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THE RELATIONSHIP BETWEEN FARM SIZE AND PRODUCTIVITY IN 

CHINESE AGRICULTURE 
 

By 
 

ZHUO CHEN, WALLACE E. HUFFMAN AND SCOTT ROZELLE 
 

Abstract: This paper examines the relationship between farm size and productivity in 

China’s agriculture. In developing agriculture where there is a broad range of farm sizes, 

farm size and productivity or output per unit of land are often found to be inversely 

related. In China, where average farm size is small and the distribution of farm sizes is 

relatively compact, farm size and productivity are weakly inversely related. However, 

when we utilize the egalitarian principle during land allocation in China and use imputed 

homogenous land area rather than actual land area in the regression, the inverse 

relationship between farm size and productivity disappears. Hence, the strong inverse 

relationship that some studies have found are undoubtly due to a number of 

methodological problems, including the failure to account properly for land quality 

differences and the method of land distribution. Applying the principal agency theory, we 

also discuss the possibility that market inefficiency may contribute to the inverse 

relationship. We examine the necessity and validity (Hahn & Hausman 2002) of the 

instrumental estimation applied in the paper. The corresponding variance estimates are 

adjusted as Murphy & Topel (1985) suggested. 

 

Keywords: Inverse Relationship, Farm Size and Productivity, Chinese Grain 

Production, Land Quality, Instrumental Estimation, Hahn-Hausman test 
 



 3

In the development literature, farm size, e.g., land area, and productivity, e.g., output per 

unit of land, seem to be inversely related. The inverse relationship is formally defined as 

average grain yields fall when the size of farm increases.1 Chayanov (1926) is credited 

with first noticing this relationship in Russian agriculture, but Sen (1962) is believed to 

be the earliest modern reference on this subject. Berry and Cline (1979) reviewed the 

early empirical evidences on farm size and productivity and econometric issues. In 

American agriculture, farm size and productivity are believed to be positively related or 

unrelated (Huffman and Evenson 2001; Hallam 1993). However, Ahearn, Yee and 

Huffman (2002) show that average farm size in the U.S. is negatively related to 

multifactor productivity over 1960-1996. 

Sen (1962) explained the inverse relationship with labor dualism, where given the 

same technology, small-scale farmers have lower opportunity costs of their labor than 

operators of large farms. Deininger and Feder (2001) applied agency theory analysis on 

this subject. When a farm is small and labor markets are not functioning, small-scale 

farms use only family labor (Taylor and Adelman 2003). Hence, in the terminology of 

principal-agent theory, the principal and his family members supply all of the labor for 

the farm. These family members have a strong incentive to work because they share the 

farm output directly and in the long run can expect to inherit the farm. Here monitoring 

and incentive problems are minimal, and excess family labor would push the value of the 

marginal product below the off-farm wage thus may result the inverse relationship. 

Bhalla and Roy (1988) and Benjamin (1995) suggested that unobserved land quality is 

positively related to farm productivity but inversely related to farm size, which might 

explain the inverse relationship between farm size and productivity as well. Heltberg 

(1998) claimed that Bhalla and Roy’s conclusions are undermined by their use of district 

aggregate data. However, using farm level data obtained in Haryana, India, Carter (1984) 

                                                        
1 Benjamin (1995) regressed output on farm size and claimed that there exists inverse relationship if 

the coefficient of farm size is less than one. 
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found a significant within-village inverse relationship between farm size and productivity. 

Heltberg also noted that Benjamin (1995)’s first-stage regression has a very low R-square 

(0.12-0.14) and suggested that weak instruments undermined Benjamin’s analysis (Bound 

et al. 1995). 

For China’s agriculture, few studies exist on the inverse relationship between farm 

size and productivity. Brandt (1985) briefly reviewed the relationships between farm size, 

productivity, and factor markets for the pre-war (1930s) northeastern China. Later, 

Benjamin and Brandt (2002) attributed the inverse relationship between size and 

productivity in China’s agriculture2 to local administrative land distribution policies and 

uneven off-farm work opportunities. Using a panel of farm households during the late 

1990s, this paper examines the relationship between farm size and productivity in China’s 

agriculture, where average farm size is small and technology is only slightly dynamic,. 

First, we utilize the fact that an egalitarian land distribution policy exists under the 

Household Responsibility System. We then develop some instruments for farm size and 

apply a Hahn-Hausman specification test for the instruments. Second, Murphy and Topel 

(1985) claimed that the traditional form of the covariance matrix estimator for a two-step 

estimator is biased. Using their methodology, we identify four different approaches for 

obtaining variance estimates of the instrumental variable estimate. 

The rest of the paper is organized as follows: In the second section, we describe the 

data and examine the relationship between farm size and crop yields for Chinese grain 

farms. In the third section, we discuss the likely effects of unobserved land quality and 

argue that a two-step estimation procedure should be applied. In the fourth section, we 

perform the second-stage analysis and test the null hypothesis of no inverse relationship 

between farm size and productivity. We also derive the MT-type variance estimators. In 

Section 5, conclusions are presented. 

 

                                                        
2 The areas they surveyed are in the geographic area same as or close to these of Brandt (1985). 
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The Data Set and Evidence on Size and Productivity 

The Dataset 

The data for our study are a sample from a large comprehensive survey of Chinese rural 

households conducted by the Research Center for Rural Economy (RCRE). This survey 

started in 1986, covered 29 provinces, and included about 20,000 households. Sample 

attrition has been small. The survey was temporarily discontinued in 1992 and 1994 for 

financial reasons. The data set for this study consists of 591 farm households randomly 

drawn from the large survey and observed in 1995 to 1999. They are from 29 villages and 

9 provinces and randomly selected from the original dataset. 

Sampling for the original data set was conducted by provincial offices under the 

Ministry of Agriculture (see Benjamin, Brandt, and Giles 2001). Each provincial research 

office first selected equal numbers of three types of counties: upper, middle and lower 

income; then they chose a representative village in each county. Forty to 120 households 

were randomly surveyed within each village. Village officers and accountants filled out a 

survey form on general village characteristics every year. 

RCRE claimed that 80 percent of the households, which enrolled in 1986, remained 

in 1999. By comparing the characteristics of those households, Chen (2001) found 

several new households (accounted for less than one percent of the whole sample) used id 

of an old household. He assigned new ids to these households. Chen (2001) converted all 

monetary variables such as prices, income, and expenditures into real terms with 1986 as 

base year. 

