We explore the relationship between Shephard's input distance function and Luenberger's benefit function. We point out that the latter can be recognized in a production context as a directional input distance function which can exhaustively characterize production technologies under appropriate assumptions on input disposability. McFadden's composition rules for input sets and input distance functions are then extended to the directional input distance function.

Working Paper 95-09

Scientific Article No. _______, Contribution No. _______ from the Maryland Agricultural Experiment Station.

*We are grateful to Professor Luenberger for his comments.
BENEFIT AND DISTANCE FUNCTIONS

In a sequence of publications Professor Luenberger (Luenberger 1992a, 1992b, 1994, 1995) has introduced and applied a function he terms the benefit function,\(^1\) which is a directional representation of preferences. If \(u(x)\) is a utility function, \(x \in X \subset R^N_+\), and \(g\) a vector in \(R^N_+\), then the benefit function is defined by

\[
b(g; u, x) = \sup_{\beta} \{\beta \in R: x - \beta g \in X, u(x - \beta g) \geq u\}.
\]

The benefit function can be recognized as a generalization of Shephard's (1953) input distance function, which when defined in terms of the utility function (Deaton, 1979) can be written:

\[
D_i(u, x) = \inf_{\lambda} \{(x/\lambda) \in X, u(x/\lambda) \geq u\}.
\]

Both functions are useful alternative representations of preferences, that may be exploited to advance different theoretical and empirical objectives. To wit, Luenberger (1992a, p. 480) states: “The distance function can be useful in developing relations in individual consumer theory. The benefit function has use in developing group welfare relations.”

This paper explores the relationship between the two functions and shows how each can be derived from the other. We then discuss duality theorems, shadow prices, and composition rules for the two functions.

1. Distance Functions

Although Professor Luenberger has developed the benefit function as a tool in consumer theory, here we will study it as a tool in production theory.\(^2\) Let \(y \in R^M_+\) be a vector of outputs

\(^1\) Professor Luenberger (1992b, p. 148) traces it back to Dupuit (1884). Blackorby and Donaldson (1980) employ a version of the benefit function, which they call the translation function, in their study of absolute inequality measurement.

\(^2\) Luenberger introduced the notion of a shortage function in his studies of production.
and \(x \in \mathbb{R}^N_+ \) a vector of inputs. The technology is represented by input correspondences
\(L : \mathbb{R}^M_+ \to \mathbb{R}^N_+ \) which define input sets \(L(y) \subset \mathbb{R}^N_+ \):

\[
L(y) = \{ x : x \text{ can produce } y \}, \quad y \in \mathbb{R}^M_+.
\]

Following Shephard (1970) or Färe (1988), define the input distance function by:

\[
D_i(y, x) = \sup \{ \lambda \in \mathbb{R}_+ : (x / \lambda) \in L(y) \}. \tag{1.2}
\]

This function inherits the properties imposed on the technology, see Shephard (1970) or Färe (1988), and in particular, assuming weak disposability of inputs, i.e., \(x \in L(y) \Rightarrow \lambda x \in L(y) \), \(\lambda > 1 \):

\[
D_i(y, x) \geq 1 \text{ if and only if } x \in L(y), \tag{1.3}
\]

which shows that the input distance function is a complete function representation of the technology. Hence, conditions on the technology can be equivalently expressed in terms of the input distance function or the input set. Moreover, from its definition it follows that the distance function is homogeneous of degree +1 in inputs. This property has proved especially useful in the construction of index numbers using distance functions (Malmquist, 1953 and Caves, Christensen and Diewert, 1982).

To motivate our terminology, let us first recall the notion of a direction. Let \(x \) and \(g \) be fixed vectors in \(\mathbb{R}^n \), then

\[
z = x + \beta g, \quad \beta \in \mathbb{R} \tag{1.4}
\]

defines a line in the direction of \(g \). Clearly the benefit function may also be thought of as a directional concept. Thus we define \(\bar{D}_i : \mathbb{R}^M_+ \times \mathbb{R}^N_+ \times \mathbb{R}^N \to \mathbb{R} \) by

\[
\bar{D}_i(y, x; g) = \sup_{\beta} \{ \beta \in \mathbb{R} : x - \beta g \in L(y) \}, \tag{1.5}
\]
as the directional input distance function.3 It is, of course, the benefit function for $L(y)$ as defined by Luenberger. Moreover, the second equality shows that the benefit function or directional input distance function is the maximal translation of $L(y)$ along g that permits keeping x feasible.

