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Abstract

We develop a new multivariate GARCH parameterization that is suitable for testing

the hypothesis that the optimal futures hedge ratio is constant over time, given that the

joint distribution of cash and futures prices is characterized by autoregressive conditional

heteroskedasticity. The advantage of the new parameterization is that it allows for a

flexible form of time-varying volatility, even under the null of a constant hedge ratio. The

model is estimated using weekly corn prices. Statistical tests reject the null hypothesis of

a constant hedge ratio and also reject the null that time variation in optimal hedge ratios

can be explained solely by deterministic seasonality and time-to-maturity effects.
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TESTING FOR CONSTANT HEDGE RATIOS IN 
COMMODITY MARKETS: A MULTIVARIATE GARCH APPROACH

Hedging with futures contracts is an important risk management strategy for firms

dealing with commodities, the prices of which are notoriously volatile. Hedging reduces

risk because cash and futures prices for the same commodity tend to move together, so

that changes in the value of a cash position are offset by changes in the value of an

opposite futures position. Because cash and futures price movements are typically not

perfectly correlated (i.e., there is basis risk), risk management requires determination of

the “optimal hedge ratio” (the optimal amount of futures bought or sold expressed as a

proportion of the cash position). When basis risk is the only source of uncertainty,1 the

optimal hedge ratio often can be reduced to a simple ratio of the conditional covariance

between cash and futures prices to the conditional variance of futures prices (Benninga,

Eldor, and Zilcha, 1983; Myers, 1991; Lence, 1995). To estimate such a ratio, early work

simply used the slope of an ordinary least squares regression of cash on futures prices. An

improved procedure is possible by computing the relevant moments of the price

distribution relative to the proper conditional means (Myers and Thompson, 1989;

Moschini and Lapan, 1995).2  More generally, estimation of the optimal hedge ratio

recognizes that commodity cash and futures prices often display time-varying volatility

and relies on techniques consistent with such a hypothesis, such as Engle’s (1982)

autoregressive conditional heteroskedasticity (ARCH) framework or Bollerslev’s (1986)

generalized ARCH (GARCH) approach. 

ARCH and GARCH models appear ideally useful for estimating time-varying

optimal hedge ratios, and a  number of applications have concluded that such ratios seem

to display considerable variability over time (Cecchetti, Cumby, and Figlewski, 1988;

Baillie and Myers, 1991; Myers, 1991; Kroner and Sultan, 1993). Yet, no existing study

has provided compelling evidence that such time-varying hedge ratios are statistically

different from a constant hedge ratio. A time-varying covariance matrix of cash and
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futures prices, per se, is not sufficient to establish that the optimal hedge ratio is time

varying. Constancy of the hedge ratio restricts the ratio of the covariance between cash

and futures prices to the variance of futures prices to be constant, but it need not restrict

the moments of the joint distribution of cash and futures prices in any other way.

Unfortunately, the particular parametric GARCH models that have been used to date

admit a constant hedge ratio only under very restrictive conditions, so that the hypothesis

of a constant optimal hedge ratio can be tested only jointly with other hypotheses. The

main purpose of this paper is to develop a more general GARCH parameterization that

yields a constant hedge ratio as a special case, while still allowing for a flexible time-

varying distribution of cash and futures prices. The model is illustrated with an

application to the problem of storage hedging of corn using futures prices from the

Chicago Board of Trade and Iowa cash prices for the period 1976-1997.

The Optimal Futures Hedge and GARCH Models

A typical hedging model in our setting involves a decision maker who allocates

wealth between a risk-free asset and two risky assets: the physical commodity and the

corresponding futures (Myers, 1991). Let   and  denote  the optimal quantity of they �

t z �

t

physical commodity bought and futures sold, respectively, with both positions taken at

time t-1 and held until time t. The optimal hedge ratio (OHR) is defined as .OHRt � z �

t /y �

t

Assumptions about preferences and/or the distribution of cash and futures prices are

typically necessary to characterize this ratio. But a useful result obtains when the futures

price  and cash price  are conditionally jointly normally distributed and the futuresft pt

market is unbiased. In such a case , where   is the informationOHRt 

Cov(pt, ft
 t	1)

