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NONOPTEMALITY OF PRICE BANDS
IN STABILIZATION POLICY*

A considerable amount of research has been devoted to studying the

welfare consequences of stabilizing prices of basic internationally traded

commodities. A widely held theoretical conclusion in the price stabiliza-

tion literature is that complete price stabilization is preferred to no

stabilization, e.g., Samuelson, Hueth and Schmitz, and Turnovsky. However,

these results are usually derived using the assumption of zero storage costs.

Also, partial stabilization is not generally considered as an alternative

to complete price stabilization.

For these reasons, the theoretical stabilization literature has had a

limited impact on the policy-making process. For example, if one considers

complete price stabilization in reality, very high storage levels are re-

quired to enforce the policy; thus, storage costs usually became prohibi-

tive. This is because artificially high price stability leads to high

quantity variability of stodk operations.

As an exception to the above, Massell (1969) showed that gains could

be made from stabilization when storage costs are positive by using a

"price band!" type of stabilization policy. With the price band policy, the

buffer stock authority sets upper and lower price limits; buffer stock

transactions are then made such that price can vary freely (without inter-

vention) between the two limits, but it cannot move outside of these limits.

• Since Massell's work appeared, the price band concept has became very

popular in the many proposals developed in response to the world food crisis

 ,of-the-1370!s. For example, at the International-Wheat-Council discussions
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in 1975 and 1976 (see Sarris for a discussion of these), many of the large

wheat trading nations such as Canada, Australia, EEC, India, Egypt, and

Japan proposed world wheat stabilization policies which operate according

to a price band mechanism. Many economists have also advocated the price

band proposed in world food price stabilization problems (e.g., Hillman,

Johnson, and Gray). In addition, many of the recent simulation studies on

the effect of price stabilization focus on price band policies (e.g., Sarris,

Cochrane and Danin, and Sharples and Walker).

A major purpose of this paper is to show that price band policies are,

in general, inferior mechanisms for achieving optimal social welfare through

stabilization (using the same criterion of social welfare as has been used

previously). This is done by developing an alternative to the price band

policy which turns out to provide a global optimum with respect to the form

of the buffer stock intervention policy. For this reason, it is found that

the policy proposed herein is also preferred to buffer stock rules which

operate with production triggers such as the one proposed by Tweeten et al.

and the U. S. proposal presented at the International Wheat Council discus-

sions as an alternative to the plans cited above.

The buffer stock policy suggested in this paper is one which modifies

the demand curve by both rotation and stabilization and possibly altering

the curvature such'that buffer stock transactions make up the difference in

modified and actual demand. It is found, however, that the optimum policy

among this class of policies can be implemented by a simple rule such that

buffer stock transactions are a constant multiple of the difference in

actual price and "normal" price. Furthermore, a procedure for modifying the

 buffer-authority's declared normal .price _is_cle.termined. so that buffer stocks



will not be excessively accumulated or depleted over sustained periods of

time. It is interesting to note that a policy with these features was

evaluated in a simulation study by Cochrane and Danin and was found to be

preferable to no stabilization and also to the popular price band policy.

The present paper, however, shows that their result is true analytically

(simulation leaves room for doubt) and, furthermore, derives analytically

the Optimum policy among this general class of policies.

The Free-Market Model 

Suppose, as did Massell, that industry demand and supply are linear

and stochastic. Let demand be represented by

(I) p = D(q) = a - bq +

where p is price, q is quantity, both a and b are fixed, and ô is random

at the time of decision making. Let supply (or short-run industry mar-

ginal cost) be represented by

(2) C(q) = (1) + f3q + e

where f3 and (I) are fixed and E is random at the time of private decisions.

Assuming ordinary supply-and-demand conditions, both b and a are positive.
Suppose, also, that production is random so that actual production q

differs from planned production (10 because of weather or some other sto-

chastic influence. Where the difference in planned and actual production

is represented by

(3) = q -
.•••••• •• • ••••• ••••• ••••••

3.



the probability distribution of e = (6 E )1 will be characterized byl

E(e) = 0, E(ee') =

a
6 

0

0

a > 0.

Assuming competition, planned production in a free market is thus de-

termined where expected price equals expected marginal cost,

(4) E(p) = E[C(q)].

