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Abstract

decomposition of input adjustments for stochastic technologies is developed and applied to

the case of actuarially fair production insurance. The decomposition consists of a pure-risk

effect and an expansion effect which are analogous to the Hicks-Allen decomposition familiar

from consumer theory.

Keywords: uncertainty, duality, state-contingent technology, input use



Duality applies under uncertainty. In particular, Chambers and Quiggin (1998) have

shown that dual cost structures exist for the continuous, stochastic technologies most fa-

miliar to agricultural economists. Beyond merely demonstrating existence, however, this

finding has important implications for the analysis of stochastic decisionmaking. Agricul-

tural economists long have intensively studied decisionmaking by producers facing stochastic

technologies. And yet, no commonly accepted body of 'stylized facts' exists for most truly

interesting formulations of this problem. Some have even questioned the relevance of the cost

minimization hypothesis for risk-averse decisionmakers (Pope and Chavas). More generally,

apart from a number of results that have been established for trivially stochastic situations,

e.g., price but not production uncertainty, there is no common agreement as to what one

can expect from a risk-averse producer facing a stochastic world.

For example, almost nothing of consequence is known about how the input utilization

of risk-averse farmers differs from that of risk-neutral farmers or about the closely related

question of how input utilization responds to the provision of insurance or income support.

Heuristically, one expects risk-neutral farmers to undertake riskier production activities that

bring with them the promise of i 'gher return. Similarly, one also expects that insuring

farmers or providing them government income support encourages them to undertake riskier

production activities. If the worst happens, they always have the government or the insurer

to fall back on. Reasoning thus, one expects that inputs that might be perceived as enhancing

the riskiness of the production outcome would be more heavily utilized. Conversely, inputs

which do little to enhance productivity, but which do act as damage-control agents, would

be expected to be used less intensively. Stated in this manner, t s would seem almost self

evident. owever, the existing literature su::ests that this is not generally the case even if

attention is restricted to single-output, single-input technologies (Quiggin 1992; Ramaswami;

Horowitz and Lichtenberg; Hennessy). Because such technologies are highly restrictive,

the natural implication seems to be that little, if anyt ng, can be said for more realistic

technologies.

Our contention is that much of this indeterminancy arises from the way in which agricul-

tural economists have modelled production uncertainty in the past. Because of the confusion

that has arisen over whether risk-averse producers minimize cost or whether duality applies
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under uncertainty, agricultural economists have overlooked a decomposition of input ad-

justments under uncertainty that sheds light on these issues. The goal of this paper is

to demonstrate the importance of the duality between cost and stochastic technologies by

suggesting such a decomposition of input adjustment under uncertainty.

The basic model is a state-contingent formulation, which encompasses both production

and price uncertainty, that allows full exploitation of the duality between the technology and

the cost structure in comparative-static analyses. We use this duality and a stochastic version

of Shephard's lemma to suggest a method for examining input adjustments under uncertainty

in a new and informative manner which closely parallels the familiar Hicksian and Slutsky

decomposition from consumer theory, but which does not rely on the single-input, single-

output stochastic production function model that has dominated many previous studies.

Hence, it can intuitively illustrated with familiar graphical techniques. After formulating

this decomposition, we illustrate its usefulness by applying it to study input utilization for

the simplest possible crop insurance problem, actuarially fair crop insurance.

State=C ntin nt T chn*

Following Chambers and Quiggin (1996, 1997, 2000), the stochastic technology is represented

by a multi-product, state-contingent input correspondence. To make this explicit, suppose

that the states of nature are given by the set ci = {1, 2, ..., S}, let x E be a vector of

inputs committed prior to the resolution of uncertainty, and let z E 11Fm's be a vector of

state-contingent outputs. So, if state s E 1 is realized (picked by 'Nature'), and the producer

has chosen the ex ante input-output combination (x, z), then the realized or ex post output

vector is zs corresponding to the sth column of z. In other words, the observed output is an

M-dimensional vector zs where 4 corresponds to the m—th output that would be produced
in state S.

More formally, the technology is represented by an input correspondence, X :

n, which maps matrices of state-contingent outputs into input sets that are capable of

producing that state-contingent output matrix. It is defined



X (z) = {x E RN+ : x can produce z}.

We impose the following axioms on X (z):

X.1 X(Omxs) = R-IT- (no fixed costs), and ON X (z) for z > Omss and z •mzs (no

free lunch).

X.2 z'< z = X (z) c X(z1).

X.3 x'> x E X (z) x' E X (z) .

X.4 AX (z) + (1 — A)X(zi) c X(Az ± (1 — A)zi) 0 < A < 1.

X.5 X (z) is closed for all z E RI4t_lx s .

The first part of X.1 says that doing nothing is always feasible, while the second part

of X.1 says that realizing a positive output in any state of nature requires the commitment

of some inputs. X.2 says that if an input combination can produce a particular matrix of

state-contingent outputs then it can always be used to produce a smaller matrix of state-

contingent outputs. X.3 implies that inputs have non-negative marginal productivity. X.4

tells us that the state-contingent technology is convex, and intuitively it leads to diminishing

marginal productivity of inputs. X.5 is a technical assumption that ensures the existence of

the revenue-cost function that we develop next.

2 The revenue-cost function

Denote by p ER±m±x s the matrix of state-contingent output prices corresponding to the matrix

of state-contingent outputs. The interpretation of p is basically the same as z. If 'Nature'

picks s E Q, then the vector of realized spot prices is IV E aZ. We assume that producers

are competitive, they take these state-contingent output prices and the prices of all inputs,

denoted by w EV4 as given. The state-contingent revenue vector r = pz E R_si_ has typical

elements of the form r, = Emirn=ipms zn,8 .

