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Cost functions dual to stochastic production technologies are derived

and their properties are discussed. These cost functions are shown to be

consistent with expected-utility maximization without placing serious struc-

tural restrictions on the underlying technology.
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1. Introduction
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Perhaps the most singular aspect of agricultural production is its randomness.

Certainly, the stochastic nature of agricultural production and the economic prob-

lems associated with adjusting to it have provided the most commonly accepted

arguments for agriculture's 'special nature', and consequently for its frequently

preferential treatment in the economy. A similar spirit seems to pervade the an-

alytical thinking of agricultural economists: Because agricultural production is

stochastic, and because stochastic production is inherently different from non-

stochastic production, it is often thought that common concepts from economic



theory no longer apply. Nowhere is this more apparent than in the confusion that

has arisen in agricultural economics over the existence of cost functions for sto-

chastic technologies. A succinct statement of the conventional thinking has been

provided by Pope and Chavas (1994):" ...if one restricts attention to cost functions

that are independent of risk preferences,. ..consistency of cost minimization with

expected utility maximization imposes some structure on production technology."

Even in the case of a nonstochastic technology, consistency of cost minimiza-

tion imposes some structure on the production technology in the sense that the

existence of cost functions requires some minimal regularity properties. Typically,

these include that the output chosen is technically feasible and that input sets be

closed. This paper shows that closedness and technical feasibility are the only

conditions that a stochastic technology must satisfy in order for well behaved cost

functions, exhibiting all their usual properties in terms of input prices, to exist.

And under the presumption that individuals maximize the expected utility of net

returns, these cost functions are independent of the producer's risk preferences.

Moreover, if these conditions are satisfied, the cost function is dual to a technology

exhibiting free disposal of inputs and convexity of input sets that is observationally

equivalent to the original stochastic technology. In other words, duality theory

applies exactly for stochastic technologies under the same assumptions required
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for it to apply to nonstochastic technologies.

In what follows, we first introduce our notation and our definition of the tech-

nology. For concreteness sake, we use a representation of the technology similar

to that analyzed by Pope and Chavas (1994), but more general in that it applies

to non-differentiable technologies. We show that well-behaved cost functions exist

for this technology, develop the properties of these cost functions, state a duality

result relating the cost function to stochastic technology, and then show that max-

imizers of the expected utility from net returns always minimize cost. After that

we briefly consider extensions of our approach to the more general state-contingent

formulation of production uncertainty found, for example, in Chambers and Quig-

gin (1992, 1996, 1997) and then, for the purposes of illustration, present a simple

example of the formulation of an optimal multiple-peril crop insurance program

using our methods.

2. The Model

Consider a firm whose attitudes toward risk are characterized by a von Neumann-

Morgenstern utility function, U(W), where W denotes terminal wealth. We pre-

sume that the utility function is strictly increasing and continuous. Terminal

wealth is assumed to take the form: W = wo f (x, E) — w x, where wo is ii-
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tial wealth, x is an n-dimensional vector of nonnegative inputs committed prior

to the resolution of uncertainty, w is an n-dimensional vector of strictly positive

and nonstochastic input prices, f is a nonnegative function giving stochastic rev-

enue resulting from the application of inputs x and the stochastic factor E . The

stochastic factor may be variously interpreted as a stochastic random input be-

yond the control of the producer and not known at the time that input allocation

decisions are made, or as an indicator of the state of the world. Unlike most

earlier studies, there is no need for us to assume that the technology is sufficiently

smooth to be differentiable or even continuous. Instead, we only assume that

f is upper semi-continuousl in x. Because differentiable technologies are always

upper semi-continuous, it follows, for example, that our results cover the entire

range of technologies considered by Pope and Chavas (1994). However, our re-

sults also apply to an even broader class of technologies (specifically those with

closed input requirement sets). An empirically important example of a stochastic

technology that is not differentiable but which is upper semi-continuous is the

class of Leontief technologies. E is assumed to have a fixed support given by the

closed interval E C with a monotone probability distribution function G(e)

'A function h (z) is upper semi-continuous in z if its upper contour sets {z :h (z) > h} are
closed sets for all h.



...

,

with G'(E) = g(E) .> 0.

Under these assumptions, an expected utility maximizer chooses the input

allocation to solve the following problem:

max {f U(wo + f (x, E) -
x E

3. The Cost Function

The most modern approach to deriving a cost function for a nonstochastic tech-

nology is to specify the technology in terms of input sets or input correspondences

which give the input combinations capable of producing a given bundle of outputs.