Three special cases are illustrated in Figures 1a, 1b, and 1c. In Figure 1a, $x \in L(y)$ and $\tilde{D}_i(y, x; g)$ is given by the ratio $\frac{\|g^*\|}{\|g\|} > 0$. In Figure 1b, $x \notin L(y)$ but moving x in the direction of g eventually encounters $L(y)$. Here $\tilde{D}_i(y, x; g) = -\frac{\|g^*\|}{\|g\|} < 0$. Figure 1c illustrates the case where moving x in the direction of g never encounters $L(y)$, and thus $\tilde{D}_i(y, x; g) = -\infty$.

The basic properties of the directional input distance function are summarized by the following lemma which slightly expands results due to Luenberger (all proofs are in appendix).

\begin{equation}
\text{(1.6) Lemma: } \tilde{D}_i: \mathbb{R}_+^M \times \mathbb{R}_+^N \times \mathbb{R}_+^N \rightarrow \mathbb{R} \text{ satisfies:}
\end{equation}

1) if $L(y)$ is convex for all $y \in \mathbb{R}_+^M$, $\tilde{D}_i(y, x; g)$ is concave with respect to x;

2) $\tilde{D}_i(y, x + \alpha g; g) = \tilde{D}_i(y, x; g) + \alpha$ for $\alpha \in \mathbb{R}$;

3) $x \in L(y)$ implies $\tilde{D}_i(y, x; g) \geq 0$;

4) $\tilde{D}_i(y, x; \mu g) = \frac{1}{\mu} \tilde{D}_i(y, x; g), \mu > 0$.

5) a) if $y' \geq y \Rightarrow L(y') \subset L(y)$, then $y' \geq y \Rightarrow \tilde{D}_i(y', x; g) \leq \tilde{D}_i(y, x; g)$;

b) if $L(y) \subset L(\lambda y)$, $0 < \lambda < 1$, then $\tilde{D}_i(y, x; g) \leq \tilde{D}_i(\lambda y, x; g)$, $0 < \lambda < 1$;

6) if $x \in L(y) \Rightarrow \lambda x \in L(\lambda y)$ for $\lambda > 1$, $\tilde{D}_i(y, \lambda x; g) \geq \lambda \tilde{D}_i(y, x; g) = \tilde{D}_i(y, x; g / \lambda)$.

3 Directional output distance functions and undesirable outputs are studied by Chung (forthcoming).
Because $D_i(y,x) \geq 1$ if and only if $x \in L(y)$ under weak input disposability, the directional distance function can also be defined as

\begin{equation}
D_i(y,x;g) = \sup \{\beta \in \mathcal{R} : D_i(y,x - \beta g) \geq 1\}
\end{equation}

Expression (1.7) shows that the directional input distance function can be obtained from the input distance function. We now show that by an appropriate choice of g, we can always recover $D_i(y,x)$ and hence $L(y)$ from $D_i(y,x;g)$. In particular, for $g = x$:

\begin{equation}
D_i(y,x;x) = \sup \{\beta \in \mathcal{R} : x(1 - \beta) \in L(y)\}
\end{equation}

\[= 1 - \inf \{(1 - \beta) : x(1 - \beta) \in L(y), \beta \in \mathcal{R}\} \]
\[= 1 - \inf \{(1 - \beta) : x(1 - \beta) \in L(y), \beta \in \mathcal{R}\} \]
\[= 1 - 1 / D_i(y,x) \]

where the third equality follows from the fact that $L(y) \subseteq \mathcal{R}^N_+$. By a similar argument, it follows that $D_i(y,x) = 1 / D_i(y,0; -x)$. Using (1.3), it is immediate from (1.8) that under weak disposability of inputs:

