extension of Ross's assumption about the distribution of (x, y) is that

E (x I y 0, i.e., the expected return of the asset z, given any level of initial wealth

•
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and attributes, is positive. Under this assumption, an analogous proposition may be derived

and the assumption that G is a function of wealth alone can be relaxed. This, of course, will

allow comparisons -over a larger set of preferences.

4.3. Comparisons Between Investors: Mean-Variance Analysis

Li and Ziemba (1989) derived their useful results under the assumption that the distribution of

attributes and returns is multivariate normal. They noted that a possible extension of their

study is its application to other situations where mean-variance analysis is valid. An example

is where the investor faces small risk, which may be plausible if investors have the flexibility

to rebalance their portfolios frequently enough. Under this assumption, a second order Taylor

series expansion of expected utility is exact and facilitates the analysis below. If the normal-

ity assumption is valid, then analogous results can be derived using the Rubinstein measure of

multivariate risk aversion (Li and Ziemba (1989)), instead of the corresponding multivariate

Arrow-Pratt measure.

The portfolio problem to be analyzed is the choice between one risky and one risk-free

asset. In this case, we show that either the-Rubinstein multivariate measure which was intro-

duced by Li and Ziemba (1989) or the one in section 4.1 is sufficient to characterize the

optimal portfolios of investors with different attitudes toward wealth risk, under multivariate

risk.15

Consider the following portfolio problem of an investor:

max E[U[Wo(a(x—r)+r)),C]),
05a5.1

where a is the share of initial wealth (W0) allocated to the risky investment with return x,

and 1 -- a is the share allocated to the risk-free investment with return r.

15 A second problem for which the same approach can be applied is where the investor must choose between
two risky assets and there is no risk-free asset. However, ordering the level of investment in the more risky as-
set according to the risk aversion measure requires additional restrictions on the joint distribution of returns and
attributes. An example is that Coy (x.,y) Var (y).
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Propositio VI: Let and Hi be the multivariate measures of risk aversion defined in sec-

don 4.1 of investors i and j. Assume that two investors face the same joint distribution of x

and C, that they have the same levels of initial wealth, and that E(x).?:r. Then a positive

semi-definite (p.s.d) difference

Hi (W,U)

implies the following equivalent statements:

(i) ai ai for all small risks with mean (T,C),

where ai and ai denote the optimal levels of a of investors i and j;

(ii)E(Pi)

where P denotes the return on the optimal portfolio for each investor; and

(iii) Var (Pi) 5. Var (Pi).

Proof: Using the assumption of small risks, a Taylor expansion of the first-order conditions

for the above portfolio problem yields

1 —= (x r),

where 12 is the covariance matrix of (x, C) and n is identical to H except that the first diago-

nal 'element is multiplied by 2W0a. Note that, from the definition of H, it follows that a
A A

p.s.d. difference Hi —Hi is equivalent to p.s.d. IP —Hi . We now evaluate the first-order

condition of investor i at

1 -i • — •
+ (Y. r) 

1 
--tr {Ulf (cti)+DiK2) r),

where D is p.s.d. by assumption. Since both gl and D xe p.s.d., the trace of their product

must be non-negative. The remaining terms in the above expression are identical to the first-

order condition for investor j and hence vanish. Therefore, the first order condition of inves-

tor i evaluated at ai is negative and (i) implies (ii). Since E(x)>r, (ii) and (iii) are

equivalent. Moreover, since r is risk-free, it is easy to see that (ii) is equivalent to (iv).
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Propositions Ill and VI established that an investor who is more averse to wealth risk in

the present of attribute risk will pay a higher risk premium to stabilize this risk and will invest

a smaller amount in the risky asset. These results generalize Pratt's (1964) result, which was

obtained under wealth risk alone. However, in the multivariate case, unlike Pratt's univariate

case the relationship "more risk averse" seems to be sufficient but not necessary to ensure that

one investor will invest less in the risky asset.

Propositions III to VI compared the behavior of two investors. A second approach that

has been taken in the literature (Arrow (1964), Li and Ziemba (1989)) is comparing the posi-

tions of the same individual at different levels of initial wealth. Below we use the portfolio

problem of Proposition VI to examine the relationship between how initial wealth changes the

measure H and how it changes the level of investment in the risky asset.

Definition: The multivariate measure of absolute risk aversion is decreasing (constant,

increasing) in Wo at (Wo, Co) if the matrix

EH (wo,c0)

--awo

is negative semi-definite (the null matrix, positive semi-definite).

