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Short-Run Demand Relationships in

the U.S. Fats and Oils Complex

Practioners' Abstract

Fats and oils play a prominent role in U.S. dietary patterns. Recent concerns over the

negative health consequences associated with fats and oils have led many to suspect structural

change in demand conditions. We consider short run (monthly) demand relationships for

edible fats and oils. In that monthly quantities of fats and oils are likely to be relatively

�xed, we utilize an inverse AIDS speci�cation. Our analysis consists of two components. In

the �rst, we utilize a smooth transition function to model a switching inverse almost ideal

demand system (IAIDS) that assesses short-run demand conditions for edible fats and oils in

the U.S. Our results suggest that short-run demand conditions for fats and oils experienced

a rather rapid structural shift in the early 1990s. Although this shift generally made price

exibilities more elastic, di�erences in exibilities across regimes are modest in most cases.

Our results suggest that decreases in marginal valuations for most fats and oils in response to

consumption increases are rather small. Scale exibilities are relatively close to -1, suggesting

near homothetic preferences for fats and oils. An important distinction occurs for lard and

tallow, which exhibit a very elastic scale response. This suggests that scale increases in the

consumption of edible fats and oils will signi�cantly decrease consumers' marginal valuation

of these animal fats. A second segment of our analysis considers dynamic extensions to

the IAIDS model that recognize habit e�ects. Although nested hypothesis testing supports

the dynamic speci�cation over the static IAIDS model, price and scale exibilities are quite

similar to the static case.



Short-Run Demand Relationships in

the U.S. Fats and Oils Complex

1 Introduction

Fats and oils play an important role in the diet of the typical American consumer. Park and

Yetley (1990) estimated that direct consumption of fats and oils accounts for 33 percent of

the total dietary fat in U.S. food sources. Consumption of fats and oils has been linked to

increased risks of coronary disease and certain types of cancer. In spite of increased public

concerns over the consequences of a diet rich in fats and oils, U.S. per-capita consumption

of fats and oils has risen signi�cantly over the past twenty years. For example, total annual

consumption of fats and oils increased from 57.4 pounds per person in 1981 to 68.2 pounds

per person in 1995 (USDA-ERS, 1999). Although overall consumption of fats and oils has

been increasing, there have been signi�cant shifts among individual commodities within the

fats and oils complex. For example, consumption of animal fats, such as butter, lard, and

beef tallow, has fallen in recent years. At the same time, consumption of vegetable fats and

oils has increased signi�cantly, at least through the early 1990s. Recent trends in per-capita

fats and oils consumption are illustrated in Figure 1.

Existing research on the demand for fats and oils is rather sparse and thus current knowl-

edge of demand parameters is rather limited. One line of research has considered modeling

demand relationships for aggregated groups of commodities such as butter, margarine, short-

enings, and cooking oils. Gould, Cox, and Perali (1991) used demographic scaling of demand

system parameters to evaluate the role of changing demographics in the aggregate demand

for fats and oils between 1962 and 1987. Their results indicated that demographic variables

such as education, race, and age were important determinants of preferences for fats and

oils.

Demand conditions for individual fats and oils were evaluated by Goddard and Glance

(1989), Yen and Chern (1992) and Chern, Loehman, and Yen (1995). In each case, annual

consumption data on the most prominent individual fats and oils were used to evaluate

long-run demand conditions. These studies revealed that individual fats and oils are both

substitutes and complements for one another in consumption. In addition, considerable

variation in own-price and expenditure elasticities was found across individual oils.

A central theme inherent in the existing literature on the demand for fats and oils is the

suspicion that exogenous factors (either demographic factors or greater health awareness)

have brought about structural shifts in demand relationships. For example, the �ndings of

Gould, Cox, and Perali (1991) suggested that changes in the distribution of demographic

factors over time had shifted demand system parameters. Chern, Loehman, and Yen (1995)

used a Bayesian model of information and health risk belief based on FDA health survey data

and the cholesterol information index of Brown and Schrader (1990) to represent increasing
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consumer awareness of the health implications of fats and oils consumption.1 Their results

indicated that consumption of fats and oils perceived to be less healthy (such as butter, lard,

and coconut oils) was negatively a�ected by the cholesterol index while healthier vegetable

fats and oils were positively a�ected by health information.2 Yen and Chern (1992) used

a similar health information index and found that increased information about the conse-

quences of dietary fats was correlated with increased consumption of corn, cottonseed, and

soybean oil and decreased consumption of butter and lard.

Although the existing research has established that the demand for fats and oils ex-

perienced structural change in response to changes in these exogenous factors, the timing

and pace of shifting preferences was restricted to correspond to certain observable variables

that were proxy measures of changing attitudes and preferences regarding fats and oils. For

example, the dissemination of health information can only imperfectly be represented by

counting journal pages. It is possible that information regarding health concerns reached

consumers through other avenues and thus that restricting shifts to correspond to dates of

article publications may be restrictive. Of course, any approach to capturing unobservable

shifts in preferences is subject to these same concerns.

To our knowledge, all existing research on the demand for fats and oils evaluates long-run

demand relationships (i.e., by using quarterly or annual data collected over a long period). A

somewhat di�erent approach is taken in this analysis. The focus of our analysis is on short-

run (monthly) patterns of consumption. We suspect that, because of biological production

lags, the short-run (monthly) supply of individual fats and oils is likely to be very inelastic.

Thus, we treat quantities as being �xed and estimate an inverse demand system model.

We consider monthly demands for six important fats and oils|butter, coconut oil, corn

oil, cottonseed oil, soybean oil, and an aggregate commodity representing other animal fats

(comprised of the sum of lard and beef tallow consumption �gures). Our inverse demand

system is applied to monthly data covering the period from October 1981 through May 1999.

In an approach similar to that taken in earlier studies, we allow our demand system to vary

in accordance with structural shifts that may have impacted short-run demand relationships.

Our approach di�ers from existing studies, however, in that we utilize a smooth transition

function to model gradual shifts in the structural parameters of the inverse demand system.

Rather than tying the shift to proxy variables, we endogenously model the timing and speed

of structural shifts.

The plan of this paper is as follows. The next section describes the demand model

chosen to represent preferences for edible fats and oils|the inverse almost ideal demand

system (IAIDS) of Eales and Unnevehr (1994). The third section discusses our econometric

approach to modeling parameter shifts that may reect the presence of structural changes.

1The cholesterol information index of Brown and Schrader (1990) is constructed by taking the di�erence
between articles in the basic health literature that suggest a link between cholesterol and coronary disease
and those articles that question such a link.