\begin{equation}
D_i(y,x;x) \geq 0 \iff x \in L(y).
\end{equation}

Under free input disposability, i.e., $x' \geq x \in L(y) \Rightarrow x' \in L(y)$, expression (1.9) can be strengthened to:

\begin{equation}
D_i(y,x;g) \geq 0 \iff x \in L(y).
\end{equation}

That $D_i(y,x;g) \geq 0$ for $x \in L(y)$ follows immediately from 1.6.3. To prove the converse, suppose first that $D_i(y,x;g)$ equals zero, it is then immediate that $x \in L(y)$. Now suppose that $D_i(y,x;g) > 0$, and note that $x \geq x - D_i(y,x;g)g \in L(y)$ which yields $x \in L(y)$ under free disposability. Under appropriate disposability assumptions, $D_i(y,x;x)$ is a complete function representation of $L(y)$.
A third input distance function, the affine distance function, has been introduced by Färe and Lovell (1984). This distance function is defined as

\[
D_i(y, x; x^0) = \left[\inf \{\lambda : x^0 + \lambda x \in L(y)\} \right]^{-1} = \left[\inf \{\lambda : \lambda x \in L(y) - x^0\} \right]^{-1} = \left[\inf \{\lambda : D_i(y, x^0 + \lambda x) \geq 1\} \right]^{-1}.
\]

If \(x = x^0\), then

\[
D_i(y, x; x) = \left[\inf \{\lambda : D_i(y, x + \lambda x) \geq 1\} \right]^{-1} = D_i(y, x) / (1 - D_i(y, x)).
\]

or equivalently

\[
D_i(y, x) = D_i(y, x; x) / (1 + D_i(y, x; x)).
\]

Expressions (1.9) and (1.10) shows one relationship between Shephard’s input distance function and the affine distance function. Of course if \(x^0 = 0\) then the two distance functions are equal.

Note also that the affine and the directional distance functions are related by

\[
\tilde{D}_i(y, x; -x) = 1 / D_i(y, x; x^0),
\]

or since \(\tilde{D}_i(y, x; g)\) is homogeneous of degree -1 in \(g\).

\[
\tilde{D}_i(y, x^0; x) D_i(y, x; x^0) = -1.
\]

2. Dualities and Shadow Prices

The directional and the usual distance functions are both primal representations of the technology, expressed by input requirements sets \(L(y)\), \(y \in \mathbb{R}_+^M\). The dual representation of the technology is, of course, given by the cost function. Let \(w \in \mathbb{R}_+^N\) denote a vector of input prices, the cost function (or the expenditure function in consumer theory) is then given by

\[
C(y, w) = \inf_{x \in L(y)} \{wx : x \in L(y)\}, y \in \mathbb{R}_+^M
\]
or equivalently

\[C(y,w) = \inf_x \{wx : D_i(y, x) \geq 1\}, \ y \in \mathbb{R}_+^M. \]

Shephard (1953, 1970) proved that under appropriate restrictions on \(L(y) \) the cost and the input distance functions are dual to each other, in the sense that

\[C(y, w) = \inf_x \{wx : D_i(y, x) \geq 1\}, \ y \in \mathbb{R}_+^M \]
\[D_i(y, x) = \inf_w \{wx : C(y, w) \geq 1\}, \ y \in \mathbb{R}_+^M. \]

From (1.8) it now follows immediately that under weak input disposability

\[C(y, w) = \inf_x \{wx : \bar{D}_i(y, x; x) \geq 0\} \]

and

\[\bar{D}_i(y, x; x) = 1 - 1/\inf_w \{wx : C(y, w) \geq 1\}. \]

Shephard's duality theorem can also be expressed as a pair of unconstrained optimization problems, namely, \(^4\)

\[C(y, w) = \inf_x \{wx / D_i(y, x)\}, \ y \in \mathbb{R}_+^M, \]
\[D_i(y, x) = \inf_w \{wx / C(y, w)\}, \ y \in \mathbb{R}_+^M. \]