Proposition VII: Recall the portfolio problem of Proposition VI. Let a denote the absolute

amount invested in the risky asset (a V0). A decreasing [constant] [increasing] multivari-

ate measure of absolute risk aversion implies the following equivalent statements:

(i) -
aa 

MN 0
awo

(ii) aE (P) 
awo

where P is the return of the optimal portfolio;

(iii) 
V a ar 

w

(P ) 
[-=-1 [510.

ao

410
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Proof: Using the Taylor expansion of the first order condition we obtain

1 arf
aa 2 a W0
alvo

where d is the second order condition, negative by assumption, and 17 is identical to H,

except that the first diagonal element is premultiplied by a. A decreasing (constant, increas-

ing) measure of multivariate risk aversion is sufficient to ensure that the numerator is negative

for any small risk, and, hence, is sufficient for a to increase [constant] [decrease] with the

level of initial wealth. Since E (x) and r is risk-free, the equivalence of (i) with (ii) and

(iii) is trivia1.16 •

6. Conclusions

This paper has examined portfolio choices in the presence of randomness of other attributes of

the utility function. Investors were assumed to face multivariate risk consisting of an uncer-

tain wealth, uncertain prices of goods consumed, and possibly other risky attributes.. For the

case where all of the risky attributes are prices, we formally introduced multivariate risk into

the investor's maximization problem and showed that the indirect utility function of the inves-

tor replaces the typical investor's objective function defined on wealth alone.

Necessary and sufficient conditions were derived under which the portfolio is not

affected by the introduction of the additional attribute risk. It was shown that the assumption

of statistically independent attributes and returns is not sufficient to ensure this result. Addi-

tion• restrictions on the utility function are needed. If these do not hold, the presence of

attribute risk affects the portfolio choice and the separability between investment behavior and

preferences for goods breaks down.

16 An analogous proposition may be derived concerning the proportion of initial wealth which is invested in
the risky asset. This requires analogous assumptions about the multivariate measure of relative risk aversion
which is identical to H except that the diagonal element is premultiplied by Wo.
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A multivariate risk premium and corresponding measures of risk aversion were used to

characterize the optimal portfolios of investors. Only under the special assumptions of adcii-

tively separable objective functions or investors with the same ordinal preferences for goods

and attributes will the Arrow-Pratt risk aversion measures be sufficient to determine the rela-

tionship between the levels of investment in the risky asset and the degree of aversion to risk,

when multivariate risks are present. Yet, the multivariate generalizations of these measures

are useful for characterizing optimal portfolios and making comparisons between investors

without these restrictions. Investors with identical multivariate measures of risk aversion will

choose identical portfolios, no matter what is the joint distribution of returns and attributes. If

mean-variance analysis is valid, a positive semi-definite difference between investors' mul-

tivariate measures of risk aversion implies that the investor with the "larger" measure would

invest less in the risky asset. In addition, if the multivariate measure of absolute risk aversion

is decreasing with wealth, the amount which is invested in the risky asset increases with

wealth. Finally, if choices are between two risky assets, then an investor with a larger strong

measure of risk aversion than the corresponding measure of a second investor, but with the

same attitude toward covariation of wealth and attributes, will choose a less risky portfolio.
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APPENDIX

Proof of Proposition I: (Sufficient) Let f (C ,x ,y) denote the joint probability density func-

tion of C, x, and j,, and let fi() denote the corresponding marginal densities (of returns and

of attributes). If the restriction on preferences holds, the maximization problem becomes17

max LIS [Ul(W) + U2(C)jf (C ,y ,x) dC dy dx = max Ex ,W1(W)] + Ec[U2(C)]
05a51 xyc 05a51

The solution to the above maximization is identical to that of the univariate problem

max Ex , y [U 1(w ± U2( -67),

05a5.1

since the objective functions differ only by terms that are constant with respect to a.

(Necessary) We assume two particular, distributions, G 1 and G2. Let G 1 be given by

and

(x ,y) = (x° , y0) and C =C° with probability 1/2

(x y) = (x 1 ,y 1) and C =C1 with probability 1/2,

where C° and C1 differ only by the fact that a particular element of C takes on values Ci° or

Cil, respectively. Let each 0 superscript denote a low value and each 1 superscript denote a

high value. Also, assume that the two values for Ci are each A/2 away from its mean, given

by the th element in C. Let the second distribution, G2, be given by

and

(x ,y) = (x0,y°) and C=C1 with probability 1/2

(x,y)  = (x 1 y 1) and C =C ° with probability 1/2,

For both G 1 and G2, all attributes except Ci are assumed to remain fixed at the levels defined

17 The proof of is part is given for the case where the relevant distribution function is assumed to have
proper densities. The proof of the discrete case would be similar. This comment is applicable to proofs of other
propositions as well.
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by -C. When (x ,y) is low, wealth equals W0 = W(x0,y°) and when it is high, wealth is

W1 w (x 1 
01 1). The necessary conditions for maximization of expected utility under G l and

G2 are

and

Uw(WO, CO) (x0 ))()) Uiv (W1, C1) (xl 1) = 0

Uw (WO, 

C')

 (x0 Uw (W1, CO) (x1 1) = 0

respectively. Assuming that Uw( - ) > 0, it follows from these that (x0 —y0) and (x _y 1)

have different signs. Subtracting the second condition from the first and rearranging, we find

that

(x0 -A[uw(w°, C1 +  ;„i) uw(w°, Cri -4,-67/ i)]

= (xi - yl)[uw(wl, -65 j) uw(wl, E"; - 4C#)]

where where denotes the attributes in C that are assumed constant. Dividing both sides of the

equation by A and letting it approach 0, we obtain the following partial derivatives as the lim-

its of both sides of the above equation:

uwcioyo, (xo y = Uwc, W 1 , (x1 y .