Summary statistics of our sample are presented in Table 1. Clearly, per capita or per 

household land area of rural China is very small compared to these of developed 

countries. The household size ranges from 1 to 11, with an average of about four 

members per family. Household labor ranges from 1 to 8 persons with an average of 

roughly 2.6 persons per household. Household agricultural productive asset ranges from 

RMB Yuan 0 to 65,000 with an average of RMB Yuan 1,567. The index illustrates the 
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extent of household specialization in grain production. About 5 percent of the households 

actually have at least one member holding a position as a village officer. 

 

The Relationship between Farm Size and Productivity 

Benjamin (1995) and Heltberg (1998) considered a simple regression of logarithm of 

grain output on logarithm of sown area: 

0ln lni i iq lα γ η= + +                                           (1) 

where q is the real value of grain output, l is land area in grain production,η is the 

random disturbance. Note that if γ is equal to 1 in equation (1) then output per unit land is 

unrelated to the farm size. If γ is less than one, then grain yield per unit land declines as 

land area increases. Finally, if γ is larger than one, then grain yield per unit of land 

increases with land area. Benjamin (1995) argued that using the actual area harvested 

rather than total farm size reduces measurement error, which otherwise could introduce a 

spurious inverse relationship. 

We fit this simple model to our dataset and obtain the estimate of γ as 0.890 with a 

standard error of 0.011 (see Table 2, column 1). Hence, we reject the null hypothesis that 

γ is one at the five percent significance level and conclude that output per unit of land 

declines as farm size increases. Excluded factors—climate, regional effects, population 

density, average land quality-- however, could bias the size of γ (e.g., downward as 

Bhalla and Roy (1988) showed). Village level dummy variables can be used to control for 

differences due to climate, soil quality, multiple cropping indexes and the regional 

irrigation systems. Benjamin (1995) used a dummy variable for use of HYV (high yield 

varieties) versus traditional varieties. 

In our dataset, grain output is measured as the aggregation value of wheat, rice, corn, 

and soya harvested.3 We observe that the wheat and corn have quite similar prices and 

                                                        
3 Pooling grain productions together is better than estimating the crops separately since households may produce a 
small amount of the crops that is not best suited for the local soil and weather just to add some variety to their menu. 
When estimating the relationship between productivity and land size, this may result in a pseudo positive relationship. 



 7

yields per unit of land. Therefore we use dummy variables to indicate whether soya (rice) 

was planted to proxy the composition of grain output. 

Cheng (1998) incorporated an indicator for a family member holding a “village 

official” position into the grain production function and found it is positive and 

statistically significant. He argued that the effects were most likely due to the local policy 

followed by collective ownership of large farm equipment and privileged access to state 

subsidized farm inputs. 

Consider the modified models: 

0 , , ,ln ln
rice soya voi i D rice i D soya i D vo i iq l D D Dα γ β β β η= + + + + +           (2) 

0 , , , ,ln ln
rice soya vo vi i D rice i D soya i D vo i D v i i

v

q l D D D Dα γ β β β β η= + + + + + +∑   (3) 

0 , , , ,ln ln
rice soya vo hhi i D rice i D soya i D vo i D hh i i

hh

q l D D D Dα γ β β β β η= + + + + + +∑     (4) 

where Dsoya takes a value of one if the household harvested soya (zero otherwise); Drice is 

one if the household harvests rice (zero otherwise). Dvo is one if a member of the farm 

household held a position as a village officer (zero otherwise). Dv is one for region v (and 

zero otherwise, we use the first village as the reference group)4, Dhh has a value of 1 for 

household h (and zero otherwise, note we use the first household as the reference group). 

When equation (2) is fitted to our dataset, the estimate of γ is 0.93 with a standard 

error of 0.01 (see Table 2). Hence, the estimate of γ is significantly different from one, 

which supports the so-called inverse relationship. When we include village fixed effects 

as in equation (3), the estimate of γ is 0.92 and but still significantly different from one at 

the 5 percent level. Thus, by expanding the model from equation (1) to (2), and then (3), 

the size of the estimate of γ changes slightly--by only 0.03 and the R-square increases 

from 0.73 to 0.89. Since our dataset is a five-year panel, individual unobserved effects 

might exist. Equation (4), a household fixed effects model, can account for the 

unobserved effects. When equation (4) is fitted to the data, the estimate of γ is 0.84 with a 

                                                        
4 Note that we use the first region (or anyone) as the reference group. 



 8

standard error of 0.05 (see Table 2). Hence, we reject the null hypothesis that γ is equal to 

one and conclude that output per unit of land declines as land area increases. The 

R-squared for this regression is 0.92. This relationship exists even after the introduction 

of village or household effects, which is consistent with Carter (1984). We, however, 

have not controlled for land quality differences. 

 

A Role for Land Quality Differences 

Land heterogeneity within Chinese villages may contribute to the inverse relationship. 

Benjamin (1995) presented the following scenario for rural Java: “If farms were 

subdivided through inheritance over time, egalitarian motives on the part of the 

benefactor would result in higher quality parcels being divided more often than low 

quality parcels”, which would impart a negative correlation between farm size and land 

quality, particularly at the local or village level. 

Under the Household Responsibility System, the majority of the arable land in rural 

China is owned by rural communities and managed by the village council (Agriculture 

Law 1993). Yao (2001) noted that the politics in rural China is characterized by a mixture 

of an authoritarian command system and grass-roots democracy, which establishes the 

legality of the egalitarian principle during land distribution and ensures its 

implementation. Furthermore, a recently passed law, Law Rural Land Contracting5 (2002, 

LRLC henceforth), explicitly stated the egalitarian principle. It stresses that women 

should have the same right as men during land distribution (Article 6, LRLC) and forbids 

local governments to void the HRS contract by specifying that no reallocation is allowed 

during the term of the contract. Exceptions need to be ratified by at least two thirds of the 

village council (Article 48, LRLC). 

Studies confirmed that the egalitarian principle has been adopted for land distribution 

in the majority of Chinese rural communities. Yao (2001) studied the effects of 
                                                        
5 It was passed in August 2002 and has been effective since March 1, 2003. 
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egalitarian land distribution on migration of rural men in China. Using household level 

data for two distinct provinces, Jiangsu and Sichuan, Burgess (2001) failed to reject the 

hypothesis of universal and egalitarian access to land. With an egalitarian principle in 

place, it is likely that average land quality and farm size are negatively correlated. 