Here we pursue a similar strategy except that we infer an input correspondence

for a profile of stochastic revenues from the stochastic technology described in

the previous section. By a profile or trajectory of stochastic revenues, we mean a

relation which gives for every realization of the stochastic factor, E E E, a level of

revenue which we shall denote by r (E) . Perhaps examples based on special cases

of the technology detailed in the previous section best illustrate the concept of

a trajectory. Consider the cases of multiplicative and additive uncertainty given

6



by:

f (x,E) = r (x) E,

f (x,E) = fa (x) + E;

where 77, , [0, Q] . When the input bundle is fixed at any particular level, say x*,

then in the multiplicative case the stochastic technology generates a trajectory of

revenues that is depicted pictorially as a line with slope r (x*) emanating from

the origin and stopping at the point frn (x4) Q, while in the additive case, the

stochastic technology generates a profile of revenues that is depicted pictorially

as a line with slope one and vertical intercept fa (x*) which ends at the point

fa (x*) ± Q (see Figure 1). Hence, choosing a particular input combination is

equivalent to picking a profile of revenues when a stochastic technology prevails.

Or alternatively choosing to produce a profile is equivalent to picking an input

combination if the profile in question is technically feasible.

Now what does it take to be able to produce an arbitrary trajectory R =

{r (E) : E E E,} of stochastic revenues using the stochastic technology developed

above'? Clearly, an input vector can produce a particular profile if and only if x

satisfies: f (x, E) > r (E) for all E E a So continuing to denote the profile by R,
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its input set is defined by the correspondence:

V (R) = fx f (x, E) r (E) , E E

= nEfx :f (x,E) r()}

= nEv(r (E) , E),

where v(r (E) , E) denotes the ex post input set associated with producing the single

stochastic revenuer (E) given that E actually occurs, i.e., {x : f (x, E) > r WI. Put

another way, v(r (E) , E) is the collection of input combinations that will produce

the ex post revenue, r (e), given that E occurs. Figure 2 illustrates, for graphical

simplicity, the case where F, ={1, 2}. When E = 1, the isoquant for the level of

revenue given by r1 is illustrated as the lower boundary of the set v(ri, 1) under

the presumption (made for purposes of illustration only) that inputs are freely

disposable, and the isoquant for the level of stochastic revenue r2 is given by the

lower boundary of the set v(r2, 2). The intersection of these two input sets, V(R),

is given by all input combinations in the shaded area. Notice, in particular, that

the input set for this stochastic technology will typically be kinked at points of

intersection of the frontiers of the ex post input sets.
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Because f (x, E) is upper semi-continuous, each input set v(r (E) , E) is a closed

set, and thus by a standard result, V(R) must also be closed as it is formed by

taking the intersection of an infinite number of closed sets. Having a clear notion

of an input set it is now an easy matter to define a well-behaved cost function for

the trajectory R. We have:

c(w,R) =min {w x: x EV(R)}

if V(R) is nonempty and oo otherwise. Using well-known arguments one can

establish that because V(R) is a closed set, this cost function actually exists and

possesses all the properties usually associated with cost functions in the vector of

input prices (Chambers, 1988, Chapter 2). Hence, we state, without proof, the

following obvious result:

Proposition 3.1. c(w,R) satisfies: c(w,R) > 0; c(p,w,R) = itic(w,R),p >

0; w' > w c(w',1=?) > c(w,R); c(w,R) is concave and continuous in w.

At this juncture, it is worth emphasizing that this fundamental result about

the existence of a cost function for the stochastic technology only rests upon the

single assumption that f (x,E) is upper semi-continuous in x.



In addition to satisfying these usual properties of a cost function, c(w,R) also

satisfies Shephard's lemma. Namely, if there exists a unique solution to the cost

minimization problem, then the cost function is differentiable in input prices, and

its gradient in input prices is the vector of cost minimizing demands. And, if the

cost function is differentiable in input prices, there exists a unique solution to the

cost minimization problem which is equal to the gradient of the cost function in

input prices (Fare, 1988).

Before turning to the possible dual relation between c(w,R) and V(R), it is

worthwhile to divert our attention for a moment and illustrate how c(w,R) relates

to the cost functions for the ex post revenue functions, i.e., the cost functions

associated with particular realizations of f (x,e). To that end, we define the ex

post cost functions:

qw,r,E) = min{w • x: x E v(r,

if v(r, E.) is nonempty and oo otherwise. Denote:

x(w,R) E argmin{w • x: x EV(R)}.

10



By the definition of V(R), it follows immediately that for all r (E) E R, x(w,R) E

v(r (E) , E). Hence,

w • x(w,R) > C(w,r ER,

from which we immediately conclude:.