Recalling that sign (x0 —y0)* sign (x1 —y this result implies that either the two cross deriva-

tives have different signs, or that they are equal to zero for every value of W0 and W1. The

former could not occur for choices of W0 and W1 arbitrarily close together, given that Uw is

continuous. Thus, the latter alternative must hold, and Uwci( • ) 0. We can repeat the

above argument for each i = 1, ..., N, hence Uwc, ( • ) 0 for each i, which implies the separ-

able form above.

Proof of Proposition II: (Sufficient) Using the first form for U and the independence of C

and (x ,y), the investor's maximization problem is
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max E [A (C)] + E [B (C)] E [D (IV (a, x ,y))].
050c5 1

Monotonicity of U in W, for every C, implies that the sign of B(C) is the same for every

vector C, and hence, the maximization problem above is equivalent to the univariate problem

max [A (C)] + [B (C)] E (W (a, x ,y
o5a5.1

The proof of the sufficiency of the second form is similar.

(Necessary) We establish this using a particular distribution for attributes and returns. Let

(x ,y ) equal either (x1 —y1) or (xh —yh ), each occurring with probability 1/2. Wealth then

will be either W1 E-_-W(a, (x1 —y1)) or Wha-W(a, (xh —y h )). Similarly, let C equal either CI

or Ch, each occurring with probability 1/2, where all attributes are now assumed to vary

between low and high levels.

The necessary conditions for the multivariate and univariate maximization problems are:

and

(x1 —y1) Uw(Wh Ch) Uw(Wh , CI)

h y h uw (vl, ch) uw (wl cl

(x1 -=-y1) Uw(Wh,

—y") Uw(WI -C)

If the levels of a are equal, then the left-hand sides of the two conditions are the same, so we

can rearrange the two right-hand sides, to obtain

uw w h c 1 ) uw w h ch) uw(wi ci) uw(wi ch)

Uw (W h , mean (C h 9 C')) Uw (W1, mean (Ch C'))

Note that these ratios, which we designate r(W Cl Ch), must not depend on W, since for

any arbitrary choice of Wh and WI, r(Wh,C1,Ch) = r(WI,C1,Ch). If r does not

depend on W, while its components, the derivatives of U do so,18 then the numerator and

1 8 It might be Lat U(W, C) is linear in W, in which case Uw is independent of W, so r itself is indepen-
dent of W. However, is is simply a special case of the form A (C) + B (C) • D (W), where D (W) W.
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denominator must have a common factor, such that any term involving W cancels:

where

and

r(v, c1, Ch) = c1, Ch) rx(ci) + c(Ch)1 
c', Ch) [0(c', ch

(i) K(W, CI, Ch)4)(C1, Ch ) = Uw(W, mean(Ch, C1)),

C1, chpc(c') = uw(W, c1),

Kov, c', chg(ch) uw(w, ch

Condition (ii) implies that K does not contain Ch, while condition (iii) implies that it

does not contain C1, and hence from (i) it follows that Uw is of the form B (C) • D' (W).

Integrating with respect to W yields the form

U(W,C) = A(C) B(C) • D(W). •

Derivation of II: fl is defined by

E [U (W , C)] = E [U (W II, C)],

where W is the expected value of the wealth. By a second-order Taylor expansion of the left

hand side of the equation around the point (W -67),

EU(W C) = 
u(v 1N+1N+1

) 2 I EYjU1, + 0 (trW)
i=1 j=1

where is the covariance matrix of the arguments of U. A second order approximation of

the right hand side yields

N+1 N+1
EU (i4-1 —II, C) = U(W, e".) au1(-47, c) + z z cif U +o(trW1)

i=2 
j=2

Another possibility is that Uw is linear in C, which is the second form that was given in the Proposition.
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where is the covariance matrix of the attributes alone. We ignore terms that contain 112
since those are of the same order as the remainders. Now, by the assumption that the risk is

sniall,19 we can ignore the reminder terms, and by setting the two expressions equal, we can

solve for the required representation of II. •

Proof of Proposition IV: (Sufficient) It is easy to see that Hi = H. globally, if and only if

the corresponding utility functions are of the forms

C)= cD(W, C) at(C)

(W , C) = As13(W C)+ ai(C)

Assuming that both i and j have the same initial wealth, the two would have an identical first

order condition and hence would choose the same a.

(Necessary) Necessity can be proved as follows. First, note that a particular case of a joint

distribution of (x,y,C) is the case where the vector C is constant. A necessary condition for

the two investors to choose the same levels of a for any such risk is that their Arrow-Pratt

measures will coincide (Pratt (1965)). For this to hold for any level of W and C, the

corresponding wealth derivatives of the utility functions must be proportional. Thus,

uwi (w, xuwi (w ,

Integration of the above equation with respect to W yields the required result. •

19 See Karni's definition above.
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