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Relative Price Dynamics and Monetary Policy: Evidence from Directed Graphs 

 

1.  Introduction 

The nature of the dynamic linkages between monetary policy and the agricultural sector 

has been one of the most debated in the recent past, yet with little consensus. Central to this 

debate is the question of whether the responses of agricultural prices to monetary policy shocks 

differ from the responses of prices in the rest of the economy.  This question is important given 

the increasing dependence of agriculture on international markets and the potential impacts of 

changes in macroeconomic variables such as interest rates, exchange rates, and foreign income 

growth patterns.  The importance of macroeconomic policy linkages to agriculture and trade is 

further emphasized by the reduction in foreign demand for U.S farm exports in the aftermath of 

the recent Asian financial crisis.  Although most theoretical models advocate money neutrality 

(i.e. money does not affect prices) in the long, Bordo’s work showed that changes in the money 

supply can induce changes in the relative prices in the short-run.   

Currently there are several alternative approaches used by researchers to evaluate the 

timing and magnitude of macroeconomic policy variables on agriculture.  On the one hand, there 

are models based on Granger’s approach to testing for causality.  Within this scheme, F-tests 

could be used to infer the direction of causality between U.S. money supply and agricultural 

prices (Barnett, Bessler, and Thompson; Lapp).  On the other hand, the approach favored by 

most researchers is to use vector autoregression (VAR) or its variants (error correction and 

cointegration models) to identify the response of agricultural prices to changes in 

macroeconomic variables (Bessler; Devadoss and Meyers; Taylor and Spriggs; Orden and 

Fackler; Robertson and Orden; Robertson and Orden; Saghaian, Reed, and Marchant).   
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VAR models are widely used in empirical research because they require the use of 

minimal zero restrictions in contrast to more traditional over-identified and less dynamic 

econometric models. Some (Cooley and Dwyer; Cooley and LeRoy) have argued that, while 

VAR models may be useful for forecasting, they are not appropriate for policy analysis. As 

VARs represent summaries of the correlation structure embedded in observational data (non-

experimental data), they cannot be interpreted independently of a maintained structural model.  

In other words, explicit zero-type restrictions will need to be imposed on at least some 

components of the VAR. Standard practice is to identify VAR models through Choleski 

decomposition of the covariance matrix.  This is implicitly imposing a recursive structure for the 

economy.   

Sims (1986) and others have noted that when there is contemporaneous correlation 

among variables, the choice of an ordering in the Choleski decomposition may make a 

significant difference for interpretation of impulse responses and forecast error variance 

decompositions.   As an alternative to the Choleski decomposition, some researchers (Sims, 

1983; Bernanke; Blanchard and Quah) suggest the use of orthogonalizations that allow the 

researcher to impose over-identifying restrictions on the model.  We follow the literature and 

label these models as structural vector autoregressions (SVARs) as they rely on prior theory as 

the source of their identifying restrictions.  Bernanke's approach achieves identification via the 

assumption that distinct, mutually orthogonal, behavioral shocks drive the model, and that 

lagged relationships among the variables are not restricted.  Although the "Bernanke 

decomposition" relaxes the assumption of a just-identified structure for the VAR innovations, it 

still requires imposing a particular causal ordering of the variables which may be itself arbitrary, 

as theory may not always yield a clear identifying structure (Cooley and Dwyer).   
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 The purpose of this paper is to reinvestigate the question of how agricultural prices 

respond to monetary policy relative to nonagricultural prices, while improving on previous work 

through the application of recent advances in time series statistical techniques that involves the 

combining of error correction modeling and directed acyclic graphs.  Specifically, the proposed 

method consists of supplementing Johansen’s cointegration procedure with a directed acyclic 

graph-based decomposition and rules of inference in linear time-series with unit roots.  Although 

pplications of directed graphs to VAR model identification are not commonplace, a similar 

procedure has been suggested in Swanson and Granger. Their procedure considers only first 

order conditional correlation, and involves more subjective insight by the researcher to achieve a 

"structural recursive ordering". One advantage of using directed graphs is that results based on 

properties of the data can be compared to a priori knowledge of a structural model suggested by 

economic theory or subjective intuition. Specifically, identification is achieved by modeling the 

contemporaneous innovations from a VAR model with directed acyclic graphs, as recently 

presented in Spirtes, Glymour, and Scheines (2000).  Before discussing model specification and 

estimation, a brief overview of directed acyclic graphs is presented. 