Producers will be concerned with state-contingent revenue rather than output per .se, and

it is useful to consider the revenue-cost function defined as
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C(wr, P) =min w • x : x EX (z)
rn }mszms > rs, s E S1

if there exists a feasible state-contingent output array capable of producing r and oo other-

wise. The properties of C (w, r, p) that follow from X.1-X.5 (Chambers and Quiggin, 2000)

are:

Properties of the Revenue-Cost Function (CR):

C .1C (w, r, p) is positively linearly homogeneous, non-decreasing, concave, and contin-

uous in w E EV +.

CR.2 Shephard's Lemma.

CR.3 C(w, r, p) > 0 with equality if and only if r = 0.

CR.4 r'> r = C(w, r', p)?...C(w, r, p).

C':.5 p'> p = C(w, r, p') C(w, r, p).

CR.6 C(w, r_s, Ors,, co-s, °Ras) = C(w, r_, Ors,, p_s,Ops), U > O.

C .7C(w,r,p) = C(w,r/k,p/k), k > 0.

C.8 C(w, r, p) is convex in r.

We shall typically assume that C (w, r, p) is smoothly differentiable in all state-contingent

revenues and input prices. By assuming a differentiable in revenues cost structure, we, there-

fore, rule out the stochastic-revenue function approach and the non-stochastic production

approach of Sandra°.

3 Preferences

Following Yaari (1969) and Quiggin and Chambers, the producer's preferences are repre-

sented by a continuous and increasing function, W: 528 --+ R, of s vector of state contingent

net returns

y = r— (w • x) is,

where is is the S-dimensional unit vector. The producer's preferences can thus be expressed

in terms of the revenue-cost function as

y =r C(w,r,p)13.



The producer is risk-averse with respect to the probability vector 7r if

w(91s) > W (y) , VY,

where yrs is the state-contingent outcome vector with . Esco rsyj occurring in every

state of nature. Both the usual decision-theoretic approach due to Savage and that em-

ployed here may be contrasted with the assumption, common in applied work, that there

exist known objective probabilities. ere and in the Savage approach the probabilities, be-

cause they depend on preferences, are inherently subjective. In some cases (e.g., climatic

uncertainty) where stable relative frequencies can be derived from long runs of historical

data, the assumption of known objective probabilities may be appropriate. In such cases,

we assume that all individuals would possess the same subjective probabilities.

If preferences are smoothly differentiable, the vector of subjective probabilities is unique

and proportional to the marginal rate of substitution between state-contingent incomes along

the equal-incomes vector. More concretely, without loss of generality, if preferences are

smoothly differentiable (subscripts on functions denote partial derivatives),

rs ,
14/.9 (cis)

.  
W 

(c1s)s, E 12, C E R.
LtEn

Pictorially, therefore, the fair-odds line, which gives the locus of points having the same

t 

expected value and whose slope is given by minus the relative probabilities is given by the

slope of the tangent to the producer's indifference curve at the bisector. Figure 1 illustrates.

In order to impose some structure upon preferences other than simple aversion to risk,

consider the partial ordering --<, of risky outcomes which possess a common mean for the

probability vector 7r. This partial ordering is defined by

Y -` N 311

if and only if y and y' have the same mean and y is less risky than y' in the sense of

Rothschild and Stiglitz. Chambers and Quiggin (1997) define a function IS R to be

generalized Schur-concave for 7 if y --, y' = W (y) > (y').

5



A comment about generalized Schur concavity is worthwhile. Unlike the assumption of

expected-utility maximization, generalized Schur concavity doesn't impose additive separa-

bility across states of nature. Consequently, it does not rely upon the independence axiom

which has proved vulnerable to a variety of criticisms. Even so, the expected-utility func-

tional with concave u is generalized Schur-concave as can be recognized from the result due

to Rothschild and Stiglitz that if y y' then y would be preferred to y' by all individuals

with risk-averse expected-utility preferences. More gener ly, generalized Schur concavity

characterizes a number of preference classes, which are consistent with risk-aversion in our

sense, but which are not consistent with expected utility. An example is given by individuals

with maximin preferences

W(y) min{yi,•••, Ys} •

This class of preferences is risk-averse in our sense for all possible probability vectors (note

it is not differentiable), and it is also generalized Schur concave. nother class of generalized

Schur concave preferences is the mean-variance class. More generally, virtually all preference

functions currently in use, including the rank-dependent models (Quiggin 1982, Yaari 1987)

and weighted-utility models are consistent with generalized Schur concavity.

When W is smoothly differentiable, a basic result due to Chambers and Quiggin (1997),

will prove useful:

Lemma 1 If W: --> is generalized Schur-concave and once continuously differentiable

everywhere on its domain, then

(W.9(Y) Wr(Y)N

7rs 7rr I

for all s and r.

(Ys Yr) <O,

alisk=Neutra: and TUsk-Averse Producthan Equi Thnia

We first present some basic results on the production choices of risk-neutral and risk-averse

producers.' Suppose the risk-neutral producer's subjective probabilities are given by the vec-

tor Then her first-order conditions on r may be written in the notation of complementary



1

slackness as

7r3 — Cs(w, r, p) < 0, rs >O, s E Q.

That is, the marginal cost of increasing revenue in any state is at least equal to the subjective

probability of that state. Pictorially, therefore, we represent the producer equilibrium by

a hyperplane being tangent to her isocost curve. Figure 2 illustrates. The slope of the

hyperplane is determined by the ratio of the producer's subjective probabilities, the fair-

odds line, and the isocost curve is determined by the equilibrium level of revenue-cost. This

is exactly analogous to the representation of production equilibrium in the non-stochastic,

multi-product case. Instead of determining an optimal mix of outputs as in the non-stochastic

multi-product case, however, the producer equilibrium now determines the optimal mix of

state-contingent revenues.