2Fats and oils that are relatively low in saturated fats and high in polyunsaturated fats are generally con-
sidered to be more healthy. McCance and Widdowson (1991) report the following ratios of polyunsaturated
to saturated fats in common oils| 0.03 for butter, 0.02 for coconut oil, 0.23 for lard, 1.9 for cottonseed
oil, 3.9 for soybean oil, and 4.6 for corn oil. The presence of cholesterol in butter and animal fats also has
negative health implications.
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The fourth section contains a discussion of the application of the short-run demand models

to monthly consumption data. The �fth section considers a dynamic extension of the inverse

AIDS model that allows for habit e�ects in fats and oils consumption. The �nal section o�ers

some concluding remarks. In addition to providing new information about demand conditions

for edible fats and oils, we believe that our analysis makes two original contributions. The

�rst involves development and application of a smooth transition function that provides a

exible approach to the incorporation of gradual structural change that occurs at an unknown

point in the data series. The second includes an illustration of the methods developed by

Hansen (1996) for testing structural change under conditions where nuisance parameters are

unidenti�ed under the null hypothesis of no structural change.

2 An Inverse Demand Model

The inverse almost ideal demand system was introduced by Eales and Unnevehr (1994).

The demand model is derived by di�erentiating a logarithmic distance function that is fully

analogous to Deaton and Muellbauer's (1980) PIGLOG cost function. In particular, the

distance function for a system of k goods is given by:

ln d(u; q) = (1� u)a ln(q) + u ln b(q) (1)

where

ln a(q) = �0 +
kX

i=1

�i ln qi + 0:5
kX

i=1

kX

j=1

�ij ln qi ln qj (2)

and

ln b(q) = �0

kY

i=1

q
��j
j + ln a(q): (3)

Di�erential of the logarithmic distance function yields compensated share equations, which,

following Deaton and Muellbauer (1980), can be \uncompensated" by inverting the distance

function and solving for the utility index, which is then substituted into the share equation

to yield:

wi = �i +
kX

j=1

ij ln qj + �i lnQ (4)

where

ij = (�ij + �ji)=2 and lnQ = �0 +
kX

i=1

�i ln qi + 0:5
kX

i=1

kX

j=1

ij ln qi ln qj: (5)

Standard adding-up and homogeneity conditions imply an analogous set of conditions in the

case of inverse demands.3 In the case of the inverse AIDS model, these conditions require:

X

i

�i = 1;
X

i

�i = 0;
X

i

ij = 0 (adding-up); (6)

3See Anderson (1980) for a detailed development of adding up conditions for inverse demand systems.
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X

j

ij = 0 (homogeneity); (7)

and ij = ji (symmetry): (8)

Eales and Unnevehr (1994) derive price and scale exibilities for the inverse AIDS model

and discuss linear approximate versions that use a linear quantity aggregator index rather

than the nonlinear index implied by the full model.4 Flexibilities represent the percentage

decrease in the marginal value of the commodity (i.e., its expenditure-normalized price) that

occurs in response to a one percent increase in consumption of the commodity. Hicks (1956)

termed commodities to be gross \q-complements" if their cross price exibilities are positive

and \q-substitutes" if the cross-price exibilities are negative.5 Changes in the overall scale

of consumption on normalized prices are evaluated using scale exibilities. Scale exibilities

indicate the percentage change in normalized prices that will occur if consumption of all

goods in the system is scaled up by one percent. Scale exibilities are generally expected to

be negative and, in fact, in a fashion completely analogous to Engel's adding-up condition,

the weighted sum of the scale exibilities must be -1. Although it is tempting to consider

scale elasticities as inverse versions of expenditure elasticities, they are by no means the same

(excepting the restrictive cases of homothetic preferences and unitary elasticities of substi-

tution). Park and Thurman (1999) provide a detailed discussion of the relationship between

scale exibilities and expenditure elasticities. Commodities are considered as necessities if

scale exibilities are less than -1 and luxuries otherwise.

3 Econometric Framework

The standard inverse AIDS system is entirely analogous to the direct AIDS system and is

amenable to standard nonlinear estimation techniques. As we have noted above, however,

considerable evidence exists (both anecdotally and from earlier research) to suspect that

consumer preferences for edible fats and oils are not stable. Thus, some method of allowing

for structural change, in the form of shifts in the parameters, is necessary. A wide variety

of methods for allowing parameters to shift to accommodate structural change have been

developed.

In this analysis, we apply smooth transition functions to model the transition between

regimes that characterizes structural change in the demand for fats and oils. The use of

transition functions to model movements between alternative structural regimes was intro-

duced by Bacon and Watts (1971) and has been applied by Tsurumi, Wago, and Ilmakunnas

(1986), Moschini and Meilke (1989), and Goodwin and Brester (1995). In contrast to many

earlier applications of transition functions, we utilize a functional representation of the tran-

4In light of the extensive criticisms of linear approximate AIDS models that have come to light in recent
years, the merits of the linear approximation are dubious. As Eales and Unnevehr (1994) note, appeals to
correlated prices which are typically used to justify a linear approximation are not reasonable for quantities.

5An alternative interpretation of substitutes and complements in inverse demand systems in presented
by Barten and Bettendorf (1989).
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sition that is smooth and di�erentiable in both directions. This permits us to apply standard

maximum likelihood (ML) procedures to estimate the parameters of the transition function.

Each of the share equations of the inverse AIDS demand model may be written as:

wit = g(�; qt) + eit (9)

where eit is a mean zero error term, which is assumed to be normally distributed. The

parameter set de�ned by � = (�; ; �) characterizes the functional preference relationships

represented by the inverse AIDS model. The residual covariance matrix of the share equa-

tions will be singular and thus one equation must be omitted when estimating the system.