 

2.  Directed Graphs (DAG) Theory 

Graph theory is an increasingly popular sub-field of discrete mathematics with numerous 

applications to various practical problems in the sciences and social sciences.  Graph theory can 

be divided into two branches: areas of undirected graphs and directed graphs (or digraphs). 

Although undirected graphs have been studied more extensively in the natural sciences, directed 

graphs have more relevant applications to economics and other social sciences.  Many of the 
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literature on directed graphs contain, “not only interesting theoretical results, but also important 

algorithms as well as applications.” (Ban-Jensen and Gutin, 2001) 

 Directed acyclic graphs exploit a non-time sequence asymmetry in causal relations. 

Consider a causally sufficient set of three variables X, Y and Z.  We illustrate a causal fork, X 

causes both Y and Z, as: Y X  Z.  Here the unconditional association between Y and Z is 

nonzero (as both Y and Z have a common cause in X), but the conditional association between Y 

and Z given knowledge of the common cause X, is zero: a common cause screens-off association 

between its  joint effects.  Illustrate the inverted causal fork,  both X and Z cause Y,  as:          

X  Y Z.   Here the unconditional association between X and Z is zero,  but  the conditional 

association between X and Z given the common effect Y is not zero:  a common effect does not 

screen-off association between its  joint causes.  These screening-off attributes of causal 

relations are captured in the literature of directed graphs.  

  A directed graph G is a picture representing the causal flow among a set of variables. 

More formally, it is an ordered triple <V,M,E> where V is a non-empty set of elements called 

vertices (variables), M is a non-empty set of marks (symbols attached to the end of undirected 

edges), and E is a finite set of ordered pairs of elements E called edges.   We call V the vertex-

set of G and E the edge-set of G. Vertices connected by an edge are said to be adjacent.   If we 

have a set of vertices {A, B, C, D, E}: (i) the undirected graph contains only undirected edges       

(e.g., A  B); (ii) a directed graph contains only directed edges  (e.g., B → C);  (iii) an inducing 

path graph contains both directed edges and bi-directed edges (C ↔ D); (iv) a partially oriented 

inducing path graph contains directed edges ( → ),  bi-directed edges  ( ↔ ),  non-directed edges  

(oo)  and  partially directed edges ( o→ ).   A directed acyclic graph is a directed graph that 
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contains no directed cyclic paths (an acyclic graph contains no vertex more than once).  Only 

acyclic graphs will be used in this study. 

  Directed acyclic graphs are designs for representing conditional independence as implied 

by the recursive product decomposition: 

                                            n          
Pr(x1, x2, x3, ... xn)   =   ∏ Pr(xi | pai ),            (1)      

            i=1                     
   
Where Pr is the probability of vertices x1, x2, x3, ... xn and pai the realization of some subset of the 

variables that precede (come before in a causal sense) Xi in order  (X1, X2, …, Xn).  Pearl  

proposes d-separation as a graphical characterization of conditional independence. That is, d-

separation characterizes the conditional independence relations given by equation (1). If we 

formulate a directed acyclic graph in which the variables corresponding to pai are represented as 

the parents (direct causes) of Xi, then the independencies implied by equation (4) can be read off 

the graph using the notion of d-separation (defined in Pearl): 

Definition:  Let X, Y and Z be three disjoint subsets of vertices in a directed acylic graph G, and 
let p be any path between a vertex in X and a vertex in Y, where by 'path' we mean any 
succession of edges, regardless of their directions. Z is said to block p if there is a vertex w on p 
satisfying one of the following:  (i) w has converging arrows along p, and neither w nor any of 
its descendants are on Z, or, (ii) w does not have converging arrows along p, and w is in Z.  
Further, Z is said to d-separate X from Y on graph G, written   (XmlY | Z)G , if and only if Z 
blocks every path from a vertex in X to a vertex in Y. 
 
