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NONOPTIMALITY OF PRICE BANDS
IN STABILIZATION POLICY*

A considerable amount of research.has been devoted to studying the
welfare consequences of stabilizing pricgs of basic internationally traded
commodities. A widely held theoretical conclusion in the price stabiliza-
tion literature is that complete price stabilization is preferred to no
stabilization, e.g., Samuelson, Hueth and Schmitz, and Turnovsky. However,
these results are usually derived using the assumption of zero storage costs.
Also, partial stabilization isAnct generally considered as an altermative
to complete price stabilization.

For these réasons; the theoretical stabilization literature has had a

limited impact on the policy—making process. For example, if one considers

.complete pricé stabilization in reality, very high storage levels are re-

quired to enforce the policy; thus, storage costs usgally become prohibi-
tive. This is because artificially high price stability leads‘to high
quantity variability of stock operationms.

As an exception to the above, Massell (1969) showed that gains could
beNmadg‘from stabilization when storage costs are positive by using a
"price band" type of stabilization policy. With the price band policy, the
buffer stock authority sets upper and lower price limits; buffer stock
transactions are then made such that price can vary freely (without inter-
vention) between the two limits, but it cannot move outside of these limits.

Since Massell's work appeared, the price band concept has become very

popular in the many proposals developed in response to the world food crisis

e

of the-1970!s. For example, at .the International -Wheat--Council discussions




in 1975 and 1976 (see Sarris for a discussion of these), many of the large
wheat trading nations such as Canada, Australia, EEC, India, Egypt, and
Japan proposed world wheat stabilization policies which operate according

to a price band mechanism. Many economists have also advocated the price
band proposed in world food price stabilization problems (e.g., Hillman,
Johnson, and Gray). In addition, many of the recent simulation studies on
the effect of price stabilization focus on price band policiés (e.g., Sarris,
Cochfane and Danin, aﬁa Sharples and Walker).

A major pdrpose of this paper is to show that.price bénd policies are,
in general, inferior mechanisms for achieving optimal social welfare through
stabilization (using the same criterion of social welfare as has been used
previously). This is done by developing an alternative to the price band
policy which turns out to provide a global optimum with respect to the form

of the buffer stock intervention policy. For this reasom, it is found that

" the policy proposed herein is also preferred to buffer stock rules which

operate with production triggers such as the one proposed by Tweeten et al.

and the U. S. proposal presented at the International Wheat Council discus-—
sions as an alternmative to the plans cited above.

The buffer stock policy suggested in this paper is one which modifies
the demand curve by both rotation and stabilization and possibly altering’
the curvature sucﬁ‘that buffer stock transactions make up the difference in
modified and actual demand. It is found, however, that the optiﬁum policy
among this class of policies can be implemented by a simple rule such that
buffer stock transactions are a constant multiple of the difference in

actual price and "normal" price. Furthermore, a procedure for modifying the

buffer.authority's declared normal price is_determined so_that buffer stocks




will not be excessively accﬁmulated or depleted over sustained periods of
time. It is interesting to note that a policy witﬁ these features'was
evaluated in a simulation study by Cochrane and Danin and was found to be
preferéble to no stabilization and also to the popular price band policy.
The éresent péper, however, shows that their result is true analytically
(simulation léaQes room for déubt) and, furthermore, derives analytically

the optimum policy among this general class of policies.

The Free-Market Model

Suppose, as did Massell, that industry demand and supply are linear

and stochastic. Let demand be represented by

(1) p=D(q) =a-bg+ 3§

where p is price, q is quantity, both a and b are fixed, and 6§ is random
at the time of decision making. Let supply (or short-run industry mar-

ginal cost) be represented by
(2) - C(q) = ¢ +Bq +¢

where B and ¢ are fixed and € is random at the time of private decisions.
Assuming ordinary supply-and-demand conditions, both b and B are positive.
Suppose, also, that production is random so that actual production q
differs from élanned producfion 9, because of weather or some other sto-
chastic influence. Where the difference in planned and actual production

is represented by

3) ‘ Z=4q-q,




the probability distribution of e = (§ £ Z)' will be characterized byl

Assuming competition, planned production in a free market is thus de-

termined where expected price equals expected marginal cost,
(4) E(p) = E[C(9)].

Use of (4) implies from (1) and (2) that

(5) q, = E_ﬁ_i

-

where n = B + b. Hence, free-market quantity and price are evident from (3)

and (1):

~a-9¢+ng
(6) Q= T

(7) p=Y+nr(]6"bC)

.

where Y = Ba + bd.