Summing the first-order conditions on r yields an arbitrage condition

(1) ‘N- ‘ Cs(w, r, p) >/ 4
sEn

E8E0 Cs (W ' r, p) is the marginal cost of increasing all state-contingent revenues by the same

small amount in each state of nature, i.e., it is the marginal cost of a sure increase in revenue

of one unit. Hence, (1) requires this cost be at least as large as the associated sure increase

in returns. If it were not, the decisionmaker could increase profit with probability 1. by either

expanding or decreasing all revenues equally. For an interior solution, (1) must hold as an

equality.

We refer to the set of revenue vectors r satisfying (1) as the efficient set, denoted.2, (w, p)

=, (w, p) = : Cs(w,r, p) ?._ 1} .
sEs/

The boundary of E (w, p) is the efficient frontier. Its elements are given by:

E° (w,P) = : y- cfs(w, r, p) = 1} .
4

SEn

By the homogeneity properties of C(w, r, p), E, (Ow, Op) = OE (w, p) and .E° (Ow, Op) =

9E° (w, p) , 9 > 0 (Chambers and Quiggin, 2000). The efficient set and the e cient frontier

are positively linearly homogeneous in input and output prices.
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Different risk-neutral producers may hold different subjective probabilities. Regardless

of the individual's subjective probabilities, a revenue vector r is potentially optimal for some

ral decision-maker only if (1) holds. 2E° (w, p) is thus naturally interpreted as the

collection of state-contingent revenues which are potentially expected-profit maximizing. To

see why, suppose that (1) holds as an equality for an arbitrary revenue vector, call it 1'. Now

construct a set of probabilities by setting fts = C3 (w, p) for all s. It ecause they belong

to the efficient frontier and are derived from a non-decreasing revenue-cost function, these

probabilities are positive and sum to one. Moreover, a risk-neutral individual having such

probabilities would choose I- as the expected-profit maximizing vector of state-contingent

revenues. The correspondence of the producer's subjective probabilities with these state-

contingent marginal costs then determines the optimal point on the efficient set.

Turn now to the case of generalized Schur-concave preferences. The producer chooses

state-contingent revenues to maximize:

W(Y) = 141(r — r,P)1s).

So long as the preference function is smoothly differentiable in state-contingent revenues,

then the first-order condition on T., is:

Ws (y) Cs(w, r, p)
tE0

Wt < 0, rs > 0,

with complementary slackness.

The arbitrage condition (1) can be derived as a consequence of summing these first-order

conditions

(2) EC,(w,r,p) ?_ 1.
sEn

We conclude from (2) that a producer with generalized Schur-concave preferences chooses

a revenue vector that is in the efficient set. Hence, as observed by Chambers and Quiggin

(1997), there always exists a vector of probabilities that will induce a risk-neutral individual

to choose the same production pattern as that chosen by one with generalized Schur-concave



preferences. In general, however, these probabilities derived from the efficient frontier will

not correspond to the producer's subjective probabilities unless she is herself risk-neutral.

Pictorially, this production equilibrium is illustrated by a tangency between the produc-

er's indifference curve and one of her isocost curves as illustrated in Figure 3. Tis implies,

for example, that when preferences are of the maximin form, producers completely stabi-

lize revenues and produce where the efficient frontier intersects the equal-revenue curve (the

bisector).

Several points should be made here to facilitate comparison of the risk-neutral production

pattern with that associated with generalized Schur-concave preferences. For an interior

solution, a risk-neutral producer chooses his state-contingent revenues so that for all t, s E

Cs(w,r,p) = Ct(w,r, )

71 7rt

Moreover, summing the first-order conditions for a risk-neutral producer, it follows by com-

plementary slackness that

(3) 7r3r8 Cs (w, r,
sEc2 sEn

=0.

Expression (3) requires that the marginal profitability of increasing the optimal state-contingent

revenue vector radially is zero for a risk-neutral producer.

For an interior solution, it follows from the risk averter's first-order condition and Lemma

1 that:

(4)
(Cs(w,r,p) Ct(w,r,p)\

rt) <0.

Expression (4) implies an inverse covariance between the elements of the state-contingent

revenue vector r and the vector with typical element C, (w,r,p) ence, we conclude:7r. •

(5) (E Cfs(w, r, p) rs — trt O.
sEp tE0

Expression (5) and the arbitrage condition imply that a risk averter with generalized Schur-

concave preferences will choose an optimal state-contingent revenue vector that is charac-

terized by the fact that a small radial expansion of it will lead to an increase in expected

profit.
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Generally speaking, therefore, the risk-averter does not equate his marginal rate of trans-

formation between state-contingent revenues to the ratio of probabilities as a risk-neutral

individual would. Furthermore, the risk averter operates on a smaller scale than a risk-neutral

producer in the sense that the former can radially expand his optimal state-contingent rev-

enue vector and increase profit while the latter cannot. In a word, the risk averter trades

off expected return in an effort to provide self insurance against the price and revenue risk

that he faces. And because the preference function is generalized Schur concave, then, in the

neighborhood of the equilibrium, the revenue-cost function must behave as though it, too,

were generalized Schur concave. Accordingly, in that neighborhood, there must a negative

correlation between marginal cost and the level of the state-contingent revenues.