Geiger, Verma and Pearl  (1990) show that there is a one-to-one correspondence between the set 

of conditional independencies, X ml Y | Z, implied by equation (4) and the set of triples (X, Y, Z) 

that satisfy the d-separation criterion in graph G. Essential for this connection is the following 

result: if G is a directed acyclic graph with vertex set V, A and B are in V, and H is also in V, 

then G linearly implies the correlation between A and B conditional on H is zero if and only if A 

and B are d-separated given H.   
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  Spirtes, Glymour and Scheines have incorporated the notion of d-separation into an 

algorithm (PC Algorithm) for building directed acyclic graphs, using the notion of sepset 

(defined below).   The PC algorithm is an ordered set of commands that begins with a general 

unrestricted set of relationships among variables and proceeds step-wise to remove edges 

between variables and to direct "causal flow.” The algorithm is described in more details by 

Spirtes, Glymour, Scheines.   

Briefly, one forms a complete undirected graph G on the vertex set V. The complete 

undirected graph shows an undirected edge between every variable of the system (every variable 

in V).  Edges between variables are removed sequentially based on zero correlation or partial 

correlation (conditional correlation).   The conditioning variable(s) on removed edges between 

two variables is called the sepset of the variables whose edge has been removed (for vanishing 

zero order conditioning information the sepset is the empty set).   Edges are directed by 

considering triples X  Y  Z, such that X and Y are adjacent as are Y and Z, but   X  and  Z  

are not adjacent.   Direct edges between triples:   X  Y  Z  as X → Y ← Z if Y is not in the 

sepset of X and Z.  If  X → Y, Y and Z are adjacent, X and Z are not adjacent, and there is no 

arrowhead at Y, then orient Y  Z as Y → Z.  If there is a directed path from X to Y, and an 

edge between X and Y, then direct  (X  Y) as: X →Y 

 In applications, Fisher’s z is used to test whether conditional correlations are 

significantly different from zero.  Fisher’s z can be applied to test for significance from zero; 

where z(ρ(i,j|k)n) = 1/2(n-|k|-3)1/2 x ln{(|1 + ρ(i,j|k)|) x (|1 - ρ(i,j|k)|)-1 } and n is the number of 

observations used to estimate the correlations,  ρ(i,j|k) is the population correlation between 

series i and j conditional on series k (removing the influence of series k on each i and j), and |k| 

is the number of variables in k (that we condition on).  If i,j and k are normally distributed and       
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r(i,j|k) is the sample conditional correlation of i and j given k, then the distribution of    

z(ρ(i,j|k)n) - z(r(i,j|k)n) is standard normal. 

PC algorithm can commit type I and type II errors on both edge existence (PC algorithm 

can fail to include an edge when it should include it and can include an edge when it should not) 

and edge direction (PC algorithm may fail to put an arrowhead at vertex A when it should put it 

at vertex A and PC algorithm may put an arrowhead at A when, in fact, it should not have put an 

arrowhead there).  Sprites, Glymour and Scheines have explored several versions of PC 

algorithm on simulated data with respect to errors on both edge inclusion (yes or no) and 

direction (arrowhead at A or not).  They conclude that there is little chance of the algorithm 

including an edge that is not in the “true” model.  However, there is, with small sample sizes 

(less than say 200 observations) considerable chance that the algorithm will omit an edge that 

belongs in the model.   

Further, arrowhead commission errors (putting an arrowhead where it does not belong) 

appear to be more likely than edge commission errors (putting an edge where it does not belong).  

Accordingly, the authors conclude: “In order for the method to converge to correct decisions 

with probability 1, the significance level used in making decisions should decrease as the sample 

size increases, and the use of higher significance levels (e.g. 0.2 at sample sizes less than 100, 

and 0.1 at sample sizes between 100 and 300) may improve performance at small sample sizes.” 