Structural change is usually characterized as a regime shift involving a change in these pa-

rameters over time. We allow this shift to occur gradually and identify the timing and speed

of the shift using our estimation data. Thus, we represent structural change in terms of a

shift in the parameter set from �(1) to �(2). A mixing term �t, that is constrained by con-

struction to lie in the open interval (0,1), is used to represent shifting between regimes. Our

speci�cation of the mixing problem allows us to rewrite the share equations as:

wit = (1� �t)g(�
(1); qt) + �tg(�

(2); qt) + eit: (10)

The mixing term �t is given by:

�t = �((t� �)=�) t = 1; :::; N ; (11)

where � is the normal cumulative distribution function (cdf) and � and � are parameters to

be estimated.6 Note that � represents the observation lying one-half way between regimes 1

and 2 (i.e., for which �t = 0:50). The bandwidth parameter � represents the speed of adjust-

ment between regimes, with larger values of � corresponding to more gradual adjustments

between regimes. Note that limx!1�(x) = 1 and limx! �1�(x) = 0. In that the share

equations of the system are intimately related to one another through the cross-equational

restrictions given by equation (6), we assume that the share equations all share the same

value of the mixing term �t. This ensures that the restrictions hold at every point in the

data, including those observations falling between regimes.7

A test of the statistical signi�cance of the di�erences in parameters across alternative

regimes is desirable. A standard test of parameter di�erences across regimes is analogous

to a conventional Chow test, though the switch is gradual in our case rather than instan-

taneous as is the case with standard Chow tests. As is well known, testing for structural

breaks in cases where the break point is unknown a priori is complicated by the fact that

parameters characterizing the break (� and �) are unidenti�ed under the null hypothesis

of no structural change. Thus, conventional test statistics have nonstandard distributions.

6Our smooth transition function approach has much in common with the smooth threshold modeling
techniques of Terasvirta (1994). A similar approach to speci�cation and estimation is undertaken there,
though in that case observations may switch between regimes more than once. In our approach, the regime
switch is permanent.

7In reality, all observations fall between regimes given the asymptotic nature of the transition function,
which never actually reaches zero from above or one from below.
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Hansen (1996) has developed an approach to testing the statistical signi�cance of param-

eter di�erences across alternative regimes in threshold autoregressive models. Under his

approach, simulation methods are used to approximate the asymptotic null distribution of a

test of parameter di�erences and to identify appropriate critical values. Hansen (1996, 1997)

recommends running a number of simulations whereby the dependent variables are replaced

by standard normal random draws. For each simulated sample, the regime switching model

is estimated and a standard Chow-type test is used to test the signi�cance of the regime

switch. From this simulated sample of test statistics, the asymptotic p-value is approximated

by taking the percentage of test statistics for which the test taken from the estimation sample

exceeds the observed test statistics. We follow such an approach to testing the signi�cance

of threshold e�ects here.

Finally, we should acknowledge the likelihood of autocorrelation in our application to

monthly consumption data. To address this concern, we allow for �rst-order autocorrelation

in the residuals by applying the methods developed by Berndt and Savin (1975). As Berndt

and Savin (1975) demonstrated, invariance of the estimates with respect to the deleted equa-

tion is guaranteed only when each equation has the same autoregressive root. We estimate a

diagonal autoregressive matrix with a common autoregressive term in each equation. Thus,

each share equation is rewritten as:

wit = �wit�1 + (1� �t)g(�
(1); qt) + �tg(�

(2); qt)�

�((1� �t�1)g(�
(1); qt�1) + �t�1g(�

(2); qt�1)) + �t (12)

where � is the autoregressive parameter (identical across equations) and �t is a serially

independent, normally distributed residual error.

4 Empirical Application and Results

Monthly edible consumption �gures and prices were collected from standard USDA sources

(USDA-ERS, 1999) for the period covering October 1981 through May 1999. Minor oils

including palm oil, peanut oil, sunower seed oil, and rapeseed oil account for a small share of

the market and were omitted from our analysis due to a lack of data.8 It should also be noted

that, due to nonreporting of consumption �gures, a number of observations were missing

throughout our sample. Our estimation sample contained 178 nonmissing observations.

Any observation for which the current or lagged (due to our autocorrelation correction)

values of model variables were missing was given zero weight in the likelihood function. We

assume that our group of fats and oils is weakly separable from all other products and thus

consider these goods in isolation from other commodities. As Eales and Unnevehr (1994)

8Over the period of our study, these minor oils typically accounted for less than 5 percent of total fats
and oils consumption. A small number of �rms produce these minor oils. The Census Department surveys
that are the original sources of our data often do not report consumption �gures for minor oils because of
disclosure considerations.
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note, assuming that quantities are predetermined for some aggregate commodity category is

likely to be suspect. Following convention, quantity terms were normalized using the data

means to have mean values of one. Summary statistics and variable de�nitions are presented

in Table 1.

Soybean and butter are the most prominent fats and oils in our sample, together ac-

counting for nearly 78 percent of expenditures (53 percent by soybean oil and 25 percent by

butter). Corn oil is the next most prominent oil, typically accounting for about 4 percent

of total fats and oils expenditures. The remaining fats and oils had average budget shares

ranging from 1.5 - 3 percent.

A standard inverse AIDS demand model was estimated for the full sample. Parameter

estimates and summary statistics are presented in Table 2.9 Nearly every parameter is

highly signi�cant and the estimates appear to �t the data very well, as is evidenced by

the R2 measures of correlation between actual and �tted shares. Table 2 also contains

estimates of the regime switching model intended to capture and model structural change in

the estimates.

We pursued two estimation strategies in our regime switching analysis|both of which

yielded very similar results. In the �rst, following standard practice for the estimation of

transition functions, we used a grid search to estimate parameters de�ning the transition

function (� and �). Under this approach, a two dimensional grid search was used to spec-

ify the transition function parameters. The remaining parameters of the switching demand

system were then estimated conditional on these parameters. The combination of transition

function parameters the yielded the highest maximized conditional log-likelihood function

were chosen as the optimal estimates. In that our transition function is smooth and con-

tinuously di�erentiable, standard nonlinear estimation techniques are also applicable. Thus,

we also estimate � and � along with the other parameters of the model using conventional

maximum likelihood techniques.10

Parameter estimates for the gradual switching model are also presented in Table 2. These

estimates were obtained using conventional ML estimation procedures. ML estimates of �

and � were 138.3 and 8.2, respectively. Estimates obtained using a grid search were similar,

though the grid search estimate of � was slightly smaller (133) and the estimate of � was

somewhat higher (21). The transition functions for both the ML and grid search estimates

are presented in Figure 2. Note that both sets of estimates suggest a very similar pattern

of structural change, centered around the 1992-93 period. The larger bandwidth parameter

suggests a more gradual transition, though adjustment is nearly complete by mid-1994 in

both cases. Estimates of the inverse AIDS model obtained using the grid search estimates of