Decomposin =put Adjustments

Our next task is to specify an algorithm for examining how input utilization responds to

the provision of crop insurance. Our starting point is the recognition via C (Shepherd's

Lemma) that optimal input demands can be recaptured directly from the revenue-cost func-

tion as

x(w,r(w, P) ,P) = VwC(w,e(w,P) ,P),

where r* (w, p) denotes the producer's optimal state-contingent revenue vector and V, de-

notes the gradient of the function with respect to w. So, for example, if input and output

prices remain constant, comparing input demands for a risk-neutral individual with those of

an individual with strictly generalized Schur-concave preferences, assuming both share the

same technology, is simply a matter of comparing the same input demand function evalu-

ated at two different optimal state-contingent revenue vectors. More generally, comparing

different input demands arising from the same technology requires the ability to compare

different state-contingent revenue vectors.

In an uncertain world, different state-contingent revenue vectors may usefully be com-

pared in two dimensions. The first compares their relative expected returns, while the latter

contains some measure of their riskiness. risk-averse inI! Ividual is, by definition, willing
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to trade off some increase in expected returns in return for an (appropriately defined) re-

duction in riskiness. Hence, it is imperative that any decomposition should recognize these

two dimensions of the decisionmaker's problem. Therefore, we decompose all comparisons

of different revenue vectors, and hence their associated input demands, into two effects. The

first is a pure risk effect which keeps means constant but allows riskiness to vary, and the

latter is an expansion effect which measures the difference in expected returns.'

Figure 4 illustrates our proposed decomposition for revenue changes. Let point A in that

figure be the risk-neutral individual's optimum and point B be the risk-averter's optimal

point. Now suppose that we want to compare these two optima and their associated input

demands. For the purpose of discussion, we will make the comparison in terms of moving

from B to A. However, it is also perfectly plausible to consider the move from A to it, but

we defer that analysis to the reader's initiative.

The decomposition we employ breaks that move down into two effects. The first is the

movement from II to the point C which is on the same fair-odds line as B. Point C has the

same expected revenue as at B, but the same revenue mix as at A (is on the same ray as A).

Because comparing points B and C involves comparing outcomes with the same mean, then

in some sense (which we define precisely in a minute) the difference between 1 and C must

be solely a difference in the riskiness of the two prospects. We shall call that comparison the

pure risk effect.

The second effect, which measures the difference in the means of the two prospects, is

associated with the movement (in this case) outward along the ray from C to point A. (A is

arrived at by deflating point C by the ratio of C's mean to It's mean.) We shall refer to this

movement in the revenue vector as the (r. elial) expansion effect. Combining these two effects

allows us to arrive at a mean-compensated decomposition of revenue and input adjustments.

To make the mean-compensated decomposition meaningful, we need a clear definition

of what it means for one state-contingent revenue vector to be riskier than another which

possesses the same mean. Following Chambers and Quiggin (2000), we define a risk ordering,

denoted w, directly in terms of the preference function W. !ence, if y and y' share a

common mean, then y w y' if W (y) > W (y'). (Strictly speaking, y w y' should be

read as y is less risky than y' for preferences W. However, we shall simply say that y is less
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risky than y".) So, in terms of Figure 4, C is riskier than B if it lies on a lower indifference

curve than B.

Now that we have defined a risk-ordering, the final piece that we need is a way to relate

that risk-ordering to input utilization. In the past, considerable attention has been devoted

to the notions of risk-reducing and risk-increasing inputs. Intuitively, these notions seem

clear: risk-reducing inputs reduce the riskiness of output, and risk-increasing inputs increase

the riskiness of state-contingent outputs. Clear as this intuition seems, writers on production

under uncertainty have struggled with formalizing a definition of risk-increasing and risk-

reducing inputs that matches this simple intuition and which accords with general notions

of increases and decreases in risk.3

The state-contingent approach adopted in this paper, however, leads to a rather different

perspective. • ather than thinking of input choices, in combination with random variation,

determining a stochastic output, we consider inputs and state-contingent outputs to be

chosen jointly, in a preference maximizing fashion subject to a state-contingent input corre-

spondence. Hence, it is natural to think in terms of complernentarity between input choices

and more or less risky state-contingent output patterns rather than in terms of simple causal

relationships between input choices and risk.

Therefore, following Chambers and Qui i (1996, 200(),4 we define input n as a risk

complement (risk substitute) at r if

r -4w rt xn(w, r', p) > xn(w,r,p) (x,„(w, r', p) ... acr(w,r,P)).

The intuition is clear. Something is a risk complement if more of it is used with more risky

state-contingent revenue vectors than with less risky state-contingent revenue vectors. Just

the reverse logic applies for a risk substitute. Because we have been able to make our notion

of 'more risky' precise and to compensate for mean differences in state-contingent revenue

vectors, this intuition accords closely with the more commonly popular notion of a risk

increasing (risk reducing) input. However, we prefer our terminology because it emphasizes

the simultaneity between the input choice and the state-contingent revenue choice, and it is

a proper risk comparison as a mean-compensation is involved.'

Several comments are in order. First, it's not a purely technological definition. It de-
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pends upon both the technology and the producer's objective function W. (Also recall that

probabilities, which are required for the mean compensation, in our framework are subjec-

tive.) Second, it's a local notion as it's expressly given at a point in state-contingent output

space. And third,

r = r

if W is generalized Schur concave. Thus, via Lemma 1 this definition leads to a natural

characterization of risk complementarity and risk substitutes in terms of partial derivatives

of input-demand functions

Lemma 2 Suppose that the revenue-cost function is twice differentiable in all its arguments.

Input n is a risk complement for a generalized Schur-concave preference structure at r

only if for all r, s E

(axn(w,r,p) 1 axn(w,r,p) 1

Or rr ars rs
(r, rs) > O.

Input n is a risk substitute for a generalized Schur-concave preference structure at r

only if for all r, s E

(axn(w,r,p) 1 axn(w,r,p) 1
(r, — rs) <0.