 

Estimating Land Elasticity with Unobserved Land Quality 

If distributing equal amount of “effective land units” or quality adjusted land area is the 

objective of the local public land distribution system, then we can write: 

li=aihi                                                     (5) 

where l is homogenous land or effective units of land, h is average land quality and a is 

nominal land areas. For simplicity, impose the following normalization on h, 
1

1n
ii

h
=

=∏ . 

We can write equation (4) as: 

ln ln lni i il a h= + .                                            (6) 

Now if the “true relationship with productivity” is: 

lnyi = αL + γL(lnai + lnqi) + ηLi                                               (7) 

then when one fits equation (1) the estimate of γ  will obviously be different from Lγ .                

In particular, if note the n×1 vector lna as A and lnh as H, we have: 

1 while =( ' ) 'L L A A A Hγ γ ργ ρ −= +                       (8) 

It is possible that Lγ >1 but γ <1 when a and h are negatively correlated, i.e. ρ<0, which 

could occur under an egalitarian policy of local land distribution. 

Benjamin (1995) used an instrumental variable approach to explain the inverse 

relationship with unobserved land quality. Under local egalitarian land distribution, each 

household is presumably allocated certain amount of land according to attributes of the 

household, e.g. household size, number of workers, and the extent of farm specialization 

in grain production. Denote the logarithm of those variables as X and assume: 
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1lim { ' } XXnp X X Q= , which is a finite, positive definite matrix,     (A1) 

1lim { ' } XAnp X A Q= , is a finite matrix, and                     (A2) 

1lim { '( )} 0np X Hη − = .                                    (A3)  

A1 and A2 are quite straightforward and A3 implies that: 1lim { ' } 0np X H = , which 

means that X is uncorrelated with H, i.e., the household’s characteristics are not 

correlated with unobserved land quality. 

Now under the egalitarian land distribution policy assume that: 

ln( )i i il η= +X θ                                                     (9) 

but due to the unobservable nature of effective land units, we fit: 

ln( )i i Aia η= +X θ                                                     (10) 

Hence, we have: ( )i X= + −A X θ P η H  

by A3, we obtain: lim ( ) 0Xp − =P η H  

thus, A  converges in probability to E(L), which is the linear best predictor of  

effective or constant quality land area. 

 

Two-Step Estimation of the Land-Productivity Relationship 

We call our estimation as two-step estimation instead of two-stage estimation or 

instrumental estimation since the former is more general, i.e., the first step in two-step 

estimation can be estimated with maximum likelihood estimation. However, if only linear 

estimation is considered and all exogenous variables in the second step are included in 

the first step as well, two-step estimation, two-stage estimation and instrumental 

estimation are in essence the same thing. In the terminology of instrumental estimation, 

there are four procedures we need to go through: searching for appropriate instruments, 

judging whether we need instrumental estimation instead of ordinary linear regression, 



 11

examining the validity of the instruments, making appropriate inference. We discuss the 

details of these issues in the following. 

 

Searching for Appropriate Instruments 

Earlier studies by Chen and Brown (2001), Lin (1988), as well as the Law of Rural Land 

Contracting (2002), show that rural land distribution in China is roughly as follows: First, 

“subsistence land” is distributed according to a assessment of a household’s nutrient 

needs (Burgess 2001), which can be characterized by the number of people in the 

household. Second, the remaining land is classified as “contract land”, which are 

auctioned off at meetings of the local village council. 

A farmer that makes the highest bid wins the parcel of contract land and pays the 

village council in cash or grain output. The size of a household’s labor force is an 

important factor in determining how much a farmer bids for contract land (e.g. Burgess 

2001). Some rural Chinese households lease additional land (either from the community 

where land is relatively abundant or from these households that cannot fully operate the 

farmland being allocated) to specialize in cropping. Investment on agricultural 

instruments and machinery is a good indicator of the household’s intention and ability to 

farm additional land. Burgess (2001) included a “cadre” dummy variable in his regression 

of land allocation. Chen and Rozelle (1999) showed that when a farm household had a 

member that serves as a local village officer might be benefited during the land 

distribution land. 

Village dummy variable can be used to account for geographical differences in land 

quality.6 They capture not only the difference of regional soil, weather, irrigation system, 

and multi-cropping index as Bhalla and Roy (1988) pointed out, but also the special 

                                                        
6 Note by doing so, we assume that different villages have the same coefficient estimates. This is supported by the 

result of Burgess (2001) where his land allocation function estimates are quite similar for Sichuan and Jiangsu province. 

We refrain from regressing separately for each village for fear of the loss of large sample properties. 
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features of China’s rural land distribution system7. Krusekopf (2002) demonstrated that 

tremendous heterogeneity exists in land tenure policies at the local level in rural China. 

Yao (2002) classified land tenure systems in rural China into six categories and suggested 

there is significant regional heterogeneity in the local land distribution systems. For 

example, some villages prefer to reallocate farmland using land rental markets while 

others prefer to reallocate through meetings of the local village council. 

We also added dummy variables indicating whether the household had rice output, 

whether the household had soya output, and whether the household focused on 

agricultural production or not (household type). 

Consider the first stage regression explaining nominal land area: 

0 1 2 3 4 , 5 , 6 , 7 , ,ln ln ln ln
vi i i i hht i rice i soya i vo i D v i i

v

a p f k D D D D Dθ θ θ θ θ θ θ θ θ η= + + + + + + + + +∑ - -(11) 

where a is the land area for grain production; p is the number of household members; f is 

the number of household labor at the current year, and k is the value of agricultural 

equipment and machinery. Dv and Dvo are the village and village officer dummy variables 

defined in the usual way. The θ s are unknown parameters to be estimated. 

The least-squares estimate of equation (11) is reported in Table 3. The most notable 

feature of this equation is that the R-square is 0.79, and the partial R-square is 0.38, 

which means that the instruments are not “weak” (Bound et al 1995; Heltberg 1998).  

The equation we need to estimate in the second stage is: 

0 1 , , , , ,ln ln
soya rice hht vo v

ii D soya i D rice i D hht i D vo i D v i iq a D D D D D uβ β β β β β β= + + + + + + +∑   (12) 

where q is grain output in real terms, ln a  is the predicted logarithm of land area from 

equation (11), Dv and Dvo are defined as above, u is a random disturbance. The 

least-squares estimate of equation (12) is reported in Table 4. 