Use of (4) implies from (1) and (2) that

(5)
a - (I) q =

0 n

4.•

where n E a + b. Hence, free-market quantity and price are evident from (3)

and (1):

a - (f) + nc 
(6)

P - 
Y + n(6 - 

. (7) 

where y = aa + 14).

Partial Stabilization by Buffer Stock Operations 

Initially, the buffer policy is assumed to have the effect of modify-

ing the demand curve both by reducing instability and by altering demand

elasticity as in the earlier Massell (1970) paper. That is, the demand

curve in (1) is assumed to be altered by buffer authority intervention ob-

taining-the- modified demand given by-- -



(8) p =a
0 
-b

0 
q+

where a
0 

and b
0 
are alternative parameters set by the authority. Also, .

suppose 60 = k6 for some fixed k which is also controlled by the buffer

authority. Since the quantity demanded for consumption according to (1)

is

(9)
a - p (p) =

and the modified quantity demanded for both consumption and storage from

(8) is

(10) q*(p) =
a
o 
- p + 6

o 
b.

the net change in stocks required to enforce (8) is

S = cl*(13) - q
d
(p).

Since the demand now perceived by producers is (8) rather than (1),

planned production with partial stabilization qt can be determined by

analogy with (5):

(12) * = 
ao 44)

n
'10 V

5.

. where v = b
0. 

The quantity traded by producers and price are thus evi-

dent from (3) and (8):

q* —
ao - +
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(14) p* =
e v(60 — 1'0)

where\O = a a + b
0 

(I). The quantity demanded by consumers in (9) at p*,0 

however, is

-6 + v[a + (1 - k)6 bod
(15) q (p*) =  

by

Hence, from (11), net change in stocks is

(16)

where

(17)

(n - %)) + (1 - k)8 s q* - qd(p*) = p
s

_ y ao b - a bo

by

The short-run variance of stock transactions is thus

2
a -I- (1 - k)

2 
o'

(18)
b
2

Buffer Stock. Transactions Costs

The buffer authority in this model will generally incur transactions

losses (or gains) by purchasing excess supplies at prices different from

those at which excess demands are satisfied. Purchases of buffer stocks

are given by P E p* s (sales are represented by P < 0) and have expected

value

(19)
k(k - 1)a + b

0 
(b
0 
- b)a(S E(P) = pt +



where

(20) 8 Ps 
Pt -

7.

Consumer Effects

To evaluate the individual sector benefits of partial price stabiliza-

tion, the change in consumer and producer surplus must again be calculated.

Following Massell (1969), the gain in consumer surplus is
2

2
(p p*) 

d d 
(p) (p*)

which from (6), (7), (14), and (15) has short-run expected value

(21) E(Gc) = pc +

where

(22)

Producer Effects
910

1
2

2 
- n

2
)a ÷ (1 - k)

2
as

2b

) (a b0 Ya - 0  )
ii by

Producer gains from partial stabilization are

and have expected value

(23)_

q*

p* q* _ pq f( + 13x + E)dx

E G = p
P - g -



where

(24)

_ a0 4))
11 =g v v /

ftao 

2

0)2

a -

,nI 

(a _ A
0 0 

(a 
/

f3, n2(a -)2 - a v2(a - 0)20

2v
2

n

a 

nJ

8.

Storage Cost

Although Massell (1969) had previously considered the effects of price

stabilization with positive storage cost in the framework of this paper, his

framework does not reflect the cost of carrying many successive years of

high production into many successive years of low production versus the cost

of carrying alternating high productions into immediately following years of

low production. In a later work by Just, storage costs were assumed to d

pend at least indirectly on the length of time in storage. In this paper,

however, this dependence is assumed explicitly so that storage costs during

each time period are given by the storage cost per unit p times the quantity

held in stocks during that time period,

(25) = p S.

Social Optimization

The approach in this section is to suppose a fixed stock goal toward

which the buffer authority continually attempts to move. The possibility

of determining optimal buffer stock size S will then also be discussed. The

fixed stock goal is met in expectations when

(26)
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where S is the current level of stocks. In other words the expected change

in stocks should just bring buffer stocks back to their desired size. Hence,

p
s 
is fixed, and either a

0 
or b

0 
can be eliminated using (17). Solving for

a
0 

obtains

(27) a

which implies that

(28)

(29)

b v ps - gbo - b) a(a - b0)

• n

6

= (a - .15 + b

abil q5+f3a

Hence, using (20), (22), (24), (28), and (29), it becomes apparent that

(30)

(32)

t

2
b P (a a - (15)P

S.