(Sprites, Glymour and Scheines,  p. 116) 
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3.  Empirical Model and Analysis 

Data and Integration Properties  

The data set used in this study are money supply, M1, short-term interest rates, TB, real 

trade weighted exchange rates, ER, industrial prices, IP, agricultural prices, FP.  The data are 

from the Federal Reserve Bank, St. Louis and the USDA. The data set is monthly and covers the 

period 1975:1 to 2000:12.  All data series are in natural logarithms.  In order to determine the 

order of integration, two univariate unit root tests were examined for each of the five series: the 

augmented Dickey-Fuller test (Dickey and Fuller) and the Phillip and Perron non-parametric 

test.  Both testing procedures are based on the null hypothesis that a unit root exists in the 

autoregressive representation of the series.  Results shown in Table 1 suggest that all the 

variables are non-stationary in levels, but the null hypothesis of a unit root could not be rejected 

for the first differences. Unit root tests results indicate that the time series are integrated of order 

one.  This finding suggests that cointegration (or an error correction) model specification is 

appropriate for investigating the dynamic relationships among the variables in this system of five 

variables. 

 

Long-run Analysis 
 

The concept of cointegration is intuitively appealing because it is supported by the notion of 

long-run equilibrium in economic theory.  While variables in a system may fluctuate in the short-

run, they are expected to return to their steady state in the long-run. A common method for 

testing for cointegration between economic series is the Johansen (1991) and Johansen and 

Juselius (1992) maximum likelihood (ML) procedure which allows for simultaneous analysis of 

both short-run and long-run phenomenon.  Johansen and Juselius (1992) modeled time series as 
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reduced rank regression in which they computed the ML estimates in the multivariate 

cointegration model with Gaussian errors.  The model is a reformulation of a VAR(k) into a 

vector error correction (VECM) representation given by: 

     (2) ttit

p

i
it XXX εµ +Π+∆Γ+=∆ −−

−

=
∑ 1

1

1

where Xt is an (nx1) column vector of p variables, µ is an (nx1) vector of constant terms, Γ and 

Π represent coefficient matrices, ∆ is a difference operator, k denotes the lag length, and εt is 

i.i.d. p-dimensional  Gaussian error with mean zero and variance matrix (white noise 

disturbance term).  The coefficient matrix Π is known as the impact matrix and it contains 

information about the long-run relationships.  

Λ

Equation (2) resembles a VAR model in first differences, except for the inclusion of the 

lagged level of Xt-1, an error correction term, which will contain information about the long-run 

among variables in the vector Xt.  This way of specifying the system contains information on 

both the short- and long-run adjustment to changes in Xt through the estimates of Γ and Π 

respectively. The VECM equation above allows for three model specifications:  (a) if Π  is of 

full rank, then Xt is stationary in levels and a VAR in levels is an appropriate model; (b) if Π  

has zero rank, then it contains no long-run information, and the appropriate model is a VAR in 

first differences (implies variables are not cointegrated);  (c) if the rank of  is a positive 

number, r and is less than p (where p is the number of variables in the system), there exists 

matrices 

Π

α  and β , with dimensions (p x r), such that .βα ′=Π  In this representation β contains 

the coefficients of the r distinct long-run cointegrating vectors that render tX'β  stationary, even 

though Xt is itself non-stationary, and α contains the short-run speed of adjustment coefficients 

for the equations in the system.  
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Johansen’s methodology requires the estimation of the VAR equation (2) and the 

residuals are then used to compute two likelihood ratio (LR) test statistics that can be used in the 

determination of the unique cointegrating vectors of Xt. The first test which considers the 

hypothesis that the rank of Π is less than or equal to r cointegrating vectors is given by the trace 

test below:  

   =Trace                   (3) ∑
+=

−−
n

ri
iT

1
)1ln( λ

The second test statistic is known as the maximal eigenvalue test which computes the null 

hypothesis that there are exactly r cointegrating vectors in Xt and is given by: 

 maxλ = -T ln(1-λr).     (4) 

The distributions for these tests are not given by the usual chi-squared distributions. The 

calculations for the asymptotic critical values for likelihood ratio tests were done via numerical 

simulations by Johansen and Juselius (1990) and Osterwald-Lenum (1992).   