3r 7rr ars 71-8

From Lemma 2, axn(:''''P) 1 is inversely (positively) correlated with r, if xr, is a riskun- 7rr

substitute (complement), whence for risk substitutes

r axn(w,r,p)
ars 

rs — rrr,) < 0,
sEC2 rES1

with the reversed inequality for risk complements. In words, an input is a risk substitute if

its responsiveness to state-contingent revenue variation is large and positive for the lowest

revenue states and small, and possibly negative, for the highest income states.

This result may be interpreted intuitively as follows. If an input is a risk substitute,

it will tend to be used the most in producing the least risky revenue distributions. It is,

therefore, natural to expect it to be most positively responsive to the lowest revenue states

and the least responsive to the highest revenue states because this type of flexibility will be

associated with smoother (less risky) revenue distributions.
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5 Producer EquEnnium with Actualialy Fair :rasur=

ance

To apply our decomposition to our case study, we must first determine how producers behave

in the presence of actuarially fair insurance. We assume that the insurer is risk-neutral and

competitive. For simplicity, we assume that the insurer has the same information set as

the producer, and the producer is risk-averse for the insurer's subjective probabilities, which

we continue to denote as r . Ilecause the insurer can observe 'Nature's' draw from Q, he

can write state-contingent insurance contracts. n actuary employed by the insurer would

regard as fair any contract for which

E78/8 = 0.
s

where Is denotes the net indemnity paid by the insurance company in state s. Any equilib-

rium insurance contract offered by a competitive, risk-neutral insurance company must be

actuarially fair in this sense. To be actuarially fair, therefore, the net indemnity schedule

must involve positive payouts in some states and negative payouts in other states of nature.

We now consider how the farmer would optimally exploit the presence of a competi-

tive crop insurance market. Given the freedom to choose any actuarially fair contract, the

representative farmer's optimal production cum insurance scheme solves:

(6) max {TA/ (r + H—C (w, r, p) is) : w.,/, = o}.
1,r

Recognizing that now

S

ys . r, + I, — C (Tv, r, p) ,

shows that (6) can be rewritten after a simple change of variables as

max
y,r

W(Y):
S

7sYs =--
s

7i-8r8—C (w, r, p)

Therefore, regardless of whether her preferences are smoothly differentiable or not, the farmer

chooses her state-contingent revenue vector to

max {r
S }R-sr, — C (11v, r, P)
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Suppose that the farmer has chosen a particular state-contingent revenue vector, an indem-

nity vector, and thus a net-returns vector which is not consistent with this strategy. The

farmer can then hold her net-return vector constant while rearranging her production choices

to generate a larger amount of income than before. This extra income could then be used

to raise all state-contingent net returns thus making the farmer better off with certainty.

Because her objective function is non-decreasing in these state-contingent net incomes, she'll

choose her production vector to maximize expected profit.

Presuming she chooses the expected profit maximizing state-contingent revenue vector,

notice that by her risk aversion the indemnity schedule (evaluated at the expected profit

maximizing state-contingent revenue)

I, . 7rtrt — r3, s E a
t

dominates all others because it guarantees her a certain income of

max >7 rsr, —
r

s

which is the best that she could possibly hope for. Even a risk-neutral individual wo d

at least weakly prefer this contract to all others. Moreover, this indemnity schedule breaks

even for the insurer.

So we've established that: Risk-averse farmers who face an actuarially fair insurance

contract will produce in the same fashion as a risk-neutral farmer. In the presence of an

actuarially fair insurance market, a risk-averse farmer's production pattern is independent

of her risk preferences. An immediate implication is that a farmer's optimal revenue choice

in the presence of actuarially fair crop insurance contract belongs to the efficient set. These

results confirm, for our more general preference and production structure, the full-insurance

result of Nelson and Loehman.

Figure 5 illustrates pictorially for the case of smooth preference,s.6 The isocost curve

in that figure represents the level curve of C (w, r, p) as evaluated at the optimal level of

state-contingent production. It is drawn as tangent to the fair-odds line at the optimal state-

contingent production point (rI, r) reflecting the fact that the farmer picks her revenue

vector to maximize expected net income. The farmer will now trade with the insurance
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company along the fair-odds line until her marginal rate of substitution between state-

contingent incomes is the same as the insurer's. And since this equalization occurs at the

bisector for smooth generalized Schur-concave preferences, the producer ultimately locates

there.

7 The effect of junisuuranice on !.nputt use

Assessing the impact that actuarially fair crop insurance has on input utilization, thus,

reduces to comparing the input decisions made by a risk-neutral producer and a risk-averse

producer. Generally speaking, there are four possible outcomes when expressed in terms of

the expansion effect and the pure-risk effect. 'loth the expansion effect and the risk effect

can be positive, in which case the overall effect on an input's use is positive. The expansion

effect can be positive and the risk effect can be negative, in which case the overall effect is

ambiguous. The expansion effect can be negative and the risk effect negative, in which case

the over 1 effect is negative. And finally, the expansion effect can be negative and the risk

effect positive, in which case the overall e feet is ambiguous.

More finely, however, there exists an even larger number of possibilities. For example,

the expansion effect on input utilization could be positive because the expansion effect on

revenues is positive and the input is non-regressive to radial expansions in revenues. Alterna-

tively, the expansion effect on input utilization could be positive because the expansion effect

on revenues is negative, but the input is regressive in radial expansions of revenues. Simi-

larly, a negative effect could emerge from a positive (negative) expansion effect on revenues

and non-regressivity (regressivity) to radial expansions of revenues.