9Note that, following convention, �0 is �xed at zero in estimation of the other parameters.
10One may ask why a grid search was considered in light of the fact that conventional estimation techniques

are feasible and must, be construction, yield estimates that are as good as or better (in terms of the
maximized likelihood function value) than the grid search estimates. Estimation of the transition function
parameters by conventional means presents a di�cult estimation problem whereas estimation via grid search
is straightforward. The grid search approach provides ideal starting values for use in the ML estimation;
although, our experience was that our ML estimates of the transition function parameters were reasonably
robust with respect to start values. Finally, estimation of the transition function parameters via conventional
ML is not really feasible in the simulation of test statistics given the complexity of the estimation problem.
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� and � were nearly identical to those presented here. Further, the elasticity estimates were

nearly identical to those presented here. A standard likelihood ratio test of the signi�cance

of the di�erences in the standard model and the regime switching model (estimated via grid

search) had the value of 142.359, which strongly rejects the null hypothesis of parameter

stability using conventional chi-square critical values. Application of Hansen's bootstrapping

methods implied a probability value less than 0.01 for this test statistic, con�rming the

signi�cance of the parameter di�erences across regimes.11

Table 3 presents price and scale exibilities, evaluated at the data means. For the full

sample, the estimates all appear reasonable, though own-price exibilities of coconut oil,

corn oil, and cottonseed oil are very small and, in fact, are not statistically di�erent from

zero.12 This suggests that consumers' marginal valuations of these oil products are not

signi�cantly a�ected when quantities increase. As expected, nearly all cross-price exibilities

are negative, suggesting that all fats and oils in our analysis are gross q-substitutes. These

cross-price exibilities are, however, often close to zero, suggesting a relatively low degree of

substitutability.13

Scale exibilities indicate the extent to which marginal valuations are a�ected when

consumption of all products is increased one percent. As expected, all scale exibilities

are negative, indicating that increased consumption lowers the marginal valuation of all

goods. However, considerable variation exists in scale commodities across goods. Recall

that scale exibilities greater than one in absolute value correspond to \necessities" while

scale exibilities less than one in absolute value are \luxuries."14 The scale exibility for

animal fats (lard and tallow) is very large in absolute value, indicating that marginal values

for lard and tallow decrease substantially more than those for other goods as consumption

of all fats and oils rises. This suggests that animal fats are a \less-preferred" commodity

relative to other fats and oils.

The own-price exibility for soybean oil, by far the most prominent commodity in our

group of fats and oils, is -0.58. This estimate, suggests that increasing consumption of

soybean oil by one percent lowers consumers' marginal valuation of soybean oil by 0.58

percent. The own-price exibility for butter was considerably smaller at -0.29. Animal fats

had an own-price exibility of -0.47.

Flexibility estimates for the alternative regimes implied by the gradual switching model

are also presented in Table 3. In most cases, the exibilities are similar across the two

regimes, though the exibilities are uniformly larger (in absolute value) in the second regime.

In several cases, own-price exibilities that were close to zero for the full sample (coconut,

11In particular, the bootstrap implied critical values of 34.08 and 39.56 at the � = .05 and .01 levels,
respectively. The bootstrap sampling was limited to 100 replications due to the computationally intensive
nature of the simulation. In addition, the grid search was conducted on a somewhat coarser grid than we
used in estimation for the original sample.

12Standard errors for elasticities were obtained using Geweke's (1986) sampling procedures.
13Barten and Bettendorf (1989) are critical of the use of cross-price exibilities in categorizing goods as

substitutes or complements and recommend an alternative approach using Allais coe�cients.
14Park and Thurman (1999) demonstrate that a negative scale elasticity that less than one in absolute

value will have an expenditure elasticity that is greater than one. Likewise, goods with large scale elasticities
(in absolute value) will have small expenditure elasticities.
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corn, and cottonseed oils) are actually positive in the �rst regime. This result violates quasi-

concavity of the underlying distance function and thus makes the estimates questionable.

Estimates for the second regime are much more reasonable and suggest more elastic responses

of normalized prices to increases in quantities. The scale exibilities are quite similar across

the alternative regimes, with animal fats again showing a very elastic response of normalized

prices to increases in the scale of consumption.

The fact that several own-price exibilities for minor oils are actually positive in the �rst

regime may suggest that our switching methods are inadequate for capturing the structural

changes which shifted the demands for fats and oils in the 1980s. Flexibility estimates for the

second regime are quite similar to what is frequently observed for food commodities. If we

concentrate our estimation solely on the post-1992 sample, estimates nearly identical to those

presented for the second regime are obtained. Thus, these may o�er the most reasonable

assessment of current demand conditions for edible fats and oils. Scale exibilities do not

appear to be signi�cantly inuenced by the structural shifts revealed by our models.

5 A Dynamic Extension

In light of our use of monthly data, one may suspect the potential for dynamic habit or

stock e�ects. A variety of methods for incorporating dynamics into a direct or inverse

demand system have been developed and applied in recent years. At a fundamental level, our

recognition of autocorrelation represents a dynamic speci�cation in that shares are inuenced

by residuals from the preceding period. Alternative approaches to recognizing dynamic habit

e�ects typically involve the inclusion of lagged consumption levels in the share equations (see,

for example, Pollak (1970) and Blanciforti and Green (1983)).

A more general approach to incorporating habit e�ects in a dynamic speci�cation of the

direct AIDS model was considered by Ray (1984). Holt and Goodwin (1997) applied this

speci�cation to a consideration of quarterly meat demand in the U.S. Ray's (1984) approach

involved augmenting the share equations with lagged aggregate consumption. In particular,

in the direct AIDS model, the augmentation permits price and real income responses to

vary with lagged consumption. As Holt and Goodwin (1997) note, in the indirect AIDS

model, this augmentation implies that the level of the distance function required to achieve

a given level of utility will depend upon lagged quantities as well as current quantities. The

intuition underlying this speci�cation is that habit e�ects relate current distance to lagged

consumption levels.

Following Ray (1984) and Holt and Goodwin (1997), the dynamic inverse AIDS model

allows quantity responses to vary with lagged quantities according to the following speci�-

cation:

wi = �i +
kX

j=1

(ij + �ij�t�1) ln qj + (�i + �i�t�1) lnQ (13)

9



where

�t�1 =
kX

i=1

ln qit�1 (14)

and

lnQ = �0 +
kX

i=1

�i�t�1 +
kX

i=1

�i ln qi + 0:5
kX

i=1

kX

j=1

(ij + �ij�t�1) ln qi ln qj: (15)

The �t�1 term represents aggregate consumption, or the `standard of living,' in the previous

period.15 Inclusion of this term in the share equations allows price and scale exibilities to

vary with lagged aggregate consumption, thus incorporating habit persistence. In addition

to the parametric restrictions discussed above for the static IAIDS model, the dynamic

speci�cation includes the following restrictions:

kX

i=1

�ij =
kX

j=1

�ij = 0;
kX

i=1

�i = 0; �ij = �ji: (16)

In light of the preceding results indicating parameter instability for a simple static IAIDS

model, we limited our application of the dynamic IAIDS model to the set of observations

roughly corresponding to the latter regime (i.e., from 1988 forward).16 The dynamic IAIDS

model was estimated using maximum likelihood procedures. Following our analysis of the

static model, the estimates were again corrected for �rst-order autocorrelation using the

procedures of Berndt and Savin (1975). Parameter estimates and summary statistics are

presented in Table 4.