Proposition 3.2. : c(w,R) >mr {C(w,r (E)

The cost function for the stochastic revenue profile thus provides an upper

bound for all the ex post cost functions, and in particular always provides an

upper bound for the ex post revenue that is the costliest to produce. Sometimes,

the inequality in the proposition can be replaced by an equality. This is always

true, for example, when x is a scalar. And in Figure 2 if the relative input prices

are given by the dashed line segment ww', the cost function for the stochastic

revenue profile is given by the cost function for the costliest ex post revenue.

More generally, however, it is not. Suppose, for example, that relative input

prices are given by the dashed line segment w*w*. For these relative prices, least

cost over V(R) is given by point A which is not cost minimizing for either ex post

revenue.
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This link between the ex post cost functions and c(w,R) also helps illustrate the

role that technical feasibility of a revenue profile plays in determining c(w,R). As

an example, consider the case of multiplicative production uncertainty discussed

earlier and illustrated in Figure 1. If such a technology applies and one chooses a

revenue profile with a positive intercept in Figure 1, no combination of inputs will

be able to produce that profile because no combinations of inputs is capable of

producing a strictly positive output in the worst case, E = 0, under multiplicative

uncertainty even if the revenue profile is achievable in all other states of nature.

Hence, C(w,r (0) , 0) = C>0 and consequently c(w,R) = oo.

Another immediate implication of this Proposition is that the cost function

dual to the stochastic production technology will not generally be smoothly dif-

ferentiable in all the elements of R. The nondifferentiability of c(w,R) emerges

from the fact that the output set dual to V(R) :

R (x) = {R: x El i (R)}

is not strictly convex and its frontier possesses kinks (Chambers and Quiggin,

1998).

12
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4. Duality for the Stochastic Techn lo

Arguably the single most important development in the theory of cost and produc-

tion was Shephard's (1953, 1970) discovery of the dual correspondence between

the production structure and the cost function. This discovery has had important

consequences at both an empirical and theoretical level. In this section, we show

that c(w,R) is dual to a stochastic production structure characterized by an input

set V(R) that is closed, convex, and satisfies free disposability of inputs. We start

by defining the shadow input correspondence:

(R) = nw,o{x : w x >c(w,R)}.

Because V* (R) is defined by the intersection of closed half spaces, it must be closed

and convex by standard results on convex sets (Rockafellar, 1970). Furthermore,

it is also apparent that x' > x eV(R) = x'EV*(R), i.e., the shadow input

correspondence satisfies free disposability of inputs. By standard duality theorems

(e.g., Fare, 1988), it follows immediately that:

••

Proposition 4.1. : If V(R) satisfies the following properties: On V(R) for all

R = {r (e) > 0 : E E V(R) is a convex set, x' > x EV(R) x'Ell(R), and
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V (R) is closed, then V(R) = V* (R).

An immediate implication of the proposition is that a cost function derived

from a stochastic technology characterized by closed input sets (upper semi-

continuity of f(x,E)) is dual to a stochastic technology characterized by closed

and convex input sets satisfying free disposability of inputs. Thus, even if the

technology from which c(w,R) is derived does not satisfy these properties', there

will exist a stochastic technology satisfying these properties which is observation-

ally equivalent to the original technology in the sense that a cost minimizer will

make the same economic choices from this technology (the one corresponding to

the shadow input correspondence) as he or she would from the original technol-

ogy. Hence, if one can establish (as we do in the next section) expected-utility

maximizers minimize cost, then it follows immediately that no true generality is

lost from an economic perspective in operating with a technology satisfying the

same properties as V* (M.

We have already established that V (R) satisfies one of the properties in the

proposition (closedness). We now briefly discuss conditions on f(x,E) which guar-

antee the existence of this duality. Free disposability of inputs is guaranteed by

2As a reviewer points out, the empirically appealing Just-Pope technology can violate free
disposability of inputs.
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assuming that f (x,E) is nondecreasing in x, while convexity of V (R) is ensured by

assuming that f (x,E) is quasi-concave in inputs. (Quasi-concavity of f (x,E) im-

plies that each v(r, E) is convex, and standard results on convex sets then implies

that V (R) is convex (Rockafellar, 1970).) The final property in the proposition

we might refer to as 'no free lunch' in accordance with standard terminology in

the nonstochastic production literature. A sufficient condition for the technology

to satisfy this property is that f (On , E) not be capable of producing a positive

revenue, i.e., some inputs must be committed if a positive revenue is to be had in

any state.

Corollary 4.2. If f (X, E) is a nondecreasing, upper semi-continuous, and quasi-

concave function of the inputs that satisfies 'no free lunch' then V(R) = V* (R).