Similar ambiguities arise from the risk ei`tect as well. For example, an input could be a

risk substitute and the risk effect in terms of revenues could be associated with an increase

in risk. The input risk e ect would then be negative. The other obvious possibilities can be

enumerated by the reader.

Our strategy for sorting through the possible results is somewhat different than the

strategy typically pursued in previous studies. There the approach is to impose additional

structure upon the producer's preferences, for example, constant absolute risk aversion or

16



,

decreasing absolute risk aversion. The results, thus obtained, are limiting for at least two

reasons. First, compared to the preference structure used here, the preference structure

most typically used in other studies (expected utility) is quite restrictive because it imposes

additive separability across states of nature. Moreover, it is widely recognized to rely on a

weak conceptual basis because empirical evidence routinely refutes the crucial independence

axiom underlying expected-utility theory. Thus, these studies are in the position of imposing

additional structure on a model that has already been demonstrated to be empirically flawed.

Second, the production structure that underlies all these studies is even more restrictive

than the preference structure. It imposes an extreme form of non-substitutability between

state-contingent outputs (Chambers and Quiggin, 1998). And as Chambers and Quiggin

(2000) demonstrate, the differences between a risk-neutral producer's production pattern

and a risk-averter's production pattern in that framework ultimately reduce to determining

whether the risk-averter produces more or less of a single reference state-contingent revenue

which automatically determines all other revenue levels and the level of input utilization. In

effect, the stochastic production function model can always be reduced to a trivial single-

input problem. Given the extreme restrictiveness of the production model and the fact that

input commitment really plays no role in determining the inherent riskiness of the state-

contingent revenue vector, it's not surprising, therefore, that one is forced to place even

more stringent restrictions on preferences to obtain results on input use.

We pursue an alternative strategy and place no restrictions on preferences other than that

they be consistent with risk aversion and generalized Schur concavity. Instead, we examine

restrictions on the shape of the isocost frontiers for the state-contingent technology.

The first restriction that we consider is what Chambers and Quiggin (2000) have referred

to as constant relative riskiness of the revenue-cost function.' Constant relative riskiness, in

the current context, is equivalent to requiring that the revenue-cost function be homothetic in

state-contingent revenues. The main economic consequence of this fact is that the expansion

path in state-contingent revenue space, defined by the locus of points which are expected-

revenue maximizing for fixed levels of revenue cost, is linear. This happens because isocost

frontiers for this technology are radial blow-ups of a reference isocost curve.'

Let the farmer's revenue vector in the absence of insurance be denoted by rA and the
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farmer's revenue vector in the presence of actuarially fair insurance be denoted by riF. Then,

as discussed earlier, notice that the effect of providing insurance can be broken down into two

lls.1parts, the mean-compensated move from rA SE 'fto — 7,37,p, rF , which we refer to as the mean-Li.E.

compensated revenue vector, and the radial movement from this mean-compensated revenue

vector to rF. The mean-compensated revenue vector corresponds to point C in Figure 4.

Because the the mean-compensated revenue vector is either a radial expansion or a radial

contraction of rF, it lies on the producer's expansion path. Therefore, the mean-compensated

revenue vector must be the most profitable state-contingent revenue combination for the

revenue-cost level

C
EoEn 'n'Grfj;

sect wsr
F
r , P

The mean-compensated revenue vector, however, has the same expected revenue as rA.

Thus, the cost associated with rA must be at least as large as that associated with the mean-

compensated revenue vector. If it were not, the same expected revenue could be obtained

from rA at a cost level lower than C (w
' 
E °En w cril' rF ID) it ut this contradicts the fact
E.En worr °

that the the mean-compensated revenue vector lies on the firm's expansion path. Figure 6

illustrates this fact by having the point of intersection between the fair-odds line through rA

and the risk-neutral expansion path lie below the firm's isocost curve for rA.

Revealed-preference arguments, therefore, lead to the conclusion that

rA_c (w,rA,p) ..< EaEci r.ree` rF _ c (w , rA , p) .

sEn wsrY
If this ordering of the outcomes did not hold, then rA would not be the optimal choice

for a risk averter. Notice that the preceding arguments have established that the mean-

compensated revenue vector is less costly than rA, thus it represents a feasible choice for

t 's level of revenue cost. Hence, we conclude that

A _i 
E.Era wer,

r ..-..w ,_, 
Liao/ 

wsrir rF .

From this observation we can state the following result.

Result 1 If the producer's revenue-cost function exhibits constant relative riskiness, the

pure-risk effect of the provision of actuarially fair insurance on an input is positive if

the input is a risk complement and negative if the input is a risk substitute.
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Generally speaking, it seems that the expansion effect for a technology exhibiting constant

relative riskiness can require either a shrinking or an expansion of the risk-neutral optimum

depending upon the rate at which marginal costs of the state-contingent outputs rise. So, as

a general matter, we cannot make a clear pronouncement as to what will be the effect of the

provision of crop insurance for a producer facing such a technology without placing further

structure upon the problem.

There does exist a class of technologies for which one can obtain clear results about

both the expansion and the pure risk effects. That technology is the member of the class of

translation-homothetic9 technologies (Chambers and Fare), which Chambers and Quiggin

(2000) refer to as exhibiting constant absolute riskiness. The technology exhibits constant

absolute riskiness if

where

qw,r,p) = 0 (w,T (r, p, w) ,p)

T (r ± 61s, p, w) = T (r, p, w) ± s,

T (Ar ,Ap,w) = AT (r.,w),  T (r,p,Aw) = T (r ) A> 0,

and 0 (w, T (r, p, w) , p) is positively linearly homogeneous in input prices, homogeneous of

degree zero in T (r, p, w) and p, non-decreasing and convex in T (r, p, w), non-increasing in

p. T (r, p, w) is non-decreasing and convex in r.