 

                                                        
7 Burgess (2001): Village dummies are included to control for across village variation in unobservables which may 

affect the form of the land allocation rule. Village land quality and parameters of the contractual environment (e.g. 

grain quotas, land rent rates, land tax rates) can all be absorbed in this manner. 
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Endogeneity Test 

Hausman (1978) provided a specification test to examine whether the OLS estimate of a 

parameter is a consistent estimator. The test statistics is: 
1

1 1 1

2

( ) '{ . . ( ) . . ( )} ( )

( ) '[( ' ) ( ' ) ] ( )
IV OLS IV OLS IV OLS

IV OLS IV OLS

H b b Est AsyVar b Est AsyVar b b b

b b X X X X b b
s

−

− − −

= − − −

− − −
=

            (13)  

where X  is the predicted value of X (i.e., least-squares predictions of explanatory 

variables) from the regression that might need an instrument, s2 is a usual estimate of σ2 

under the null hypothesis. The test statistics H has an asymptotic chi-squared distribution 

with degrees of freedom being the number of regressors minus the number of instruments 

in the second stage, which is one in this case. For this study, the Hausman test statistics is 

31.33 and the critical value of the test statistic is 3.84. Hence, the OLS estimator is not 

consistent and we need to use instrumental estimation. 

 

Examining Instruments 

Are the instruments appropriate? There are two aspects of this appropriateness. First, 

does the orthogonality condition between the instruments and the error term hold? An 

over-identification test can be used for this purpose (Ruud 2000, p573). The 

over-identification test statistics for this dataset is 3.17, which is distributed as chi-square 

with degree freedom 4. Hence, we cannot reject the null hypothesis that the orthogonality 

condition holds at 5% significance level. 

Second, are the instruments sufficiently correlated with the stochastic regressor l? 

Much discussions about “weak instruments” has emerged over the past two decade, e.g., 

Staiger and Stock (1997) and Nelson and Startz (1990). Weak instruments may make the 

second stage inference invalid. Bound, Jaeger, and Baker (1995) suggested that partial 

R-squared and the F statistics of the identifying instruments in the first stage estimation 

are useful indicators of the quality of instruments. 
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Consider the recursive model: 

1 2 1y yβ ε= +                                                   (14) 

2 2 2y z vπ= +                                                   (15) 

It is straightforward to show that: 

,2 1
2
2

lim y

y
OLSp εσ

σ
β β= +  and , 12

2

2

lim y

y
IVp εσ

σ
β β= +        (16) 

which imply that: 

2 112

2

,,

2
,

/lim
lim

yyIV

y ZOLS

p
Rp

εε
σ σβ β

β β
−

=
−

,                                           (17) 

where R2
y2,Z is the R-square (the partial R-square if there are included exogenous variables) 

from the regression of y2 on z. Obviously, as R-square increases, given a particular data 

set, the bias becomes smaller. The partial R-square for this model is 0.38, which suggests 

the instruments have reasonable explanatory power for effective land area.8 

Hahn and Hausman (2002) proposed a specification test to determine whether 

conventional IV asymptotics are reliable. The test compares the difference of the 

                                                        
8 Hall, Rudebusch, and Wilcox (1996) indicated that any relevance measure probably has little practical merit, as its 

use may actually exacerbate the poor finite-sample properties of the IV estimator. Their result is possibly caused by the 

inclusion of instruments that is Granger caused by the stochastic regressor. For the case of unobserved land 

heterogeneity, the objective of the first stage is to predict a homogenous measure that is free of land quality problem. 

As Davidson and Mackinnon (1993) pointed out, when the goal is forecasting, forecasts of the variable Yt may be 

conditional on the variables Xt if Yt-1 does not Granger cause Xt. If the number of instruments is much less than the 

number of observations, including more instruments will increase the precision of prediction thus reduces the bias in 

the second stage. However, in finite samples, to include more instruments has two types of danger. First, it is likely to 

include some instruments that are Granger caused by the stochastic regressor and thus introduce correlation between 

the predicted values with the unobserved latent variables/random disturbance. These instruments cannot eliminate the 

problem of the correlation between regressor and the error term though they may have a good fit at the first stage. 

Second, including more instruments is at risk of constructing a linear space that is not orthogonal to the space spanned 

by the unobserved latent variables. An extreme example is that when we have N instruments for a dataset of N 

observations. If the data matrix of the N instruments is not singular, the predicted value of the stochastic regressor will 

be exactly same as the observed values, which means that the R-square is one and first stage random disturbances are 

zero. Obviously, the predicted value is still correlated with the error term in the second stage. In this paper, however, we 

deem this danger less realistic since the first stage regression is based on our observation of China’s agriculture. 
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conventional 2SLS estimate of the coefficient of the right-hand side endogenous variable 

with the reverse 2SLS estimate of the same unknown parameter. Under the null 

hypothesis that the conventional first-order asymptotics provide a reliable guide to 

inference, the two estimates should be very similar. The Hahn-Hausman specification test 

shows whether the resulting difference in the two estimates satisfies the results of 

second-order asymptotic theory. The test statistic9 is: 

1
1 0.5

1

dm
w

= , where 1 2
2

1( )SLS
SLS

m n b B
c

= − − , and                        (18) 

2 2 ' ' 21
1 2 2 2 2 21

1 ' 2 ' 2
2 2 2 1

( ( ) ) ( )12
( ) ( )

n K
i LIML i z zn Ki

z z

y y y P y y M yKw
n K y P y y P y

β −
−=

− −−
=

−
∑ .                (19) 

The null hypothesis is: 

0 2
2

1: lim ( ) 0SLS
SLS

H p n b B
c

− − =  

Hahn and Hausman (2002) proved the test statistics has an asymptotic t distribution. The 

Hahn-Hausman test statistics for this data set is 0.35. Hence we cannot reject the null 

hypothesis that the 2SLS provides reliable inference10. 

 

Estimates of the Variance of the Instrumental Variable Estimators 

As Ruud (2000) pointed out, the variance estimate of the traditional IV estimator ignores 

the fact that parameters were estimated in the first step. These parameters are treated as 

constants, not random variables. This may produce a biased variance estimate in the 

second step. 