5. Expected Utility Maximizers Do Minimize Cost

Now that we have derived a cost function for the stochastic technology that is dual

to a stochastic technology possessing closed and convex input sets exhibiting free

disposability of inputs, we shall demonstrate that the expected-utility maximiza-

ton problem can be broken down into two stages. In the first stage, the producer

acts to minimize cost of a revenue trajectory or profile, and in the second stage

15



the producer picks the utility maximizing revenue profile. Define:

and let

x(w,wo) E arg max {f U(wo f (x, E) — wx)dG(e)} ,

r(w,wo,E) = f (x(w ,w0) E.)

denote the stochastic revenue that would occur if 6 is the realization of the stochas-

tic factor and inputs are evaluated at their expected-utility maximizing levels. Put

another way, r(w,wo, 6) is the optimal ex post revenue contingent upon the real-

ization of E. In this sense, it can be interpreted as 6-contingent or state-contingent

revenue. With these definitions in hand, it is now easy to establish that the ex-

pected utility maximizing producer, in fact, acts to minimize cost. In particular,

our claim is that the expected utility maximizing producer chooses the input bundle

so as to minimize the cost of producing the profile of stochastic revenues given by:

R(w,w0) = fr(w, wo, 6.) : 6 E

16



The easiest way to see that this must be true is to suppose the contrary and

assume that there exists a bundle of inputs cheaper than x(w,w0), which when

combined with the stochastic factor E is capable of producing R(w,w0) . Call

this bundle of inputs x'. Now the fact that U is strictly increasing in W and x'

produces R(w,w0) implies

(wo f (x' , E.) — w x')dG (E) > (wo + r(w, w0, E) — w x(w,wo))dG(E)

thus violating the definition of x(w,w0) as the expected-utility maximizing input

choice. This argument establishes that:

Proposition 5.1. w • x(w,w0) <w x for all x capable of producing the tra-

jectory of optimal stochastic revenues R.(w,w0).

Corollary 5.2. :An expected-utility maximizer solves:

max {f U(wo r (E) — c(vv,R))dG(E)}

17



In evaluating this result, it is important to recognize several things. Most

importantly, the only restriction that is placed upon the producer's preferences

(apart from those imposed by the expected-utility model) for the cost function

to exist is that his or her utility be increasing in ex post wealth3, and the only

condition that consistency of cost minimization with expected-utility maximiza-

tion imposes on the stochastic technology is that its input sets be closed. There

is no need to make any presumption about the individual's degree of risk aver-

sion, any degree of differentiability of the technology or the preference structure,

or any other common measure of his or her attitudes toward risk. Thus, the

proposition is more general than, say, those presented by Pope and Chavas (1994)

which impose more structure upon both producer preferences and the technology.

Second, by our duality results, the cost function that results from choosing in-

puts so as to minimize the cost of producing the stochastic revenue trajectory can

be used to exhaustively characterize the economically relevant technology. Next

this decomposition of the expected-utility maximization problem is distinct from

those presented by Pope and Chavas (1994)4, and hence our Proposition does

not invalidate their claims about their cost functions. However, it does invali-

3The Proposition is valid for even more general preference structures than expected utility.
All that is required is that the producer's preferences be nondecreasing in w • x.

4We would also argue that ours is the more natural decomposition of the producer maxi-
mization problem in the context of stochastic production
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date the naive conclusion that one might draw from their analysis, and that is,

that expected utility maximizers do not minimize cost. Rational expected utility

maximizers always minimize cost. Finally, and most importantly, the Proposition

suggests a natural two-stage procedure to pursue in analyzing decisionmaking for

a risk-averse producer facing a stochastic technology: First, find the minimum

cost of producing all feasible revenue trajectories, and then choose the expected

utility maximizing trajectory (trajectories).

6. Extensions and Applications

To keep our arguments as close as possible to the model of producer decisionmak-

ing under uncertainty most familiar to agricultural economists, we have assumed

that the individual producer maximizes expected utility. However, the only prop-

erty of expected-utility maximization that we have explicitly employed in our

arguments is the monotonicity of the von Neumann-Morgenstern utility function.

It turns out that all our arguments continue to apply under even more general

preference structures such as rank-dependent expected utility (Quiggin, 1993) or

general smooth preferences (Machina, 1982) so long as producer preferences are

at least weakly decreasing in producer input cost in the case of linear input prices

or weakly decreasing in a separable function of inputs under more general pref-

19



erence structures, for example, generalized Schur-concave (Marshall and Olkin,

1979; Chambers and Quiggin, 1998) preference functions.