Although the parameters added to represent dynamic e�ects are statically signi�cant at

the � = :10 or smaller level in only 7 of 26 cases, a nested likelihood ratio test of the dynamic

speci�cation has the value of 43.57, which exceeds the chi-square critical value at the � = :05

level. Thus, the results indicate that a static IAIDS speci�cation omits relevant dynamic

terms representing habit e�ects. Signi�cant autocorrelation appears to again be present in

the dynamic IAIDS speci�cation, indicating that the addition of parameters allowing for

dynamic habit e�ects does not eliminate autocorrelation.

Price and scale exibilities for the dynamic speci�cation, evaluated at the data means, are

presented in Table 5. Although the estimates are quite similar to those obtained for the static

IAIDS speci�cations considered above, several di�erences do exist. All exibilities appear to

be of the correct sign, with all own-price exibilities being negative. Own-price exibilities

for coconut oil, corn oil, and cottonseed oil, though negative, are again close to zero. When

compared to the full sample results for the static IAIDS model, the butter and soybean own-

price exibilities are slightly larger in absolute value, suggesting slightly higher marginal

15See Holt and Goodwin (1997) for a detailed discussion of the corresponding distance function and the
derivation of the dynamic inverse AIDS share equations.

16Of course, omission of signi�cant dynamic e�ects represents a speci�cation error that may reveal itself in
the form of parameter instability in a simple static speci�cation. Our ability to examine structural change in a
static speci�cation is limited by our available degrees of freedom. In particular, both the switching regression
speci�cation and the dynamic IAIDS speci�cation involve roughly twice the number of parameters as what
is implied by a standard IAIDS speci�cation.
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valuations for these products. The scale exibilities are very similar to those obtained in

the static models. Exceptions occur for coconut oil, which rises (in absolute value) to -1.23

and animal fats, which rise (in absolute value) to -5.57. Again, these results indicate that

marginal valuations for these goods fall substantially as aggregate consumption of all fats

and oils increase, implying that these products are \less-preferred" relative to the other fats

and oils.

Overall, in spite of their statistical signi�cance as a group, the incorporation of parameters

representing dynamic e�ects results in similar price and scale exibilities. Of course, at the

data means, the variable representing lagged aggregate consumption (�t�1) approaches zero

since it is made up of logarithmic normalized quantities. Thus, dynamic e�ects may have a

more signi�cant inuence on observations away from the mean values.

6 Concluding Remarks

Fats and oils play a prominent role in U.S. dietary patterns. Recent concerns over the

negative health consequences associated with consumption of certain fats and oils have led

many to suspect that demand conditions for fats and oils may have undergone structural

change. Indeed, previous research by Gould, Cox, and Perali (1991), Yen and Chern (1992),

and Chern, Loehman, and Yen (1995) suggested that increased health concerns and changing

demographics may have shifted consumer demands for fats and oils.

We utilize a gradually switching inverse AIDS demand model to assess short-run demand

conditions for edible fats and oils in the U.S. Our results suggest that short-run demand

conditions for fats and oils experienced a rather rapid structural shift in the early 1990s.

Although this shift generally made price exibilities more elastic, di�erences in exibilities

across regimes are modest in most cases. A dynamic extension to the static IAIDS model

implies that, although parameters representing dynamic e�ects are statistically signi�cant,

the dynamic speci�cation results in relatively similar price and scale exibilities.

Our results suggest that decreases in marginal valuations for most fats and oils in re-

sponse to consumption increases are rather small. Scale exibilities are relatively close to -1,

suggesting near homothetic preferences for fats and oils. An important distinction occurs for

lard and tallow, which exhibits a very elastic scale response. This suggests that increasing

the scale of consumption of all fats and oils will result in signi�cant decreases in consumers'

marginal valuation of lard and tallow.

Our research e�ort was hampered to some extent by nondisclosure of consumption data

for minor oils. Future research will consider quarterly data to attempt to address this

limitation. In addition, greater attention to dynamic demand relationships and persistence

in consumption may be warranted.
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Table 1. Variable De�nitions and Summary Statistics

Variable De�nition Mean Std. Dev.

qbutter Monthly butter consumption (lb./capita) 0:3272 0:0573

qcoconut Monthly coconut oil consumption (lb./capita) 0:0771 0:0298

qcorn Monthly corn oil consumption (lb./capita) 0:2640 0:0819

qcottonseed Monthly cottonseed oil consumption (lb./capita) 0:2094 0:0496

qsoybean Monthly soybean oil consumption (lb./capita) 3:5975 0:2852

qanimal Monthly lard and tallow consumption (lb./capita) 0:3039 0:1011

pbutter Butter Price (cents/lb.) 121:7956 33:5521

pcoconut Coconut oil price (cents/lb.) 31:1489 10:7563

pcorn Corn oil price (cents/lb.) 24:7622 3:8894

pcottonseed Cottonseed oil price (cents/lb.) 24:2333 5:2313

psoybean Soybean oil price (cents/lb.) 22:7400 4:7439

plard Lard price (cents/lb.) 17:2826 3:6999

ptallow Tallow price (cents/lb.) 15:5252 3:4810

wbutter Budget share for butter 0:2526 0:0710

wcoconut Budget share for coconut oil 0:0151 0:0067

wcorn Budget share for corn oil 0:0407 0:0145

wcottonseed Budget share for cottonseed oil 0:0323 0:0078

wsoybean Budget share for soybean oil 0:5260 0:0663

wanimal Budget share for lard and tallow 0:0307 0:0079

12



Table 2. Standard and Switching Inverse AIDS Demand Systems:

Parameter Estimates and Summary Statisticsa

Parameter Full Sample Regime I Regime II

11 0:1645 0:2001 0:1110

(0:0126)� (0:0125)� (0:0221)�

12 �0:0043 �0:0051 �0:0010

(0:0010)� (0:0011)� (0:0019)