                                                        
9 Please see Hahn and Hausman (2002) for details of the test. 
10 Hahn and Hausman (2002) suggested that when the null hypothesis is rejected, a similar test based on Nagar-type 

estimators should be performed. If the second specification test rejects or the two Nagar-type estimators differ 

substantially, neither 2SLS nor LIML may provide reliable results for inference. If the null hypothesis is not rejected in 

the second test while the first test rejects, LIML estimator is preferred over 2SLS estimator. We only performed the first 

specification test. Please refer to Hahn and Hausman (2002) for details on the second specification test. 
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The existing literature has two versions of the instrumental variable estimator. Staiger 

and Stock (1997) and others assumed that:  

1 2 1y yβ ε= +  

2 2 2y z vπ= +  

where y2 is the stochastic regressor and z is the instruments. We do not consider the case 

where included exogenous variables exist in the first equation since we can invoke 

Frisch-Waugh theorem to partial them out. This model uses all the exogenous variables as 

instruments. However, we may use more generalized two-step procedure where we do 

not need to include all exogenous variables in the first step and even the linear 

assumption in the first step can be relaxed. 

Hahn and Hausman (2002) and Murphy and Topel (1985) specified that: 

1 2 1 2 2 1 2 1( )y y z v z vβ ε β π ε γ π= + = + + = +  

2 2 2y z vπ= +  

Note that although numerically identical β and γ have different interpretations. β is the 

coefficient for the observed value y2 while γ is the coefficient for the unobserved zπ2. An 

example is the case of quality adjusted land area. The instrumental estimates of the 

coefficient of the observed land measure and the coefficient of the imputed homogenous 

land have same point estimates when all second stage exogenous variables are included 

in the first stage regression. They differ if there are instruments excluded in the second 

step. In either case, their variance estimates are different as is shown in the follows. 

Traditional variance estimates for the IV estimator are obtained as following: 

( ) ( )
( ) ( ) ( )

1 1' ' ' '

2 1 2 2 12 2 2 2

1 1 1' ' ' ' '

2 1 2 1 22 2 2 2 2 2

var( ) var var ( )

var var( )

IV y y y y y y y y

y y y y y y y y y

β β ε

ε ε

− −

− − −

⎛ ⎞ ⎛ ⎞
= = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

when assuming that no heteroscedasticity occurs, we have: 
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( ) ( )1 1' '2 2
1 2 12 2 2var( )IV y y y yβ σ σ

− −

= =                                 (20) 

The commonly used estimator for σ1
2 is: 

2
1

1 1 2 1 2( ) '( )IV IVn k y y y yσ β β−= − −                                     (21) 

However, if our main interest is to obtain the variance estimate of γ, which is 

coefficient of the unobserved zπ2, we need to proceed in another direction. 

( ) ( )
( )
( ) ( )

( ) ( ) ( )

1 1' ' ' '

2 1 2 2 12 2 2 2 2

1' '
22 2 12 2 2

1 1' ' ' '
22 2 2 12 2 2 2

1 1 1' ' ' ' ' '2
22 2 2 2 12 2 2 2 2 2 2 2

var( ) var var ( )

var ( ( ) )

var ( )

var( ) ' var( )

SE y y y y y y y z v

y y y y z v

y y y z y y y v

y y y z z y y y y y y v y y y

γ γ π

γ γ π π

γ π π

γ π π

− −

−

− −

− − −

⎛ ⎞ ⎛ ⎞
= = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − − +⎜ ⎟
⎝ ⎠

= − + ( )
( ) ( )

1

2

1 1' ' '
22 2 1 22 2 2 22 cov( , )y y y z v y y yγ π π

−

− −

− −

(22) 

Obviously, equations (20) and (22) are different as Murphy and Topel (1985) noted. 

Although they may be asymptotically equivalent, if the Newey condition holds, the 

difference in finite samples cannot be ignored when making inferences regarding the 

coefficient of the stochastic regressor (Ruud 2000). 

The difference between the two variance estimates is partly due to the fact that the 

estimate of the variance of the IV estimator omits the correlation between y2 and the error 

term. It ignores the fact that parameters were estimated in the first step, which may cause 

mis-specification of the sampling variance of the second stage estimator (Ruud 2000). 

To extend the analysis to the estimation of the variance when there are included 

exogenous variables in the second stage, we use the following matrix form: 

Stage 1: L Xθ ε= +                                           (23) 

Stage 2: 2Y X X uβ γ θ= + +                                    (24) 
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Stage 2’: *
2Y X L uβ γ= + +                                     (25) 

where ε , u and u* are random disturbances. 

The two-step estimator11 is: 
' 1
2 2

1 1 1

1 1

( ', ) ( ' ) '( ( ) )

( ' ) ' ( ', ) ' ( ' ) ' ( ) ( ' ) '

( ', ) ' ( ' ) ' ( ) ( ' ) '

SE Z Z Z X X X u

Z Z Z Z Z Z Z X Z Z Z u

Z Z Z X Z Z Z u

β γ β γ θ γ θ θ

β γ γ θ θ

β γ γ θ θ

−

− − −

− −

= + − − +

= − − +

= − − +

   (26) 

where 2( | )XZ X P L=   

The usual instrumental estimator (or two-stage estimator) usually includes all 

possible instruments thus gives the estimator for the parameters as: 
' 1 *

2

1 *

( ', ) ( ' ) ( )

( ', ) ' ( ' )
IV Z Z Z X L u

Z Z Zu

β γ β γ

β γ

−

−

= + +

= +
                            (27)  

where 2( | )XZ P X L= . 

From the above expressions, including L Xθ η= + , we obtain *u u γε= − . The 

difference between the estimate of the variance of the two-step estimator and 

instrumental variable estimator is: 

' ' 1 1 1 1
2( ', ) ( ', ) (( ' ) ' ( ' ) ') (( ' ) ' ( ' ) ')SE IV Z Z Z Z Z Z u Z Z Z Z Z Zβ γ β γ γ ε− − − −− = − − −       (28) 

Hence, the following proposition holds: 

Proposition 1: '( ', )IVβ γ  equals to '
2( ', ) SEβ γ  if and only if 2X  is included in X. 

The proof of this proposition is straightforward from the derivation. Two-step estimation 

is more general than instrumental estimation and two-stage estimation is a special case 

(most efficient without presence of heteroskedasticity) of instrumental estimation. 

However, when and only when the condition in Proposition 1 holds, the three methods 

produce same result. 