Luenberger (1992, 1995) proves a duality theorem between goods and goods prices. His theorem can be stated in our terminology as

\[C(y, w) = \inf_x \{wx - \bar{D}_i(y, x; g)wg\} \]
\[\bar{D}_i(y, x; g) = \inf_w \{wx - C(y, w) : wg = 1\}. \]

This duality theorem like Shephard’s shows that inputs x and deflated input prices w are dual. The Luenberger duality theorem can also be expressed as a pair of unconstrained optimization problems, namely,

\[
C(y, w) = \inf_x \{wx - \bar{D}_i(y, x, g) \cdot wg\}
\]

\[
\bar{D}_i(y, x; g) = \inf_w \left\{ \frac{wx - C(y, w)}{wg} \right\}.
\]

By choosing $g = x$, expression (2.9) reduces to (2.5), and (2.10) reduces to (2.6), showing that the Färe and Primont formulation of Shephard’s (input) duality theorem is a consequence of the Luenberger duality theorem.

Färe and Grosskopf (1990) developed a dual Shephard’s Lemma and showed that virtual prices can be derived from the distance function. In particular they showed that

\[
w_n = C(y, w) \frac{\partial \bar{D}_i(y, x)}{\partial x_n}, \quad n = 1, ..., N.
\]

This result follows from applying the envelope theorem to expression (2.3). In the same way, by applying the envelope theorem to (2.7), the adjusted price function of Luenberger is derived, namely

\[
w_n = wg \frac{\partial \bar{D}_i(yx; g)}{\partial x_n}, \quad n = 1, ..., N.
\]

The last two expressions are two variations on the dual Shephard’s Lemma. Their difference consists of the different scaling factors, $C(y, w)$ versus wg.

3. Composition Rules For Directional Distance Function

McFadden (1978) has presented a tabular representation of equivalent structural restrictions on the technology stated in dual and primal terms. Our next result extends McFadden's existing composition rules on input sets to the directional input distance function.

3.1 Proposition: Let \(L^j(y) \subset \mathbb{R}^N_+ \) \((j = 1, \ldots, J)\) represent convex input sets satisfying free disposability of inputs and let \(\bar{D}^j_i(y, x; g) \) \((j = 1, \ldots, J)\) be the corresponding directional input distance functions, \(\bar{D}^j_{ni}(y, x; g) \) the directional input distance function for \(z_j L^j(y) \) where \(z_j \in \mathbb{R}_+ \), and \(L^*(y) \) represent a convex input set satisfying free disposability of inputs: Then the following pairs of representations of the technology are equivalent:

a) \(L^0(y) = a(y)L^1(y) \) where \(a: \mathbb{R}^M_+ \rightarrow \mathbb{R}_+ \),

\[a') \quad \bar{D}^0_i(y, x; g) = \bar{D}^1_i(y, x/a(y), g/a(y)) = a(y)\bar{D}^1_i(y, x/a(y), g). \]

b) \(L^0(y) = \{ A(y)x : x \in L^1(y) \} \) where \(A(y) \) is a diagonal \(N \times N \) matrix with strictly positive diagonal elements,

\[b') \quad \bar{D}^0_i(y, x; g) = \bar{D}^1_i(y, A^{-1}(y)x, A^{-1}(y)g). \]

c) \(L^0(y) = \sum_{j=1}^{J} L^j(y), \)

\[c') \quad \bar{D}^0_i(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \bar{D}^1_i(y, x^j, g^j) : x^j \geq 0, \sum_{j=1}^{J} x^j = x, \sum_{j=1}^{J} g^j = g \} \]

d) \(L^0(y) = \bigcap_{j=1}^{J} L^j(y) \)

\[d') \quad \bar{D}^0_i(y, x; g) = \min_{j=1,\ldots,J} \{ \bar{D}^1_i(y, x; g) \} \]
c) \(L^0(y) = \) convex hull of \(\bigcup_{j=1}^{J} L_j^i(y) \)

e') \(\tilde{D}_i^0(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \tilde{D}_i^j(y, x^j, g^j) \} : \sum_{j=1}^{J} x^j = x, \sum_{j=1}^{J} g^j = g, z_j \in \mathbb{R}_+ \} \).