13 �0:0097 �0:0133 �0:0050

(0:0018)� (0:0019)� (0:0032)

14 �0:0097 �0:0122 �0:0032

(0:0012)� (0:0013)� (0:0023)

15 �0:1415 �0:1553 �0:1105

(0:0118)� (0:0126)� (0:0225)�

22 0:0140 0:0179 0:0101

(0:0008)� (0:0012)� (0:0011)�

23 �0:0016 �0:0003 �0:0002

(0:0008)� (0:0012) (0:0011)

24 �0:0006 �0:0032 0:0019

(0:0007) (0:0010)� (0:0010)

25 �0:0064 �0:0058 �0:0098

(0:0017)� (0:0024)� (0:0036)�

33 0:0392 0:0528 0:0245

(0:0018)� (0:0024)� (0:0022)�

34 �0:0030 �0:0064 �0:0035

(0:0010)� (0:0013)� (0:0013)�

35 �0:0202 �0:0263 �0:0098

(0:0030)� (0:0038)� (0:0053)

44 0:0303 0:0352 0:0229

(0:0013)� (0:0016)� (0:0022)�

45 �0:0117 �0:0068 �0:0156

(0:0021)� (0:0028)� (0:0050)�

55 0:1889 0:2050 0:1722

(0:0147)� (0:0170)� (0:0306)�

aSubscripts correspond to (i = 1) butter, (i = 2) coconut oil, (i = 3) corn oil,
(i = 4) cottonseed oil, (i = 5) soybean oil, and (i = 6) lard and tallow. Numbers in
parentheses are standard errors. An asterisk indicates statistical signi�cance at the
�=.05 or smaller level.
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Table 2. (continued)

Parameter Full Sample Regime I Regime II

�1 0:2614 0:2890 0:1740

(0:0068)� (0:0066)� (0:0158)�

�2 0:0156 0:0159 0:0156

(0:0006)� (0:0007)� (0:0017)�

�3 0:0445 0:0435 0:0381

(0:0010)� (0:0012)� (0:0026)�

�4 0:0322 0:0318 0:0331

(0:0007)� (0:0008)� (0:0021)�

�5 0:5190 0:5025 0:5900

(0:0065)� (0:0071)� (0:0166)�

�1 0:0543 0:0231 0:0473

(0:0274)� (0:0286) (0:0422)

�2 0:0007 0:0016 �0:0005

(0:0022) (0:0026) (0:0038)

�3 �0:0013 �0:0008 0:0023

(0:0041) (0:0043) (0:0063)

�4 0:0038 0:0084 0:0001

(0:0027) (0:0030)� (0:0044)

�5 0:0597 0:0745 0:0658

(0:0264)� (0:0296)� (0:0435)

� 0:8964 0:9159

(0:0173)� (0:0165)�

� 138:3416

(2:5500)�

� 8:2105

(2:8533)�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2
Butter 0:8751 0:9141

R2
Coconut 0:9128 0:9247

R2
Corn 0:9346 0:9551

R2
Cottonseed 0:9045 0:9238

R2
Soybean 0:8715 0:8958

aSubscripts correspond to (i = 1) butter, (i = 2) coconut oil, (i = 3) corn oil,
(i = 4) cottonseed oil, (i = 5) soybean oil, and (i = 6) lard and tallow. Numbers in
parentheses are standard errors. An asterisk indicates statistical signi�cance at the
�=.05 or smaller level.
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Table 3. Price and Scale Flexibilities

Normalized Quantity

Price Butter Coconut Corn Cottonseed Soybean Animal Scale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Butter �0:2946 �0:0137 �0:0295 �0:0313 �0:4470 0:0091 �0:7849

(0:0428)� (0:0043)� (0:0093)� (0:0065)� (0:0926)� (0:0187) (0:1154)�

Coconut �0:2713 �0:0723 �0:1043 �0:0362 �0:3988 �0:0738 �0:9517

(0:0536)� (0:0519) (0:0529)� (0:0461) (0:1592)� (0:0762) (0:1472)�

Corn �0:2458 �0:0399 �0:0372 �0:0735 �0:5134 �0:1193 �1:0324

(0:0380)� (0:0199)� (0:0395) (0:0240)� (0:1072)� (0:0484)� (0:0999)�

Cottonseed �0:2701 �0:0159 �0:0866 �0:0582 �0:2999 �0:1639 �0:8825

(0:0311)� (0:0214) (0:0295)� (0:0393) (0:0892)� (0:0409)� (0:0841)�

Soybean �0:2403 �0:0105 �0:0338 �0:0185 �0:5811 �0:0139 �0:8865

(0:0182)� (0:0034)� (0:0062)� (0:0045)� (0:0485)� (0:0131) (0:0543)�

Animal �0:9427 �0:0944 �0:3116 �0:2989 �2:3035 �0:4701 �4:8123

(0:0922)� (0:0382)� (0:0663)� (0:0465)� (0:3800)� (0:1748)� (0:3922)�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Regime I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Butter �0:1850 �0:0189 �0:0491 �0:0455 �0:5667 �0:0528 �0:9087

(0:0387)� (0:0049)� (0:0094)� (0:0069)� (0:0970)� (0:0194)� (0:1122)�

Coconut �0:3139 0:1860 �0:0132 �0:2071 �0:3329 �0:2258 �0:8962

(0:0603)� (0:0764)� (0:0765) (0:0585)� (0:2014) (0:1064)� (0:1723)�

Corn �0:3327 �0:0067 0:2971 �0:1589 �0:6568 �0:1593 �1:0193

(0:0377)� (0:0284) (0:0576)� (0:0329)� (0:1239)� (0:0622)� (0:1034)�

Cottonseed �0:3139 �0:0944 �0:1891 0:0999 �0:0755 �0:1946 �0:7410

(0:0318)� (0:0271)� (0:0410)� (0:0503)� (0:1142) (0:0549)� (0:0933)�

Soybean �0:2595 �0:0090 �0:0443 �0:0084 �0:5358 �0:0160 �0:8584

(0:0187)� (0:0044)� (0:0077)� (0:0058) (0:0536)� (0:0157) (0:0559)�

Animal �1:3339 �0:1646 �0:3512 �0:3246 �2:1732 0:2332 �4:4702

(0:1284)� (0:0533)� (0:0842)� (0:0605)� (0:3889)� (0:2360) (0:3579)�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Regime II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Butter �0:5133 �0:0010 �0:0122 �0:0064 �0:3390 0:0399 �0:8130