                                                        
11 The example can be treated as a special case of Murphy and Topel (1985) Theorem 1. Here we specified a linear 

functional form in the first step. 
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Variance estimates for the two-step estimation and instrumental variable estimator 

proceeds in two different directions. The variance estimate of the instrumental estimator 

tries to construct a consistent estimator for u* while the variance of the two-stage least 

squares estimator can be decomposed into two parts. Murphy and Topel (1985) argued 

that although the instrumental estimator (or two-stage least squares) yields a consistent 

estimator for second-stage parameters under fairly general conditions, the second-step 

standard errors and related test statistics based on this procedure are incorrect. 

Previous econometric studies have regularly based inference on the traditional 

variance estimator of the instrumental variable estimator. For example, Benjamin (1995) 

used the robust standard error estimator to correct for arbitrary heterogeneity.  

In our model, it is better to use equation (24) rather than equation (25) as the 

structural form. Recall that we are testing the null hypothesis that output per unit of land 

area is unrelated to size (land area) with the alternative hypothesis being that the output 

per unit land is inversely related to farm size. We are more concerned with the effect of 

effective land area rather than measured land area. The estimate of γ may be biased and 

inconsistent if measured land area rather than effective land area is used as the regressor. 

We derive four estimators of the variance of the parameters in the second stage. Due 

to their tie to Murphy and Topel (1985), we label them as the MT variance estimates and 

present them in Table 4. Note that the adjusted standard error is much greater than the 

robust error given by 2SLS procedures. Therefore, using smaller variance estimates, we 

are inclined to falsely conclude that there exists an inverse relationship given the land 

elasticity estimate is less than one. We also find that the adjusted standard error with 

assumption of no correlation between the random components is identical (after rounding) 

to the adjusted estimates with correlation, which indicates that the random components 

are nearly independent, i.e., the random disturbance in the land distribution equation is 

independent of the random disturbance of grain output. 

Certainly, “outliers” may spoil the sample. Hence, we limited our sample to 
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households that have land areas less than or equal to 25 Mu (95% percentile) in another 

set of regressions. The results are summarized in Table 6 and reveal a similar pattern. We 

also split the data into two samples and fit the basic model. One of the samples is the 

group with farmland under grain production greater than or equal to 15 Mu and the other 

less. We found that the inverse relationship in the sample with larger land holdings is less 

severe. In fact the coefficient estimates is greater than one though not statistically 

significant. Land elasticity estimates for the group with larger land endowment are either 

similar or greater than those of the group with less land, though not statistically 

significant. 

Based on these results, we cannot reject the hypothesis that the coefficient of imputed 

land area is one. Hence, the empirical irregularity of the inverse relationship between 

crop yields and farm size (land area) diminishes when we use the instrumental estimator 

with adjusted standard error. 

 

Discussion 

Deininger and Feder (2001) summarized several studies that confirmed the inverse 

relationship between farm-size and productivity. They argue that supervision cost for 

hired labor that comes with a larger farm is particularly large in agricultural production 

due to spatial dispersion and thus contributed to the inverse relationship. This could be 

interpreted as one reason why China’s agriculture was transformed from collective 

farming to household responsibility system in the 1980s. Microeconomics theory 

suggests there is an optimum size for most production processes. Empirical evidence as 

summarized by Deininger and Feder (2001) indicate that the optimum farm size in most 

developing countries, given the existence of imperfect input/output/credit markets, low 

real wage, static agricultural technologies, and land heterogeneities, is small relative to 

the optimal size of farm in high wage, technically dynamic developed countries. 
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Case of China 

In China, we see a complicated picture. First, China has a very large rural population 

relative to the amount of arable land. The arable land per rural person is about 0.144 

hectare for China, for India it is 0.221, the U.S. 2.729, and the world average 0.426. 

Second, China is different from most other developing countries in that land is 

collectively owned by the rural community instead of individuals. No large 

private-owned farms exist in China. One would expect large farms to be “specialized” 

and have subleased land from the community or other households. Both communities and 

households are more likely to sublease their less-productive plots. This contributes to the 

spurious inverse relationship between land productivity and farm size. Third, eastern and 

southern China has seen an economic boost in last few decades, and a large number of 

rural labors are now engaged in off-farm activities. The “land bank”s in Zhejiang 

province functioned as a rental market and successfully transferred lands from those 

households that are less relied on farming to these that are more “specialized” on farming. 

Similar institutional arrangement emerged in Jiangsu, Anhui, and Hunan, where rural 

laborers move out of agriculture sector to take local off-farm business or migrate. 

The rapid economic development in China in the 1990s may have improved the 

function of input and output markets and most likely contributes to the weakening of 

inverse relationship between farm size and productivity. As China’s agriculture is 

mechanized and the input sector started to produce a steady stream of new technologies, 

larger farms will have a comparative advantage over small farms. Our results show that 

land heterogeneities contribute to the observed inverse relationship. This, as well as other 

studies (Benjamin 1995; Carter, 1984; Deininger and Feder 2001), points to an important 

conclusion: the inverse relationship between farm-size and output per unit of land is not 

inherent to developing countries, but rather a consequence of heterogeneous land, (labor) 

market imperfection, and unobserved factors. Therefore, a public policy of breaking up 

large farms is not justified (Deininger and Feder 2001). The hidden unemployment 
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problem can be improved by general economic development and investments in rural 

education (Huffman 2001; Huffman and Orazem 2002). A mechanism that consolidates 

land to exploit the benefits of more advanced technology and to share such benefits 

between landowners and farmers is needed. The “land bank” in Zhejiang province is a 

result of efforts seeking such mechanism or an instrument of such mechanism. Further 

investigation and research are needed to judge whether these efforts are successful. 

 

Alternative Perspective: Principal Agent Theory Interpretation 

Deininger and Feder (2001) used agency theory to explain the inverse relationship 

between farm size and productivity. When the farm has access to more land, family labor 

may not provide enough labor to equilibrate the value of the marginal product of farm 

labor to the off-farm wage. When labor markets are functioning, the farmer may hire 

outside workers. This, however, introduces agency theory problems—the farmer 

(principal) may hire workers (agents) to carry out farm work. The farmer then faces a 

decision as to the type of pay-scheme to use. The hired worker might be employed on a 

time-rate of pay or a piece-rate of pay. With a time-rate of pay scheme, the worker faces 

little risk of his work but has an incentive to shirk. Because of the spatial dispersion of 

crop farming, this makes monitoring costs significant. Hence, the principal must invest in 

costly monitoring of hired wageworkers and this drives up cost and reduces productivity. 