Partial Stabilization by Buffer Stock Operations

Initially, the buffer policy is assumed to have the effect of modify-
ing the demand curve both by reducing instability and by altering demand
elasticity as in the earlier Massell (1970) paper. That is, the demand

curve in (1) is assumed to be altered by buffer authority intervention ob-

~tzining-the modified demand given byr —— = —mrm ———

\




(8) p =

ao - b0 q + 60

where a, and bo are alternative parameters set by the authority. Also,

suppose 60 = k6 for some fixed k which is also controlled by the buffer

authority. Since the quantity demanded for conéumption according to (1)

is

N dp) = 2220

and the modified quantity demanded for both consumption and storage from

(8) is

—p+<50

b b4

20
(10) q*(p) =
. ) 0

the net change in stocks required to enforce (8) is

(11 ' s = q*(p) - qd(p).

Since the demand now percéived by producers is (8) rather than (1),

planned production with partial stabilization q* can be determined by

0
analogy with (5):

. . —aov“b
(12) - BEL ' v

.where v = B + bo. The quantity traded by producefs and price are thus evi-

dent from (3) and (8):

a0-¢+\)C

Ry
.

¥

13 o q* =

— . - e =)




(14)

where.6 = B ag + b0 ¢. The quantity demanded by consumers in (9) at p%*,

however, is

-6 + v[a + (1L - k)6 + boc]
bv

(15) A =

Hence, from (11), net change in stocks is

(n - V)T + (i - k)8
b

(16) s = q* - ¢°(p%) = Mgt

6 ~-y+a.b-2ab

0 0
(7 _ Mg = bv :

The short-run variance of stock transactions is thus

_ (n - v)z o_+ (1 - k)2 a
(18) g = 4 ]
s b2

Buffer Stock.Transactions Costs

The buffer authority in this model will generally incur transactions
losses (or gains) by purchasing excess supplies at prices different from
those at which excess demands are sétisfied. Purchases of buffer stocks
are given by P = p* s (sales are represented by P < 0) and have expected

value

k(k - 1)06 + bo(b0 - b)GC

E(P) = My +




where

(20) oy =—S

Consumer Effécts'

To evaluate the individual sector benefits of partial prlce stabiliza-
tion, the change in consumer and producer surplus must again be calculated.

Following Massell (1969), .the gain in consumer surplus is2

G, = —%- (p - p*) [qd(p5 + qdﬁp*)]

which from (6), (7), (14), and (15) has short-run expected value

2 2 2
(v -n)0€+(l—k)06

(21) E@G) =u + 55
where.
| a-b>
=_1 Yy __8 0+va-9)
(22) M, =5 ( n v ) ( n bv )

Producer Effects

Producer gains from partial stabilization are

q*

Gp = p*¥ q¢* - pq - J (¢ + Bx + e)dx
q

and have expected value

(23) L E(G ) = = My + (n_- v)c

\
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Storage Cost

Although Massell (1969) had previously considered the effects of price
stabilization with positive storage cost in the framework of this paper; his
framework does not reflect the cost of carrying many successive years of
high production into many successivehyears of low production versus the cost
of carrying alternating high productions into immediately following years of
low production. In a later work by Just, storage costs were assumed to de-
pénd at least indirectly on the length of time in storage. In this paper,

however, this dependence is assumed explicitly so that storage costs during

each time period are given by the storage cost per unit p times the quantity

held in stocks during that time period,

(25) : Cs = p S.

Soctial Optimization

The approach in this section is to suppose a fixed stoék goal 5§ toward
which the buffer authority continually attempts to move. The possibility
of determining optimal buffer stock size S will then also be discussed. The

fixed stock goal is met in expectations when

(26)




9.

where S is the current level of stocks. In other words the expected change
in stocks should just bring buffer stocks back to their desired size. Hence,
Mg is fixed, and either a, or b0 can be eliminated using (17). Solving for

a,. obtains

0
| bV u_ - (b - B) - a(B - by)
= s 0 0
(27) Cay - ——
which implies that
(28) | Nag = ) = v(a - ¢+ b u)

Bbu -bd+8Ba
8 _ S_
(29) v - m .