(0:0860)� (0:0082) (0:0147) (0:0116) (0:1377)� (0:0329) (0:1670)�

Coconut �0:0739 �0:3278 �0:0145 0:1265 �0:6715 �0:0710 �1:0359

(0:1316) (0:0721)� (0:0730) (0:0687) (0:2760)� (0:1438) (0:2503)�

Corn �0:1092 �0:0040 �0:3963 �0:0834 �0:2111 �0:1459 �0:9441

(0:0786) (0:0275) (0:0534)� (0:0330)� (0:1643) (0:0795) (0:1535)�

Cottonseed �0:0968 0:0597 �0:1073 �0:2910 �0:4824 �0:0796 �0:9972

(0:0759) (0:0320) (0:0415)� (0:0672)� (0:1836)� (0:0824) (0:1367)�

Soybean �0:1785 �0:0168 �0:0135 �0:0257 �0:6069 �0:0464 �0:8750

(0:0420)� (0:0067)� (0:0105) (0:0102)� (0:0799)� (0:0272) (0:0837)�

Animal �0:6628 �0:0906 �0:3472 �0:2042 �2:8239 �0:2227 �4:7345

(0:2640)� (0:0715) (0:1065)� (0:0910)� (0:5878)� (0:3475) (0:5459)�

aNumbers in parentheses are standard errors. An asterisk indicates statistical signi�cance at the
�=.05 or smaller level.
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Table 4. Dynamic Inverse AIDS Demand System:

Parameter Estimates and Summary Statisticsa

Parameter Estimate Parameter Estimate

11 0:1265 45 �0:0132

(0:0151)� (0:0033)�

12 �0:0010 55 0:1770

(0:0007) (0:0232)�

13 �0:0072 �11 0:0175

(0:0021)� (0:0165)

14 �0:0091 �12 0:0004

(0:0016)� (0:0008)

15 �0:1150 �13 �0:0006

(0:0157)� (0:0023)

22 0:0114 �14 �0:0028

(0:0005)� (0:0016)

23 0:0000 �11 �0:0163

(0:0007) (0:0169)

24 0:0006 �22 0:0011

(0:0007) (0:0005)�

25 �0:0079 �23 0:0001

(0:0016)� (0:0006)

33 0:0378 �24 0:0004

(0:0023)� (0:0007)

34 �0:0042 �25 �0:0009

(0:0014)� (0:0011)

35 �0:0215 �33 0:0070

(0:0041)� (0:0021)�

44 0:0302 �34 �0:0024

(0:0019)� (0:0013)
aSubscripts correspond to (i = 1) butter, (i = 2) coconut oil, (i = 3) corn oil,
(i = 4) cottonseed oil, (i = 5) soybean oil, and (i = 6) lard and tallow. Numbers in
parentheses are standard errors. An asterisk indicates statistical signi�cance at the
�=.05 or smaller level.
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Table 4. (continued)a

Parameter Estimate Parameter Estimate

�35 �0:0001 �4 �0:1854

(0:0031) (0:1281)

�44 0:0040 �5 0:0857

(0:0018)� (0:0609)

�45 0:0033 �1 0:0640

(0:0023) (0:0336)

�55 0:0131 �1 0:0549

(0:0208) (0:0322)

�1 0:2140 �2 �0:0027

(0:0088)� (0:0017)

�2 0:0118 �2 �0:0014

(0:0004)� (0:0017)

�3 0:0474 �3 0:0041

(0:0013)� (0:0050)

�4 0:0332 �3 �0:0015

(0:0009)� (0:0050)

�5 0:5563 �4 0:0101

(0:0090)� (0:0036)�

�1 �0:0411 �4 0:0036

(0:0395) (0:0035)

�2 0:0262 �5 0:0525

(0:0352) (0:0357)

�3 0:0881 �5 �0:0477

(0:0461) (0:0354)

�4 0:0283 � 0:8984

(0:0560) (0:0231)�

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2
Butter 0:8374

R2
Coconut 0:9179

R2
Corn 0:9629

R2
Cottonseed 0:9356

R2
Soybean 0:8050

aSubscripts correspond to (i = 1) butter, (i = 2) coconut oil, (i = 3) corn oil,
(i = 4) cottonseed oil, (i = 5) soybean oil, and (i = 6) lard and tallow. Numbers in
parentheses are standard errors. An asterisk indicates statistical signi�cance at the
�=.05 or smaller level.

17



T
a
b
le
5
.
P
ri
ce
a
n
d
S
ca
le
F
le
x
ib
il
it
ie
s
fo
r
D
y
n
a
m
ic
In
v
er
se
A
ID
S
M
o
d
el

N
o
rm
a
li
ze
d

Q
u
a
n
ti
ty

P
ri
ce

B
u
tt
er

C
o
co
n
u
t

C
o
rn

C
o
tt
o
n
se
ed

S
oy
b
ea
n

A
n
im
a
l

S
ca
le

B
u
tt
er

�

0
:3
7
0
5

�

0
:0
0
1
2

�

0
:0
2
0
7

�

0
:0
3
1
3

�

0
:3
5
6
2

0
:0
3
4
5

�

0
:7
1
4
0

(0
:0
6
1
7
)�

(0
:0
0
3
7
)

(0
:0
1
1
5
)

(0
:0
0
9
0
)�

(0
:1
2
9
4
)�

(0
:0
2
8
7
)

(0
:1
5
0
7
)�

C
o
co
n
u
t

�

0
:1
3
6
7

�

0
:0
5
4
1

�

0
:0
1
0
3

0
:0
3
9
1

�

0
:7
8
0
8

�

0
:2
5
9
7

�

1
:2
2
7
5

(0
:0
5
3
8
)�

(0
:0
4
4
7
)

(0
:0
5
8
0
)

(0
:0
5
7
7
)

(0
:1
7
4
4
)�

(0
:0
7
6
2
)�

(0
:1
4
0
8
)�

C
o
rn

�

0
:1
5
5
4

0
:0
0
0
9

�

0
:0
6
6
4

�

0
:0
9
8
8

�

0
:4
7
2
9

�

0
:1
1
7
2

�

0
:8
9
8
6

(0
:0
4
7
0
)�

(0
:0
1
7
4
)

(0
:0
5
5
7
)

(0
:0
3
4
1
)�

(0
:1
4
5
0
)�

(0
:0
6
4
8
)