Alternatively, the farmer can pay a piece rate. This provides the worker with strong 

incentives to perform but he bears output risk, i.e., if the crop develops poorly it may take 

lots of labor per unit of output harvested. Also, a piece-rate pay scheme requires that the 

task be well defined and output can be easily measured, and it provides a strong incentive 

for workers to produce a large volume of low quality output (Gibbon 1999). Hence, with 

piece rate pay scheme, the principal must be able to easily monitor quality and measure 

output. Thus, agency theory provides another set of reasons why large farms might be 

less efficient than small family farms. 
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Some incentives, however, run in the opposite direction. When new agriculture 

technologies are being developed and sold to farmers, the adoption decision involves a 

fixed cost of learning about and experimenting with the new technology. The returns to 

adoption are positively related to size of the farming activity and the length of the 

farmer’s planning horizon. Hence, other things being equal, large farms have a 

comparative advantage over smaller farms when agricultural technologies are dynamic 

(Huffman & Evenson 2001). In addition, some new technologies are embedded in large 

durable goods, e.g., self-propelled combines, and large farms can more fully utilize these 

machines than can small farms. Also, if credit markets are imperfect, large farms 

generally have an advantage over small farms in obtaining credit or providing 

self-financing. 

An agent, however, can acquire a large machine and engage in custom harvesting for 

other (small) farms. This institution, however, raises new agency theory issues. For 

example, if the agent is hired on a time-rate of pay base, he faces a weak incentive to 

harvest output and may spend all this time “adjusting” the combine. If he is paid on a 

piece-rate, he has an incentive to harvest large quantities of “dirty” and low quality grain. 

Hence, a joint-pay scheme comprised of part piece-rate and part time-rate of pay schemes 

may be optimal (Holmstrom and Milgrom 1987; Lazear 1995). The custom work 

example provides another example of a negative relationship between farm size and 

productivity. 

 

Conclusion 

This paper has examined the empirical relationship between farm size (measured in land 

area) and farm productivity (measured as grain output per unit of land) in China. Given 

that the local community council holds the majority of farmland and makes local land 

allocation decisions, we choose to use a two-step estimation procedure to examine in 

detail the relationship between farm size and productivity in small-scale agriculture. The 
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data that we used are from a panel dataset for Chinese farm household in the late 1990s. 

We find an inverse relationship between farm size and land productivity, but as we adjust 

for land quality and the likely endogeneity of effective land units per farm, we find that 

the inverse relationship is partially or completely diminished. We also discuss the 

potential contribution to the inverse relationship by principle-agency problem. 

The paper also advances the methodology of variance estimators for the instrumental 

estimation. We apply the Hahn-Hausman test (Hahn and Hausman 2002) to examine 

whether the two-stage least square estimator provides an appropriate estimates and 

proposed new variance estimators for the instrumental estimates. More work, however, 

remains to be done to examine the impact of the emerging new land institutions on 

agricultural productivity in rural China.
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Table 1. Descriptive Statistics of the RCRE Data Set (2708 Observations) 

 Mean Std. Dev Min Max 
Land Under Grain Production (Mu) 9.866 8.772 0.3 150.0 
Land Under Agricultural Use (Mu) 11.257 9.371 0.3 150.0 
Household Population (People) 4.168 1.399 1 11 
Household Labors (People) 2.564 1.065 1 8 
Grain Production (kilogram) 3159.2 3621.6 50 77000 
 
 
Table 2. Evidence of Inverse Relationship (2708 Observations, OLS regression) 

 Model 1 Model 2  Model 3  Model 4  
Ln(Land) 0.89 

(0.01)12 
0.93 

(0.01) 
0.92 

(0.02) 
0.84 

(0.05) 
Village Officer Dummy  -0.03 

(0.03) 
-0.06 
(0.02) 

0.00 
(0.04) 

Dummy (Soya)  -0.18 
(0.01) 

-0.05 
(0.02) 

-0.07 
(0.02) 

Dummy (Rice)  0.24 
(0.01) 

0.08 
(0.03) 

0.03 
(0.04) 

Village/Household and Time Dummies   Village 
Effect 

Household 
Effect 

Constant 5.96 
(0.02) 

5.89 
(0.04) 

5.88 
(0.04) 

6.09. 
(0.09) 

R-square 0.73 0.77 0.89 0.92 
Adjusted R-square 0.73 0.77 0.89 0.90 
 

                                                        
12 The numbers in bracket are robust (White) variance estimates. 
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Table 3. First Stage Regression: Land Allocation in Rural China 

 Village Effect Model Household Effect Model 
Ln(Labor) 0.13   (0.03) 0.12   (0.04) 
Ln(Household size) 0.57   (0.02) 0.51   (0.05) 
Ln(Agricultural Productive Asset) 0.03   (0.00) 0.03   (0.01) 
Village Officer Dummy -0.16   (0.03) -0.04   (0.05) 
Household Type (Agricultural) 0.20   (0.07) 0.01   (0.12) 
Constant 0.31   (0.09) 0.48   (0.14) 
Village/Household, Time, crop variety Dummies Omitted Omitted 
   
R-square 0.79 0.92 
Adjusted R-square 0.78 0.90 
Partial R-square (Excluded Instruments) 0.38  
 
Table 4. Inverse Relationship: Second Stage Regression, Village Effect Model  
(Dependent Variable: lnY) Estimate 2SLS 

Std. Err. 
Robust 
Std. Err. 

MT1 
Std. Err. 

MT2 std. 
 Err.  

MT3 std. 
 Err. 

MT4 std. 
 Err. 

Constant 5.735       
Fitted value of Ln(Land) 0.998 0.018 0.022 0.031 0.031 0.047 0.047 
Village Officer Dummy -0.047 0.022 0.023 0.037 0.037 0.050 0.050 
Dummy (Soya) -0.068 0.017 0.018 0.028 0.028 0.036 0.036 
Dummy (Rice) 0.046 0.029 0.033 0.048 0.048 0.087 0.087 
Village/Time Dummies Omitted       
        
Over-identification Test Chi(4)  3.17     
Hausman Test Chi(1)  31.33     
Hahn-Hausman Test Asymptotic t 0.36     
        
R-square 0.89   Partial R-square (1st Step) 0.38 
 
Table 5. Inverse Relationship: Second Stage Regression, Household Effect Model 

(Dependent Variable: lnY) Estimate 2SLS 
Std. Err. 