Two alternative order selection criteria are applied to an unrestricted VAR model in order 

to determine the appropriate lag length.  Both the Schwarz BIC, Hannan-Quinn HQ information 

criteria suggest using a lag length of two (which has white noise residuals).   Subsequent analysis 

proceed with the use of VAR with lag length k=2.  Results of cointegration rank by the Johansen 

and Juselius (1990) approach are presented in Table 2.  Evidence from both the trace and 

maxλ test statistics suggests that there is at most one cointegrating vector present in the system.  

This finding is consistent with results from similar analysis by Saghaian, et al. that also found 

evidence of three cointegration vectors.  Since the variables in the system are cointegrated, it is 

best to estimate models with error correction terms included to capture long-run relationships.  
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Therefore a five-variable VECM was fitted to natural logarithms of the 1975-2001 monthly data 

for the following variables: M1, TB, ER, IP, and FP (as previously defined). 

 

Short-run dynamics 

Like the standard VAR, the individual parameter estimates of the VECM are difficult to 

interpret. Rather, innovation accounting is the commonly used method by most researchers to 

describe the dynamic relationship among time series (Sims, 1980; Lutkepohl and Rheimers; 

Swanson and Granger; Phillips). The proper treatment of contemporaneous innovation 

correlation is very important to innovation accounting analysis.  As noted previously, earlier 

application of VAR models can be improved upon since innovation accounting based on the 

Choleski decomposition are sensitive to the ordering of variables when the residual covariance 

matrix is non-diagonal.  In this study, analysis of forecast error variance decomposition is used 

to summarize the dynamic relationship between monetary policy variables and agricultural 

prices. The contemporaneous causal structure on innovations can be identified through the 

directed graphs analysis of the correlation (covariance) matrix (Spirtes, Glymour, and Scheines; 

Pearl; Swanson and Granger; Bessler and Yang).  The application of directed graphs provides a 

data-determined solution to the basic problem of orthogonalization of residuals from the ECM 

and thus is potential helpful in obtaining more accurate impulse response analysis or forecast 

error variance decompositions of a cointegrated VAR.  First, a data-based identification 

approach using information from directed acyclic graphs is used.  Then, the standard 

identification scheme with the Choleski decomposition technique is applied to identify short-run 

dynamic structure. Finally, implications of the results for money neutrality hypothesis is 

examined by the comparing between the conclusions from the forecast error variance 

 11



decompositions produced by both the directed graphs-based Bernanke factorization and the 

Choleski factorization approaches. 

 

Directed Graphs and Innovation Accounting Analysis  

We followed the structural factorization approach commonly referred to as the "Bernanke 

ordering" which requires writing the innovation vector (e t) from the estimated error correction 

model as:  Ae t = vt, where, in our case, A is a 5x5 matrix and vt is a 5x1 vector of orthogonal 

shocks.  It was common in earlier VAR-type (vector autoregression-type) analyses to rely on a 

Choleski factorization, so that the A matrix is lower triangular, to achieve a just-identified 

system in contemporaneous time. We apply directed graph algorithms as discussed above to 

place zeros on the A matrix.  A directed graph is an assignment of causal flow (or lack thereof) 

among a set of variables (vertices) based on observed correlation and partial correlation.  The 

lower triangular elements of the correlation matrix V(corr) on innovations (errors) from the 

estimated VECM specified by equation (2), fit to 312 data points, are given as equation (5).  

Here we list the equation innovations for each column across the top of the matrix: M1 = 

innovations in money supply, TB = innovations in short-term interest rates, ER = innovations in 

exchange rates, IP = innovations in industrial prices, and FP = innovations in agricultural prices. 

For instance, the strongest pair-wise correlation (0.32) is between TB and ER.  In contrast, the 

weakest pair-wise correlation (0.01) is between M1 and FP.   