Intuitively, technologies which exhibit constant absolute riskiness have isocost curves

which are par.1 lel to one another as one moves in a direction parallel to the bi-sector.

Therefore, increasing revenue by the same amount in all states of nature has no effect on the

rate at which state-contingent revenues substitute for one another in the technology. In that

sense, constant absolute riskiness is the natural production analogue of general risk-averse

preferences which exhibit constant absolute risk aversion (Quiggin and Chambers).

The most important property that technologies exhibiting constant absolute riskiness

have for state-contingent technologies is that the cost level corresponding to the e cient

set is unique for such technologies. Hence, in this special case, the e cient set corresponds
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exactly to a unique isocost contour. The easiest way to discern this property is to differentiate

both sides of the expression

T (r ± 61s , p , w) = T (1., p, w) + 6

with respect to 6 and evaluate the resulting directional derivative at 6 = 0 to obtain

ETs (r, p, w) = 1.
sEn

Using this fact and our definition of constant absolute riskiness the arbitrage condition (1)

can, in this case, be written as

OT (w ,T (r , p,w) , p) _?_ 1.

Thus, assuming an interior solution the arbitrage condition determines a unique level of T

and thus of revenue cost. In this context, notice that T may naturally be thought of as a

revenue aggregate which has the property that increasing all state-contingent revenues by

one unit increases it by one unit. For technologies exhibiting constant absolute riskiness, (1)

simply reduces to equating the marginal cost of that revenue aggregate to one.

ecause both risk averters and risk-neutral individuals produce in the efficient set, itID
IS

follows that:

Result 2 If the technology exhibits constant absolute riskiness, the introduction of actuar-

ially fair production insurance does not affect the level of revenue cost incurred by a

risk-averse entrepreneur.

Accordingly, the only effect that production insurance has on the risk-averse entrepreneur

is to change his optimal revenue mix to that associated with a risk-neutral individual. T 11s

brings with it an increase in expected revenue, at no additional cost, that can be used along

with the production insurance to enhance the producer's overall welfare.

The production decisions for a risk-averse producer in the presence of insurance and in its

absence can be illustrated graphically as in Figure 7 when the technology exhibits constant

absolute riskiness. There the producer produces at rF when insurance is provided and at rA

in its absence. It is pictorially obvious and gener i ly true that

LIE) 7 7 - sr .‘

(7)  F <1.
EsEn 787-;

_ -
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The inequality follows from the fact that rF must be associated with the highest expected

revenue consistent with the constant level of cost.

Result 3 If the technology exhibits constant absolute riskiness, the introduction of actuar-

ially fair production insurance increases the level of expected revenue produced by a

risk-averse producer.

Moreover, a revealed preference argument exactly parallel to the one used in the discussion

of constant relative riskiness reveals that

(8)
E0E0

Ar  r F .
EsEo Trsr;

Consequences of (8) and (7) are

Result 4 If the technology exhibits constant absolute riskiness, then the pure risk effect on

an input is positive (negative) if the input is a risk complement (risk substitute).

Result 5 If the technology exhibits constant absolute riskiness, the expansion effect on an

input is positive (negative) if the input is non-regressive (regressive) in radial expan-

sions of revenue.

Because there exist unambiguous results for both the pure-risk and expansion effects on

input utilization, we have:

rollary 1 If the technology exhibits constant absolute ris ness, an input's utilization

increases as a result of the introduction of actuarially fair insurance if the input is a

risk complement and it is non-regressive in radial expansions of the state-contingent

revenue vector.

Corollary 2 If the technology exhibits constant absolute riskiness, an input's utilization

decreases as a result of the introduction of actuarially fair insurance if the input is a

risk substitute and it is regressive in radial expansions of the state-contingent revenue

vector.
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8 ascusson of -lesu-ts

The results that we have presented show that regardless of the preference structure, there

are a number of things which can be said about the differences between input use for risk-

neutral and risk-averse individuals or about input response to the provision of actuarially

fair insurance. For example, consider the case of a technology that exhibits constant absolute

riskiness. Then it follows from our discussion that any input which is both a risk complement

and which is not radially regressive in revenues will be used more heavily in the presence of

insurance than in its absence.

So, intuitively, one might think in terms of an input like chemical fertilizer which would

seem to be a natural risk complement and which empirical evidence would also suggest is

not regressive. Then, one could immediately conclude that an individual using a technology

characterized by constant absolute riskiness would use more chemical fertilizer in the presence

of insurance. This coincides nicely with popular wisdom on such inputs. Conversely, one

sees that the pure-risk effect will lead the producer to utilize less risk-substitute inputs,

such as pesticides. Iut more generally, the introduction of insurance might ultimately force

even these inputs' utilization to rise as a result of the expansion effect if pesticides are not

regressive to radial expansions of the state-contingent revenues. The most obvious criticism

of traditional comparative-static analyses based on the notions of risk-increasing and risk-

reducing inputs is that they confound risk effects with expansion effects.

For the class of technologies exhibiting constant relative riskiness, we see that the pure

risk effect is always distinguishable and unambiguous. Thus the pure risk effect would push

a farmer to use more risk-complementary inputs in the presence of insurance and fewer risk

substitutes.