\[
\sum_{j=1}^{J} x^j = x, \sum_{j=1}^{J} g^j = g, z_j \in \mathbb{R}_+ \ (j = 1, \ldots, J),
\]
\[
\sum_{j=1}^{J} z_j = 1 \}.
\]

f) \(L^0(y) = \bigcup \bigcap_{j=1}^{J} z_j L_j^i(y) \) \(z_j \in \mathbb{R}_+ \)
\[
\sum_{j=1}^{J} z_j = 1
\]

f') \(\tilde{D}_i^0(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \tilde{D}_i^j(y, x^j, g^j) \} : \sum_{j=1}^{J} z_j = 1 \}
\]
\[
z_j \in \mathbb{R}_+, j = 1, \ldots, J \}
\]

g) \(L^0(y) = \bigcup \sum_{z \in L^*(y)} \sum_{j=1}^{J} z_j L_j^i(y) \)

\[g') \tilde{D}_i^0(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \tilde{D}_i^j(y, x^j, g^j) \} : x^j \geq 0, \sum_{j=1}^{J} x^j = x, \sum_{j=1}^{J} g^j = g, z \in L^*(y) \}. \]

h) \(L^0(y) = \) closure \(\left\{ \bigcup \bigcap_{j=1}^{J} z_j L_j^i(y) \right\} \)

h') \(\tilde{D}_i^0(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \tilde{D}_i^j(y, x^j, g^j) \} \} \).
References

Appendix

(1.6) Lemma: 1), 2), and 3) are proven in Luenberger (1992a). If \(y' \geq y \Rightarrow L(y') \subset L(y) \) then
\[x - \tilde{D}_1(y', x; g)g \in L(y), \text{ hence } \tilde{D}_1(y, x; g) \geq \tilde{D}_1(y', x; g) \] which shows 5a), 5b) follows similarly.

To establish 4), notice that:
\[
\tilde{D}_1(y, x; \mu g) = \sup \{ \beta \in \Re: x - \beta \mu g \in L(y) \}
= \frac{1}{\mu} \sup \{ \beta \mu \in \Re: x - \beta g \in L(y) \}
= \frac{1}{\mu} \tilde{D}_1(y, x, g).
\]

If \(x \in L(y) \Rightarrow \lambda x \in L(y) \), for \(\lambda > 1 \), then \(\lambda(x - \tilde{D}_1(y, x; g)g) \in L(y) \) whence
\[
\tilde{D}_1(y, \lambda x; g) \geq \lambda \tilde{D}_1(y, x; g) = \tilde{D}_1(y, x; g / \lambda) \] by 1.6.4, which establishes 6).

Q.E.D.

3.1 Proposition: We only prove \(\Rightarrow \) in each case. The converse is straightforward upon

using (1.9') and is left to the reader.

\(a) \) implies
\[
\tilde{D}_1^0(y, x; g) = \sup \{ \beta \in \Re: x - \beta g \in L^0(y) \}
= \sup \{ \beta \in \Re: x - \beta g \in a(y)L^1(y) \}
= \sup \{ \beta \in \Re: \frac{x}{a(y)} - \beta \frac{g}{a(y)} \in L^1(y) \}
= \tilde{D}_1^0(y, \frac{x}{a(y)}, \frac{g}{a(y)})
= a(y)\tilde{D}_1^0(y, \frac{x}{a(y)}, g),
\]
where the last equality follows by 1.6.4. This establishes that \(a) \Rightarrow a' \); \(b) \) and \(b' \) are derived similarly.
By c)

\[L^0(y) = \sum_{j=1}^{J} L^j(y) \]

and thus

\[x - \beta g \in L^0(y) \]

implies that there exist nonnegative allocations \(x^j, g^j \) such that

\[x^j - \beta g^j \in L^j(y) \]