          M1        TB        ER      IP       FP   

     (5) 























−−
−
−

=

0.115.002.014.001.0
0.110.002.012.0

0.132.007.0
0.116.0

0.1

)(corrV
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Directed graph theory explicitly points out that the off-diagonal elements of the scaled 

inverse of this matrix (V or any correlation matrix) are the negatives of the partial correlation 

coefficients between the corresponding pair of variables, given the remaining variables in the 

matrix (Whittaker, page 4).  Directed graphs as given in Spirtes, Glymour, and Scheines, 

provided an algorithm (PC algorithm) for removing edges between markets and directing causal 

flow of information between markets.  As shown in Figure 1, the algorithm starts with a 

complete undirected graph, where innovations from every variable are connected with 

innovations from every other variable of the system. The algorithm removes edges sequentially 

between variables based on the observed zero correlation and partial correlation (conditional 

correlation).  Then notion of sepset is then used to assign the direction of causal flow between 

variables which remain connected after all possible conditional correlations have been passed as 

nonzero. 

 The innovation correlation matrix given by equation (5) is used as the starting point as  

the PC algorithm (in TETRAD II software) is applied to these correlations. As suggested by 

Spirtes, Glymour, and Scheines, various levels of significance are considered in an attempt to 

achieve an unambiguous causal structure of the variables in contemporaneous time.  Figures 2, 3, 

and 4 present graphs on innovations from the five-variable VECM at the following nominal 

levels of significance: .05, .10, and .20.   As the TETRAD II search algorithm involves multiple 

hypothesis testing for edge removal, the final significance level is generally larger than that 

reported as nominal.  Although 20 percent is a rather high significance level, it provides 

important insight on the causal flow from industrial prices to exchange rates.  Presenting results 

for alternative levels of significance allows the researcher to quantitatively assess the robustness 

of his/her results with respect to significance levels. At the 5 and 10 percent significance levels 
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the directed edges are given in Figures 2 and 3.  The resulting graphs are identical, indicating 

directed edges from interest rates to exchange rates and agricultural prices; directed edges from 

money supply to industrial prices and from industrial prices to agricultural prices.  There were 

additional edges, though undirected, among industrial prices and exchange rates and among 

interest rates and money supply.  Since there is an undirected edge connecting these variables, 

we know that there is a relationship between them, but we cannot say which variable is causal.      

Subsequent analysis in this paper is based on directed graphs at the 5 percent level.  

 This section analyzes the dynamic effects of the structural innovations on the endogenous 

variables.  The directed graph is used to specify the causal path for the ordering of the Bernanke 

decomposition of contemporaneous innovations.  Tables 3 contains the forecast error variance 

decompositions (FEVD) associated with the error correction model under the ordering of 

innovations as generated by the directed graph given in Figure 2.  FEVD is the contribution of 

each source of innovations to the variance of the n-period ahead forecast error for each 

endogenous variable for horizons 0, 1, 11, 23, and 35 months.  Money supply is obviously 

exogenous in contemporaneous time since it explains 100 percent of its own variation at zero-

step horizon.  But at longer horizon of 35 months, about 44 percent of the variation in money is 

jointly explained by interest rates and agricultural prices.  Interest rate is also exogenous at at 

zero-step horizon.  In the long run (3 years), over 35 percent of the variability in interest rates is 

explained by industrial prices while another 18 percent is explained by exchange rates.  Except 

for the notable contributions from interest rates, variation in exchange rates is mostly determined 

by its own innovations.  This is particularly so in the horizons of 0 and 1 month (87-89 percent).  
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 Industrial prices are nearly exogenous in contemporaneous time, but at longer horizons, 

exchange rates is the only variable that account for the observed variation in industrial prices.  

Similarly, exchange rates also account for a notable portion of the variation in agricultural 

prices.  In the long run, over 41 percent of the variability in agricultural prices is explained by 

exchange rates.  The role of exchange rates in determining variation in agricultural prices is 

plausible given the importance of export markets to farm products.  The relatively insignificant 

contributions from both money supply and interest rates lend support to the money neutrality 

hypothesis that claims that claims that money does not affect the relative price level in the long 

run.   