Perhaps the most important aspect of our results is that they establish that neither risk

complementarity nor risk substitutability is sufficient to determine whether an input's uti-

lization increases or decreases as a result of the provision of insurance. While this may seem

counterintuitive, it is quite reasonable once one recognizes that provision of insurance evokes

at least two responses on the part of producers. The first, which we have c led the pure-risk

effect, is the change in the mix of state-contingent revenues which changes the riskiness (from
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the producer's perspective) of the optimal state-contingent revenue bundle. Generally, we

expect the producer to move to a more risky revenue bundle as market provision of insurance

substitutes for the insurer's need to self insure. It is for this effect where the notions of risk

complementarity and risk substitutability are most relevant. But providing insurance also

influences the producer's scale of operation, and these scale adjustments can either reinforce

or modulate the pure-risk adjustment depending upon the input's responsiveness to radial

changes in the revenue vector.

Our results on input adjustment to insurance are most directly comparable with the

results of Horowitz and Lichtenberg and Rarnaswami who study input and supply respon-

siveness to the provision of insurance in the presence of moral hazard. loth of those papers

report sufficient conditions for providing insurance to increase the use of a single scalar in-

put. For example, Ramaswami shows that if that input is risk-reducing, in his sense, and

preferences are expected-utility preferences exhibiting non-increasing absolute risk aversion,

its use will fall as a result of an introduction of crop insurance. Notice, in particular, that

this finding also implies under these circumstances that output or revenue will fall in every

state of nature as a result of the introduction of insurance. This is a necessary consequence

of the single-input assumption.

In our study, to concentrate our focus on the construction of an analytical framework we

have abstracted from the moral-hazard problem by assuming that the insurer can write state-

contingent contracts. However, it follows from results reported in Chambers and Quiggin

(2000, Chapter 7) that provision of the production insurance of the type considered by

Ramaswami moves the producer out of the efficient set. This is the natural extension of

the Ramaswami result to the multiple-output, multiple-input technology that we consider.

Moreover, one can show for technologies exhibiting constant absolute riskiness that revenue

cost falls after such insurance is provided.10 Given these results, one can then sort out the

effects on individual inputs by using the methodology developed above. Of course, if one

is willing to impose even more structure upon preferences (for example, constant absolute

risk aversion) while still not requiring maximisation of expected utility, one can obtain even

sharper results.
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9 ConclucJE.n.Z 1° marks

This This paper studies input adjustments by risk-averse decisionmakers using the state-contingent

formulation of Chambers and Quiggin (1992, 1996, 1997, 2000). This framework allows us

to rely on a version of Shephard's lemma for stochastic technologies that does not rely on

the single-output stochastic production function model that has dominated most previous

studies. The only restriction placed upon preferences is that they be consistent with a very

mild form of risk aversion.

Our principal contribution is to develop a framework for analyzing input adjustment

under uncertainty that can be usefully illustrated with graphical techniques. Itecause the

focus is on developing a method for decomposing and analyzing input adjustments, in our

application of the method, we have only considered the simplest type of insurance market,

one which is complete and actuarially fair. The analysis of incomplete and nonfair crop

insurance has been addressed in Chambers and Quiggin (2000, Chapter 7). And while they

have not directly analyzed the consequence of such insurance provision for input utilization,

this paper's approach can be extended to their results. Moreover, using the cost-function

framework pursued in this paper, Chambers and Quiggin (1996, 2000) have analyzed the

design of insurance-like incentive schemes in the presence of moral hazard arising from both

hidden action and hidden information. The decomposition procedure developed here can

be directly applied to those results to determine the effect of insurance provision on input

utilization.
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Notes

1These results, not discussed in detail here, are elaborated in Chambers and Quiggin (2000, Chapter 5).

2There are an infinity of ways to compute the pure risk effect and expansion effect depending upon

how one makes the adjustment in mean values. Here we always restrict attention to the case where the

mean adjustment is consistent with a radial expansion because we think it would be most familiar to most

economists. More generally, the expansion can be measured in any direction. Which direction is chosen

will be typically determined by a number of factors. For example, if it is assumed that individuals have

preferences exhibiting constant relative risk aversion then the radial decomposition we suggest is usually the

most appropriate because the expansion effect involves no change in the riskiness of the revenue bundle.

However, if preferences exhibit constant absolute risk aversion, then an expansion effect measured in the

direction of the equal-incomes vector would be more appropriate as it would involve no change in the

inherent riskiness of the revenue bundle.

3An input is typically called risk-increasing or risk-reducing depending upon the sign of a second partial

derivative of stochastic production function (e.g., Quiggin 1992, Ramaswami).

'In Chambers and Quiggin (1996), the terms risk increasing and risk decreasing were used in place of risk

complements and risk substitutes.

5The more usual notion of risk-increasing and risk-decreasing inputs familiar from the literature is not

based on a mean-compensated risk comparison. Hence, it is not a proper risk comparison.

6More generally, since a dominance argument was used to establish these results, it follows that they

apply regardless of whether preferences or the technology are smooth. Moreover, in the case of non-smooth

preferences, Chambers and Quiggin (2000) following Segal and Spivak show that farmers can fully insure

even in the absence of an actuarially fair insurance contract.

7Constant relative riskiness and constant absolute riskiness, as defined below, are defined analogously to

constant absolute risk aversion and constant relative risk aversion for the general state-contingent preference

function W as in Quiggin and Chambers (1998). A straightforward extension of those arguments leads to

the maintained relationship between homotheticity and translation homotheticity.

8This result is completely analogous to the result that maximum revenue expansion paths for non-

stochastic, multi-output technologies which exhibit output homotheticity are straight lines.

9Translation homothetic technologies are the class of quasi-homothetic technologies which can be repre-

sented by non-decreasing translations of a reference isoquant in a given direction (Chambers and Fare).
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10As noted earlier, under constant absolute riskiness, the efficient set determines a unique level of cost. If

the producer doesn't operate in the efficient set, it turns out that his cost must fall as a consequence of the

properties of constant absolute riskiness.
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