\(j = 1, \ldots, J \), from which it immediately follows that

\[\beta \leq \tilde{D}^j_i(y, x^j, g^j) \quad j = 1, \ldots, J \]

so that for any arbitrary nonnegative allocation \(x^j, g^j \) such that \(\sum_{j=1}^{J} x^j = x \), \(\sum_{j=1}^{J} g^j = g \) the largest

that such a \(\beta \) can be is

\[\min_{j=1,\ldots,J} \{ \tilde{D}^j_i(y, x^j, g^j) \} \]

where the preceding notation denotes the minimum over the set of directional input distance functions. Hence,

\[\tilde{D}^0_i(y, x; g) = \sup \{ \min_{j=1,\ldots,J} \{ \tilde{D}^j_i(y, x^j, g^j) \} : \sum_{j=1}^{J} g^j = g, \sum_{j=1}^{J} x^j = x, x^j \in \mathbb{R}^n_+, j = 1, \ldots, J \} \].

By d)

\[x - \tilde{D}^0_i(y, x; g) g \in L^i(y) \]

for \(j = 1, \ldots, J \). Hence

\[\tilde{D}^0_i(y, x; g) \leq \tilde{D}^j_i(y, x; g) \]

whence

13
\[
\tilde{D}^0_i(y, x; g) = \min_{j=1 \ldots J} \{\tilde{D}^j_i(y, x; g)\}.
\]

By e) \(L^0(y) = \text{convex hull of } \bigcup_{j=1}^I L^j(y) \) which implies that

\[
L^0(y) = \{x: x \in \bigcup_{j=1}^I z_jL^j(y), z_j \in \mathcal{R}_+, \sum_{j=1}^I z_j = 1\}.
\]

Hence, if \(x - \beta g \in L^0(y) \), there must exist nonnegative allocations \(x^j, g^j \) with \(\sum_{j=1}^I x^j = x \), \(\sum_{j=1}^I g^j = g \), such that

\[
x^j - \beta g^j \in z_jL^j(y)
\]

for some set of \(z_j \)'s. Recall that:

\[
\tilde{D}^0_i(y, x^j, g^j) = \sup_{\beta \in \mathbb{R}}: x^j - \beta g^j \in z_jL^j(y) \}
\]

Now follow the proof of c') to obtain e').

From 3.1.d and 3.1.d' for any fixed \(z, z_j \in \mathcal{R}_+, \sum_{j=1}^I z_j = 1, f \) implies

\[
\tilde{D}^0_i(y, x; g) = \min_{j=1 \ldots J} \{\tilde{D}^j_i(y, x; g)\}.
\]

Hence, for arbitrary \(z \)

\[
\tilde{D}^0_i(y, x; g) = \sup_\{\min_{j=1 \ldots J} \{\tilde{D}^j_i(y, x; g)\}: z_j \in \mathcal{R}_+, j = 1, \ldots, J, \sum_{j=1}^I z_j = 1\}.
\]

That g') follows from g can be shown by applying c) and c') for a fixed element \(\hat{z} \in L^*(y) \).

To prove h) and h'), first note that McFadden (1978) shows that h) implies

\[
D^0_i(y, x) = D^*_i(y, D^1_i(y, x), \ldots, D^I_i(y, x))
\]
Applying (1.7):

\[
\tilde{D}_i(y, x; g) = \sup \{\beta \in \mathcal{R}: D_i^*(y, D_i^1(y, x - \beta g), \ldots, D_i^J(y, x - \beta g)) \geq 1\}
\]

\[
= \sup \{\beta \in \mathcal{R}: D_i^*(y, z) \geq 1, D_i^k(y, x - \beta g) \geq z_k \geq 0, k = 1, \ldots, J\}
\]

Because \(D_i^k(y, x - \beta g) \geq z_k\) for all \(k\) we can now apply 3.1.d and 3.1.d' to obtain

\[
\tilde{D}_i^o(y, x; g) = \sup \{\min_{j=1, \ldots, J} \{\tilde{D}_i^j(y, x; g)\}\}.
\]

Q.E.D.