Var(ft
 t	1)

set, implying that the hedge ratio of interest is independent of risk preferences.3 If the joint

distribution of cash and futures prices changes over time, then  as defined above mayOHRt

also change over time.4 The time path of  can be calculated given knowledge of theOHRt

(time-dependent) covariance matrix for cash and futures prices, which can be estimated

with GARCH models. But, clearly, the optimal hedge ratio can still be constant even if 

 and  both vary over time, as long as the covariance term isVar(ft
 t	1) Cov(pt, ft
 t	1)
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proportional to the variance term (i.e.,  for all t , for someCov(ft
 t	1) 
 0 Var(ft
 t	1)

constant ). Thus, although a constant hedge ratio is restrictive, it is a legitimate0

possibility, even with time-varying conditional price distributions. 

Because a constant hedge ratio would simplify implementation of an optimal hedging

strategy, it is of considerable interest to test this hypothesis. But to do that, a new

GARCH specification is desirable because existing GARCH models parameterizations

are too restrictive. To illustrate, write the conditional mean of cash and futures prices as

 and , respectively. The conditional covariancept 
 E [pt
 t	1 ] � u1,t ft 
 E [ ft
 t	1 ] � u2,t

matrix of cash and futures prices can then be written as Ht � E[utut1 
 t-1], where ut � [u1,t,

u2,t]1  is the vector of innovations in the cash and futures prices. Once the parameters of

the conditional covariance matrix are estimated, say by a GARCH model, the optimal

hedge ratio is computed as   , where   denotes the (i,j)th element ofOHRt 
 h12,t h22,t hij,t

. Several alternative multivariate GARCH (MGARCH) parameterizations of theHt

conditional covariance matrix Ht have been used in this setting, but all have shortcomings

for testing the null hypothesis of a constant optimal hedge ratio. Consider, for instance,

the constant conditional correlation model used by Cecchetti, Cumby, and Figlewski

(1988) to estimate time-varying hedge ratios within an ARCH framework, or the constant

conditional correlation GARCH model developed by Bollerslev (1990) and applied to

hedge ratio estimation by Kroner and Sultan (1993). This specification is elegant and

computationally attractive. However, with a constant conditional correlation

coefficient , the optimal hedge ratio must satisfy . Thus, in thisOHRt 
 h11,t h22,t

specification a constant hedge ratio can be obtained only if the variance of the cash

price is perfectly proportional to the variance of the futures price, a condition that is

patently unattractive.

Other popular MGARCH parameterizations also are not suited to testing for a

constant optimal hedge ratio. The “diagonal vech” specification (Baillie and Myers,

1991; Myers, 1991), for example, admits a constant optimal hedge ratio only when

there are no GARCH effects (i.e., it can only arise if the conditional covariance

matrix is itself constant). Furthermore, this specification does not restrict  to beHt

positive definite (PD), which turns out to be troublesome for  estimation of
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Ht 

�

t [C �

t Ct � M
K

k
1
M

q

i
1
A �

ik ut	i u
�

t	i Aik � M
K

k
1
M

r

j
1
G �

jk Ht	j Gjk ] t

� �

t H̃t t

(1)

MGARCH models of cash and futures prices.5 The “general vech” parameterization

can improve on the flexibility of the model for testing a constant OHR, but this model

is usually over-parameterized and difficult to estimate because it does not require Ht

to be PD either. The PD MGARCH specification estimated by Baillie and Myers

(1991) overcomes this latter problem. But a constant optimal hedge ratio in this

model requires that the correlation between cash and futures be restricted to equal

unity (Moschini and Aradhyula, 1993), implying that there is no basis risk (cash and

futures prices are perfectly correlated) and thus no meaningful hedging problem.