Robust 
Std. Err. 

MT1 
Std. Err. 

MT2 std. 
 Err.  

MT3 std. 
 Err. 

MT4 std. 
 Err. 

Fitted value of Ln(Land) 0.990 0.037 0.049 0.063 0.063 0.084 0.084 
        
Over-identification Test Chi(4)  0.76     
Hausman Test Chi(1)  14.53     
Hahn-Hausman Test Asymptotic t 1.24     
        
R-square 0.90   Partial R-square (1st Step) 0.18 
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Table 6. Inverse Relationship: Reduced Samples (Dependent Variable: lnY) 
Coefficient of Land OLS 

Estimate 
IV Estimate  Partial 

R-square 
Over-id 

Test 
Hausman 

Test 
Hahn- 

Hausman Test 
Land < 25 N=2575       
Village Effect  0.91 (0.02)13  1.00 (0.05)14  0.38 4.55 33.00 -0.21 
Household Effect 0.79 (0.03)  0.96 (0.11)   0.17 3.69 15.21 -0.27 
        
Land < 15 N=2165       
Village Effect 0.90 (0.02)  0.99 (0.03)15      
Household Effect 0.80 (0.04)  0.94 (0.07)       
        
Land >= 15 N=543       
Village Effect 0.89 (0.05)  1.16 (0.11)      
Household Effect 0.83 (0.06)   0.97 (0.18)      
 
 
 
 
 
Appendix 1: MT Type Instrumental Variance Estimators 

For equation (24), we consider the usual instrumental estimation when 2X  is the 

included exogenous variables. Using the methodology of Murphy and Topel (1985), we 

derive the estimators of the covariance matrix in the following. 

Note, for simplicity, we use ( ', ) 'β γ  rather than 
2

'( ', )
SE

β γ  in the following. 

1 1( ' ) ' ( ) ( ' ) 'Z Z Z X Z Z Z u
β β

θ θ γ
γγ

− −
⎡ ⎤ ⎡ ⎤

= − − +⎢ ⎥ ⎢ ⎥
⎣ ⎦⎢ ⎥⎣ ⎦

 

In this case, since we have only one fitted value in the second stage, it is easy to 

derive the covariance estimator. 

                                                        
13 Robust standard error. 
14 MT1 standard error. 
15 Here we just use the usual robust standard error. 
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2 1 1 1 1

1 1

var ( ' ) ' var( ) ' ( ' ) ( ' ) ' var( ) ( ' )

2 ( ' ) ' ( , )( ' )

Z Z Z X X Z Z Z Z Z Z u Z Z Z

Z Z Z XCov Zu Z Z

β
γ θ θ

γ

γ θ θ

− − − −

− −

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦

− −

 

1. No Heteroscedasticity, Disturbances Not Correlated (MT1). 

If we assume that there is no correlation between the first stage random disturbance 

and the second stage random error, we have cov( , ) 0Zuθ θ− = . The adjusted covariance 

matrix would be: 

2 22 1 1 1var ( ' ) ' ( ' ) ( ' )uXZ Z Z P Z Z Z Z Zε
β

σ γ σ
γ

− − −
⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦

 

where 2
εσ = 1 ( ) '( )n L X L Xθ θ− − , and 1

2 2( ) '( )n Y X L Y X Lβ γ β γ− − − −  is a 

consistently estimate of 2
uσ  (Murphy and Topel, 1985). 

 

2. No Heteroscedasticity, Disturbances Correlated (MT2). 

Murphy and Topel (1985) obtained an estimator of the correlation of 

1 1cov( ( ), )
n n

g Zuθ  by the law of large numbers as: '1
1

( )n
ii in i

Z u g θ
=∑ , similarly we have 

the estimator of 1 1cov( ( ), )
n n

Zuθ θ−  as: 

11 1 1 1

1 '1
1

.cov( ( ), ) .cov(( ' ) ( ' ), )

( ' )
n n n n

n
i ii in i

Est Zu Est X X X Zu

X X X Z u

θ θ ε

ε

−

−
=

− =

= ∑
 

Therefore we have: 

2 22 1 1 1

1 1 ' 1
1

var ( ' ) ' ( ' ) ( ' )

2 ( ' ) ' ( ' ) { }( ' )

uX

n
ii i ii

Z Z Z P Z Z Z Z Z

Z Z Z X X X X Z u Z Z

ε
β

σ γ σ
γ

γ ε

− − −

− − −
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

− ∑
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3. Heteroscedasticity, Disturbances Not Correlated (MT3). 

Considering heteroscedasticity, under some fairly general conditions, White (1980) 

showed that the matrix: 2 '1
0 1

n
i i in i

S e x x
=

= ∑  where ie  is the ith least squares residual, is a 

consistent estimator of: 

2 2 '1 1
1

' n
i i in n i

X X x xσ σ
=

Σ = Ω = ∑ . 

Hence the White estimator for the first stage covariance matrix is: 

1 1
0. ( ) ( ' ) ( ' )Est Var n X X S X Xθ − −= . 

Similarly we have the White estimator of 1 1( ' ) ' var( ) ( ' )Z Z Z u Z Z Z− −  as: 

1 1
0( ' ) ( ' )Zn Z Z S Z Z− − , where 

0

2 '1
1

nZ
i i in i

S u z z
=

= ∑  

2 1 1 1 1 1 1
0 0var ( ' ) ' ( ' ) ( ' ) ' ( ' ) ( ' ) ( ' )Zn Z Z Z X X X S X X X Z Z Z n Z Z S Z Z

β
γ

γ
− − − − − −

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
 

The second term on the right hand side is the usual white estimator while the first 

term is the variability of including the fitted value as a regressor. 

 

4. Heteroscedasticity, Disturbances Correlated (MT4). 

If there is correlation between the first stage random disturbance and the second stage 

random error, we need to use the estimator of 1 1cov( ( ), )
n n

Zuθ θ− . 

Substitute this into the original estimator, we have: 

2 1 1 1 1 1 1
0 0

1 1 ' 1
1

var ( ' ) ' ( ' ) ( ' ) ' ( ' ) ( ' ) ( ' )

2 ( ' ) ' ( ' ) { }( ' )

Z

n
ii i ii

n Z Z Z X X X S X X X Z Z Z n Z Z S Z Z

Z Z Z X X X X Z u Z Z

β
γ

γ

γ ε

− − − − − −

− − −
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦

− ∑
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