Table 4 shows the FEVDs based on the standard Choleski decomposition approach.  The 

recursive structural model has the following variable ordering: M1, TB, ER, IP, and FP.  This 

ordering is consistent with that of active money hypothesis used in most previous studies 

(Bessler; Devadoss and Meyer; Orden and Fackler). This ordering also reflects an hypothesis of 

a goods sector with sluggish adjustment. In contrast to relative prices, the monetary 

macroeconomic variables are assumed to be predetermined.  The FEVD results from both 

decomposition approaches are rather similar. Like the previously reported results based on 

directed graphs, M1, TB, and ER seem to be exogenous in contemporaneous time.  However, at 

longer horizons, other variables influence these three variables. Particularly, the FEVD results 

show a stronger influence of IP in explaining the variations in TB (62.2 percent versus 35.8 

percent).  Very little of the variations in IP and FP are explained by fluctuations in M! or TB.  

This finding provides empirical support for the money neutrality hypothesis. 
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4.  Concluding Remarks 
 

The objective of the research reported in this paper is to reexamine the dynamic 

relationship between agricultural prices and monetary macroeconomic policy variables. The 

main contribution of this study is in introducing an alternative method to identifying 

contemporaneous correlation structure in VAR-type time series models of the economy. This is 

accomplished by employing recently developed time series estimation techniques via the 

combination of error correction modeling and directed graphs techniques.   To determine 

whether money neutrality hypothesis is consistent with U.S. data, initially a vector error 

correction model was specified for money supply, M1, interest rate, TB, exchange rates, ER, 

industrial prices, IP, and agricultural prices, FP.  The use of an error correction model 

specification allows us to distinguish between long-run and short-run phenomena.   

Long run equilibrium relationship is analyzed by applying cointegration analysis. 

Johansen’s cointegration test result show that three cointegrating vectors are present implying 

the existence of a long-run steady state among the variables in the system Next, short-run 

dynamics is investigated through a comparative analysis of two alternative VAR identification 

approaches:  i) Choleski factorization;  and ii) Bernanke structural factorization augmented with 

causal flow information from directed graphs.  These two methodological procedures were then 

used analyze the variance decompositions which then provide insight on the monetary policy 

impact on agricultural prices.  Results from variance decomposition analysis provide empirical 

support for the money neutrality hypothesis.  Additional research is still needed to assess the 

robustness of the directed graph technique under alternative assumptions and estimation time 

periods.  
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Table 1.  Unit Roots Tests
 Dickey-Fuller Phillips-Perron

Levels
M1 0.81 1.86
TB -2.52 -2.51
ER -1.35 -1.27
FP -2.66 -2.80
IP -2.70 -0.93

First differences
∆M1 -5.56 ** -9.70 **

∆TB -8.12 ** -11.84 **

∆ER -8.40 ** -12.87 **

∆FP  -9.31 ** -15.43 **

∆IP -4.43 ** 8.24 **

Notes: 
** denote  that a test statistic is significant at the 5 % level. 
The optimal lag lengths for ADF test statistic was
selected based on mimimizing the AIC and BIC criteria 
using a range of lags.  The truncation lag for the PP test
was obtained based on the Newey-West adjustment with
four lags and the conclusions are robust for an adjustment 
with lags two to six.

Table 2.  Johansen Cointegration Test Results

# of Cointegrating Trace λ-max
Vectors Statistics C(5%) Statistics C(5%)

r=0 166.11 76.07 70.41 34.40
r≤1 96. 70 53.12 45.68 ** 28.14
r≤2 50.02 34.91 30.67 22.00
r≤3 19.35 ** 19.96 12.99 ** 15.67
r≤4 6.36 9.24 6.36 9.24

Notes: 
r denotes the number of cointegrating relationships.
Critical values used are taken from Osterwald-Lenum (1992).
** indicates rejection at the 95% critical values.
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Table 3. Variance Decomposition of each series Based on Bernanke Decompositions. 