- ps) (2ab b ps)

2
2

2 2
4. 

ab us + 2a b(a - s
Pg 2

2n

Before maximizing benefits with this policy, two additional considera-

tions are needed. First, some constraint must be imposed to ensure that a

buffer stock policy is not imposed which may (with nonnegligible probability)

require more stocks than are currently available. Otherwise, the advertised

policy may not actually be in effect anyway. Second, the repercussions of
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this period's buffer policy on future periods must also be considered. Sup-

pose, for political reasons, that the buffer authority is constrained so

that its attempted stock size must at least satisfy some constant (1) times

the variance a
s 

of buffer authority transactions with whatever policy is

selected. If the distributions of and ô are such that only finite and

6 are possible, then this constraint may simply require that stocks can never

be depleted by chance and, thus, render the buffer stock policy inoperative.

The maximization problem, ignoring repercussions in future periods, thus

becomes*

Max E(G) = E(G ) + E(G ) - E(P) - C
sk,bep

subject to the constraint imposed on the buffer authority S = as. The

constraint can be imposed by substituting for C
s 

according to (25) and (26)

which implies that

Cs = P(g - P ) = P as - P us.

Finally, consider the extent to which future periods are affected by

this period's policy. Future periods are affected by the amount of stocks
„.

carried over. From (16) and (26), it is apparent that expected stocks for

the next period are E(S + s) = S + ps = §, and the variance is as. Assum-

ing the policy in (26) will also be followed next period, the desired stock

transaction p* for the next period (corresponding to p
s 
for this period)

will be

_ (n - + (1 - k)S (34) p* = (S s) = - (s -
s
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The. effects of changes in the distribution of s on next period's expected

gains can be examined by an analogy with this period's gains E(G) if ps is

replaced by p: and and CS are serially uncorrelated. The only changes in

the next period's expected gains which depend on this period's policy (i.e.,

on ,the distribution of p*) relate to the terms p
t' 

p
c' 

and p . Using aster-
s

isks to denote the next period's values in (30), (31), and (32), using (34)

and taking expectations implies

a b a
E(pt) = n s

E(pV =
4ab - b a2 a

s

2
2

f3 b
2 
a

E(p*) =
2

2 s

since E(p*) = 0 in (34). Hence, the next period's expected gains are

(DE(G*) = K P aS

where K is a constant with respect to this period's policy controls. Note*

that expected storage costs for the succeeding period are

E(Cise) = Etp(S + s)] = p = p cD as

since E(p) = ; thus, only p as enters E(G*).

Since the distributions of stocks beyond the next period are not af-

fected by this period's policy when (26) is imposed, an appropriate objective
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is thus to maximize E(G) E(G*)/(1 r) subject to (33) where r is the

social discount rate. Kuhn-Tucker conditions indicate optimum gains

where

(35)

3E(G) +  1  3E(G*) 0, k 3E(G) 1  3E(G*))
= oak 1 + r Dk ( ak 1 + r ak

3E(G) ÷  1  n 
(G*)> 0 b 1  DE (G*) 

= O.31) 1 r 31)
o 

— 0(
3E(G) + 
3b 1 + r al)

Using (19), (21), (23), (30)-(32), and (18) obtains

ka k)a6 (;) 3aDE(G) _ s 3E(G*) Sb . p 
) 

s 
3a 
s 

2(1 -

ak b P ' 3k 2n 3k 
=  

b
2

(36)

a
3E(G) 0 

3a
s 3E(G*) . (3 b ) 

3a
s 

3a
s 

2(b - bo
= 

)a,
_

P 3b 1)0 3 2nab
o . 

ab
o
'

0 b
2

The implicit simple calculus conditions in (35) can be imposed for

maximization so long as the indicated optimum controls are.positive. One

finds from

3E(G) 1  3E(G*)
-

(G) 1  3E(G*) 0, = 03k 1 + r 3k 3b 1 + r ab

using (36) that

(37) Bb + 2pric1)(2 + r) k = K =
(31) + (1 + Onb + 2pn(D(2 + 

b
0 
= E

o 
K b

where obviously E, 17.0 > o. It can also be verified that the appropriate

second-order conditions hold throughout the necessary range (k, 130 > 0).