A more significant generalization is to proceed along the lines investigated by

Chambers and Quiggin (1992, 1996, 1997, 1998) and extend the analysis beyond

the case of stochastic revenue or production functions as considered in the present

paper (as well as in most applied work on production under uncertainty) to the

Arrow-Debreu model in which production possibilities for state-contingent com-

modities are described by technology sets. In this more general framework, the

only restriction on the technology required for the existence of a cost function is

that its input sets be closed'. The key advantage of this extension is that if R (x)

is strictly convex, its dual cost function will be smoothly differentiable avoiding

the potential nondifferentiability of c(w,R) that plagues the stochastic production

function technology'. (As Chambers and Quiggin (1992, 1997) have pointed out

the stochastic production function technology is degenerate in the sense that it

leads to state-contingent output sets which are characterized by fixed coefficients.)

Chambers and Quiggin (1997) use such a state-contingent production model in the

5Technically, this is an extremely mild restriction because it can never be contradicted
empirically.

6Alternatively, nondifferentiability of the cost function can be avoided by placing enough
structure upon the stochastic production function or revenue function to ensure that R (x) is
strictly convex.
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finite-state case to analyze producer decision making in the presence of forward

and futures markets exploiting the smoothness of the associated cost function to

derive a range of arbitrage conditions and new results on hedging.

To illustrate this point, consider the problem of multiple-peril crop insurance

as studied by (among others) Nelson and Loehman (1987) and Chambers (1989)

under the assumption that c(w,R) is smoothly differentiable. Assuming that the

stochastic factor, E, is contractible7, an insurance company can write an insurance

contract in which the ex post net indemnity depends upon the realization of the

stochastic factor. Denote the net indemnity associated with the realization of the

stochastic factor E as 1 (e) . Then assuming that the insurance company is risk-

neutral, the socially optimal insurance contract solves the following maximization

problem:

M ax {ir U(wo r (e) +1(E) - c(w,R))(1G(E) — I 1(e) dC(e)} .
R E

Letting 71 (e) = Ivo r (e) + I (e) — c(w,R), we obtain the following first-order

7This is equivalent to assuming that there is no problem of moral hazard or adverse selection.
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conditions for the socially optimal multiple-peril crop insurance problem:

gr (7r (E)) — 1) g (E) = 0,

aca(rw(!) ) 
U' (7r (E)) dG(E) 0, r (E) 0, for all E E

in the notation of complementary slackness'.

Assuming that the farmer is strictly risk-averse, i.e., U is strictly concave, the

above equality implies that a socially optimal multiple-peril crop insurance policy

stabilizes farmer income at 7r* which is determined as the implicit solution to

U' (7r*) = 1. Substituting this result into the second expression then yields that

the optimal production pattern is determined by:

ac(w ,R) 
g (E) < 0, r() 0,

ôr (E)

which is the production pattern which maximizes expected profit from farming.

Hence, in a very simple and straightforward fashion we are able to reconfirm

the Nelson and Loehman (1987) result that socially optimal crop insurance in

sThe notation, a c(w IR) is exact in the case where the state space is discrete. For the contin-

uous state-space case, this derivative should be interpreted as the Frechet derivative of c(w,R)
evaluated at E.
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the absence of moral hazard and adverse selection involves full insurance for the

farmer9 while having the farmer produce at the point which maximizes expected

profit from farming. Other generalizations are straightforward and are left to the

interested reader.

7. Concluding Comments

State-contingent production under uncertainty, like production of commodities

differentiated in time and space, is merely a special case of a general multiple-

input, multiple-output technology. Hence, as we demonstrate above the duality

tools developed for the latter automatically apply to the former. This propo-

sition stated in this way appears self-evident, but the issue of whether duality

methods are applicable under uncertainty has remained shrouded in confusion

and conflicting claims. In this paper, it has been shown that provided input sets

are closed and nonempty, a well-behaved cost function can be derived from any

stochastic production or revenue function. The resulting cost function, in turn,

is always dual to a stochastic production structure exhibiting convexity of input

sets and free disposability of inputs. Hence, any stochastic production structure

possessing closed and nonempty input sets will be observationally equivalent for

9This manifests Borch's (1962) well-known rule for optimal risk sharing.
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cost minimizers (and hence maximizers of the expected utility of net returns) to

a stochastic production structure possessing closed, convex, and input disposable

input sets.

Historically, the dual approach to economic analysis has proven a powerful and

tractable tool in the analysis of non-stochastic production problems yielding many

new insights and analytical results. The results of this paper suggest that similar

progress in the analysis of problems involving production under uncertainty is

possible.
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