Step S.E. M1 TB ER IP FP

(M1)
0 0.004 100.000 0.000 0.000 0.000 0.000
1 0.008 96.563 3.184 0.217 0.016 0.021
11 0.025 55.669 34.117 0.584 2.820 6.810
23 0.035 51.401 34.591 0.357 2.655 10.996
35 0.041 53.022 32.322 0.579 1.973 12.105

(TB)
0 0.473 0.000 100.000 0.000 0.000 0.000
1 0.779 1.699 94.435 0.111 3.326 0.428
11 1.603 5.014 56.054 4.353 32.137 2.441
23 1.833 3.920 45.924 11.043 36.296 2.816
35 1.987 3.498 39.854 18.149 35.792 2.707

(ER)
0 0.016 0.000 10.705 89.295 0.000 0.000
1 0.026 0.106 12.406 86.763 0.024 0.701
11 0.067 0.253 11.636 83.928 1.218 2.965
23 0.082 0.168 13.076 78.618 4.280 3.857
35 0.089 0.154 15.009 71.316 8.903 4.618

(IP)
0 0.003 0.905 0.000 0.000 99.095 0.000
1 0.006 1.257 0.158 0.394 98.172 0.019
11 0.024 5.204 5.099 6.960 82.233 0.504
23 0.037 5.793 4.479 16.845 72.353 0.530
35 0.047 5.573 3.282 26.652 64.115 0.378

(FP)
0 0.021 0.017 1.523 0.000 1.833 96.628
1 0.031 0.094 1.252 0.265 2.774 95.615
11 0.052 2.868 1.813 8.776 9.125 77.418
23 0.062 2.208 1.372 29.676 13.001 53.742
35 0.070 1.764 1.151 41.414 13.074 42.596
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Table 4.  Variance Decomposition of each series Based on Choleski Decompositions. 

Step S.E. M1 TB ER IP FP

(M1)
0 0.004 100.000 0.000 0.000 0.000 0.000
1 0.007 95.498 4.126 0.219 0.133 0.023
11 0.030 53.383 33.868 2.755 5.389 4.606
23 0.047 37.884 44.285 4.269 7.237 6.326
35 0.059 32.919 47.370 7.146 5.960 6.605

(TB)
0 0.462 2.565 97.435 0.000 0.000 0.000
1 0.789 0.997 95.571 0.224 2.752 0.456
11 1.826 1.459 49.737 2.409 45.319 1.075
23 2.446 1.300 37.516 3.198 57.378 0.608
35 2.920 1.168 32.712 3.507 62.182 0.432

(ER)
0 0.016 0.549 9.632 89.819 0.000 0.000
1 0.027 0.226 14.062 84.966 0.133 0.613
11 0.077 0.925 19.243 76.785 0.163 2.884
23 0.111 0.794 23.232 72.509 0.516 2.949
35 0.136 0.673 25.276 70.271 0.880 2.900

(IP)
0 0.003 1.386 0.000 0.919 97.695 0.000
1 0.005 1.815 0.019 2.810 95.335 0.022
11 0.029 5.693 2.435 7.932 83.881 0.059
23 0.054 6.889 3.436 11.487 77.852 0.336
35 0.076 6.894 3.761 13.647 75.216 0.483

(FP)
0 0.021 0.017 2.195 0.052 2.113 95.622
1 0.030 0.071 2.211 0.028 4.033 93.657
11 0.050 2.070 1.672 9.188 10.771 76.299
23 0.068 1.703 1.189 31.506 24.654 40.948
35 0.087 2.062 0.759 40.299 31.604 25.275
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Figure 1. Complete Undirected  Graph on Innovations from VECM  
 

M1 = Money Supply;  TB = Interest Rates;   ER = Exchange Rates;   FP = Agricultural 
Prices;   IP = Industrial Prices   
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Figure 2. Directed  Graph on Innovations from VECM  (5% signifiance level) 
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Figure 3. Directed  Graph on Innovations from VECM  (10% signif. level) 
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Figure 4. Directed  Graph on Innovations from VECM  (20% signif. level) 
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