Hence, using (20), (22); (24), (28), and (29), it'becomes apparent that

Bbul+ (Ba-b o

(30) B, = -
(20 -Bu) (2ab-8bp)
(31) - M, = 2
2n
| ,- o B55 U4 28 b - oo
(32) u, = 2 .

Before maximizing benefits with this bolicy, two additional considera—i
tions arevneeded. First, some constraint must be imposed to éhéﬁre théé a
‘buffer stock policy is not imposed which may (with nonnegligible probability)
require more stocks than are currently available. Otherwise, the advertised

policy may not actually be in effect anyway. Second, the repercussions of .___.___



10.°

this period's buffer policy on future periods must also be considéred. Sup-
pose, for political reasons, that the buffer authority is éonstrained so

that its attempted stock size must at least satisfy some constant ¢ times

the variance OS of buffer authority transactions with whatever policy is
selected. If the distributions of and'G are such that only finite Z and

§ are possible, then this constraint may simply require that stocks can never
be depleted by chance and, thus, reqder the buffer stock policy inoperative.
The maximization problem, ignoring repercussions in future periods, thus
becomes

Max E(G) = E(G ) + E(G) - E(®) -C
k’boip c P s

subject to the constraint imposed on the buffer authority S = ¢ Gs. The
constraint can be imposed by substituting for Cs according to (25) and (26)

which implies that .

Cs_=p(S-us)=o<bcs—ous-

Finally, consider the extent to which futu;e periods are éffected by
this period's policy. Future periods are affected by the amount of stocks
carried over: From (16) and (26), it is apparent that expected stocks for
Fhe next period are E(S + s) =S + Mg = S, and the variénce is GS. Assum-
ing the policy in (26) will also be followed next period, the desired stock
transaction ug for the next periodv(corresponding to U for this period)
will be

(n-vz+ 1 - k)G_
b

(34) WE=5-(S+s)=5-58+(s-n) =



11.

The. effects of chaﬁges in the distribﬁtionvof s on next period's expected
gains can be examined by an analogy with this'period's gains E(G) if us is
replaced by u: and g and § are serially uncorrelated. The only changes in
the next period's expected gains which depend on this period's policy (i.e.,
on the distribution of pg) relate to the terms pt, uc, and ug. Using asterf

isks to denote the next period's values in (30), (31), and (32), using (34)

and taking expectations implies

BbcrS

EQp) = ——

4ab ¢ - b 82 Gs

E(u*) =
c Zn2
B b2 cs
E(u*) = ———
8 2n?

since E(u;) =0 in (34). Hence, the next period's expected gains are

; v B b
* - - — -
E(Q ) K a crs p CDO'S

where K is a constant with respect to this period's policy controls. Note-

that expected storage costs for the succeeding period are
E(C¥) = E[p(S+s)] =p5=p 00

since E(ug) = 0; thus, only p ¢ OS enters E(G*).
Since the distributions of stocks beyond the next period are not af-

fected by this period's policy when (26) is imposed, an appropriate objective



12.

is thus to maximize E(G) + E(G*)/(1 + r) subject to (33) where r is the

social discount rate. Kuhn-Tucker conditions indicate optimum gains

where
3E (G) 1 JE(G*) 3E(G) 1 3E(GH) ) _
5k 1+t ok 3°’k<ak TIex Bk) 0
(35) ,
3E(G) 1 JE(G¥) <8E(G) 1 JE(G*) )
+ >0, b + = 0.
by, L1+r b, 0\ 3, " I+z op,
Using (19), (21), (23), (30)-(32), and (18) obtains
BE(Q) _ }c& o 90, EEH _ (8D, ) do_ 3o _ 2(1 - k)c(S
3k b P %k’ T 2n P 3k’ ok 2
(36) ‘ .
BE(G) _ _ by 9 e Efg BEG%) _ _(Bb, 9o, 30, =_2(1: - by)o,
3b b P ®3b. o 2 3b,” 3b o2 .

0 0 0

The implicit simple calculus conditions in (35) can be imposed for
maximization so long as the indicated optimum controls are.positive. One

finds from

3E(G) 1 3E(GY) _ 3E(G) 1 3E(G*) _

% T 1+r ok % %, L+r 3bg 0
using (36) that
(37) k=% = Bb + 2ond(2 + r) 5. kb

=B+ (L+onb + 2om32 ¥ 5 Yo = Pg

where obviously k, SO > 0. It can also be verified that the appropriate

second-order conditions hold throughout the necessary range (k, b0 > 0).

e e e —