(0
:1
2
2
7
)�

C
o
tt
o
n
se
ed

�

0
:2
1
0
0

0
:0
2
0
9

�

0
:1
1
4
8

�

0
:0
6
4
5

�

0
:2
3
3
5

�

0
:1
2
3
5

�

0
:6
9
1
5

(0
:0
4
3
4
)�

(0
:0
2
1
4
)

(0
:0
4
1
8
)�

(0
:0
5
9
5
)

(0
:1
3
8
8
)

(0
:0
5
8
3
)�

(0
:1
0
9
4
)�

S
oy
b
ea
n

�

0
:1
8
6
8

�

0
:0
1
3
1

�

0
:0
3
5
0

�

0
:0
2
0
7

�

0
:6
2
7
5

�

0
:0
3
2
4

�

0
:9
0
5
1

(0
:0
2
5
2
)�

(0
:0
0
2
8
)�

(0
:0
0
7
7
)�

(0
:0
0
6
3
)�

(0
:0
6
6
3
)�

(0
:0
2
1
2
)

(0
:0
6
4
4
)�

A
n
im
a
l

�

0
:8
0
9
6

�

0
:1
6
3
7

�

0
:3
5
9
9

�

0
:3
0
2
7

�

3
:2
1
8
5

�

0
:2
1
0
3

�

5
:5
6
7
5

(0
:1
9
9
5
)�

(0
:0
3
3
3
)�

(0
:0
9
6
6
)�

(0
:0
7
2
8
)�

(0
:6
3
9
5
)�

(0
:3
1
6
1
)

(0
:5
6
5
5
)�

a
N
u
m
b
er
s
in
p
a
re
n
th
es
es
a
re
st
a
n
d
a
rd
er
ro
rs
.
A
n
a
st
er
is
k
in
d
ic
a
te
s
st
a
ti
st
ic
a
l
si
g
n
i�
ca
n
ce
a
t
th
e
�
=
.0
5
o
r
sm
a
ll
er

le
v
el
.

18



F
ig
u
re
1
:
C
o
n
su
m
p
ti
o
n
o
f
F
a
ts
a
n
d
O
il
s:
1
9
8
1
-1
9
9
9

19



F
ig
u
re
2
:
T
im
in
g
a
n
d
S
p
ee
d
o
f
T
ra
n
si
ti
o
n
B
et
w
ee
n
R
eg
im
es

20



References

Bacon, D. and D. G. Watts. \Estimation of the Transition Between Two Intersecting Straight
Lines," Biometrika 58(1971):525-34.

Barten, A. P. and L. J. Bettendorf. \Price Formation of Fish: An Application of an Inverse
Demand System," European Economic Review 33(1989):1509-1525.

Berndt, E. R. and N. E. Savin. \Estimation and Hypothesis Testing in Singular Equation
Systems with Autoregressive Disturbances," Econometrica 43(1975):937-57.

Blanciforti, L. and R. Green. \An Almost Ideal Demand System Incorporating Habits: An
Analysis of Expenditures on Food and Aggregate Commodity Groups," Review of Economics
and Statistics 65(1983):511-15.

Brown, D. J. and L. F. Schrader. \Cholesterol Information and Shell Egg Consumption,"
American Journal of Agricultural Economics 72(1990):548-55.

Chern, W. S., E. T. Loehman, and S. T. Yen. \Information, Health Risk Beliefs, and the
Demand for Fats and Oils," Review of Economics and Statistics 77(1995):555-64.

Deaton, A. and J. Muellbauer. \An Almost Ideal Demand System," American Economic Review
70(1980b):312-26.

Eales, J. S. and L. J. Unnevehr. \The Inverse Almost Ideal Demand System," European
Economic Review 38(1994):101-15.

Geweke, J. \Exact Inference in the Inequality Constrained Normal Linear Regression Model,"
Journal of Applied Econometrics 1(1986):127-41.

Goddard, E. W. and S. Glance. \Demand for Fats and Oils in Canada, U.S., and Japan,"
Canadian Journal of Agricultural Economics 37(1989):421-43.

Goodwin, B. K. and G. W. Brester. \Structural Change in Factor Demand Relationships in
the U.S. Food and Kindred Products Industry," American Journal of Agricultural Economics
77(1995):69-79.

Gould, B. W., T. L. Cox, and F. Perali. \Determinants of the Demand for Food Fats and
Oils: the Role of Demographic Variables and Government Donations," American Journal of
Agricultural Economics 73(1991):212-21.

Hansen, B. E. \Inference Wheat a Nuisance Parameter is Unidenti�ed Under the Null Hypoth-
esis," Econometrica 64(1996):413-30.

Hansen, B. E. \Inference in TAR Models," Studies in Nonlinear Dynamics and Econometrics
2(April 1997) (online).

Hicks, J. R. A Revision of Demand Theory, Oxford, UK: Oxford University Press, 1956.

Holt, M. T. and B. K. Goodwin. \Generalized Habit Formation in an Inverse Almost Ideal
Demand System: An Application to Meat Expenditures in the U.S." Empirical Economics
22(1997):293-320.

21



McCance, R. A. and E. M. Widdowson. The Composition of Foods, Fifth Edition, Cambridge,
UK: Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food, 1991.

Moschini, G. and K. D. Meilke. \Modeling the Pattern of Structural Change in U.S. Meat
Demand," American Journal of Agricultural Economics 71(1989):251-61.

Park, Y.K. and E.A. Yetley. \Trend Changes in Use and Current Intakes of Tropical Oils in
the United States," American Journal of Clinical Nutrition 51(1990):738-748.

Park, H. and W. N. Thurman. \On Interpreting Inverse Demand Systems: A Primal Com-
parison of Scale Flexibilities and Income Elasticities," American Journal of Agricultural
Economics 81(1999):950-58.

Ray, R. \A Dynamic Generalization of the Almost Ideal Demand System," Economics Letters
14(1984):235-39.

Terasvirta, T. \Speci�cation, Estimation, and Evaluation of Smooth Transition Autoregressive
Models, Journal of the American Statistical Association, 89(1994):208-218.

Tsurumi, H., H. Wago, and P. Ilmakunnas. \Gradual Switching Multivariate Regression Models
with Stochastic Cross-Equational Constraints and an Application to the KLEM Translog
Production Model," Journal of Econometrics 31(1986):235-53.

Yen, S. T. and W. S. Chern. \Flexible Demand Systems with Serially Correlated Errors: Fats
and Oils Consumption in the United States," American Journal of Agricultural Economics
74(1992):689-97.

22