A New GARCH Parameterization for OHR Estimation and Testing

To overcome the limitations of existing GARCH parameterizations for optimal

hedge ratio estimation and testing, we develop a new specification that is rooted in

what Engle and Kroner (1995) have termed the “BEKK” parameterization. The

“modified BEKK” parameterization that we propose is defined as6

where  is a 2×2 matrix of (possibly time-varying) parameters to be defined below,  Aikt

and Gjk are 2×2 parameter matrices, and Ct is a (time-varying) 2×2 upper triangular matrix

that depends on a vector  of weakly exogenous variables. Note that, if  were thext t

identity matrix, our parameterization would reduce to a conventional BEKK model.

When K=1 the BEKK parameterization is just a PD MGARCH model, and for arbitrary K

this model can be made quite general. Indeed, Engle and Kroner (1995) show that for an

appropriate choice of K, the BEKK parameterization can be made fully general (i.e., it is

equivalent to any PD general vech parameterization). When  is not the identity matrixt

our specification can be a useful generalization of the BEKK model, and as long as  is at

PD matrix our modified BEKK model will maintain the PD property. This fact is an

important advantage in numerical optimization (particularly for cash-futures price

models, as mentioned in endnote 5).
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Ai1 


a11, i1 0

0 a22, i1

, Ai2 

a11, i2 0

0 0

Gj1 


g11, j1 0

0 g22, j1

, Gj2 

g11, j2 0

0 0
.

(2)   

Ht 


h̃11,t � 2 0h̃12,t �
2
0h̃22,t h̃12,t � 0h̃22,t

h̃12,t � 0h̃22,t h̃22,t

(4)

t 

1 0

0 1
, ~ t (3)

To make this model operational, restrictions on the Aik and Gjk matrices are required

to ensure identification and to cut down on the over-parameterization that typically

characterizes the BEKK model.  Here we set  and define the 2×2 Aik and GjkK 
 2

parameter matrices as

Engle and Kroner (1995) have shown that in the general BEKK model any bivariate PD

diagonal vech parameterization can be represented by a unique BEKK parameterization

with these restrictions on the  Aik  and Gjk matrices. Furthermore, we define the (non-zero)

ijth elements of the upper triangular matrix  as , where the first element of Ct cij,t 
 x �

t ij xt

is a constant, and  is a J×1 parameter vector.7 Including the exogenous variables in thisij

way does not restrict the sign of the impact that they can have on volatility levels, a

desirable property in our context given that   will often include deterministic variablesxt

such as seasonality and time-to-maturity effects.

Finally, to generalize the BEKK model to make it useful for testing the constant

optimal hedge ratio hypothesis, we write the  matrix as t

where  is a constant parameter to be estimated. Given the parameterizations in (1) and0

(3), the covariance matrix  can be written asHt
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Ht 


h̃11,t � 2(x �

t ) h̃12,t � (x �

t )2 h̃22,t h̃12,t � (x �

t ) h̃22,t

h̃12,t � (x �

t ) h̃22,t h̃22,t

. (7)

t 


1 0

x �

t 1
(6)

h̃11,t 
 c 2
11,t � M

q

i
1
( a 2

11,i1 � a 2
11,i2 ) u 2

1,t	i � M
r

j
1
( g 2

11,j1 � g 2
11,j2 ) h11,t	j

h̃12,t 
 c11,t c12,t � M
q

i
1
a11,i1 a22,i1 u1,t	i u2,t	i � M

r

j
1
g11,j1 g22,j1 h12,t	j

h̃22,t 
 c 2
12,t � c 2

22,t � M
q

i
1
a 2

22,i1 u 2
2,t	i � M

r

j
1
g 2

22,j1 h22,t	j .

(5)

where   is the ijth element of . Notice that if , then , whileh̃ij,t H̃t h̃12,t 
 0 ~ t OHRt 
 0

the conditional variance equations for   and   remain relatively unrestricted.h11,t h22,t

Hence, our modified BEKK parameterization provides a reasonably parsimonious model

that is easy to estimate (PD imposed) and flexible enough to allow time-varying hedge

ratios but that facilitates a simple and meaningful test of the constant optimal hedge ratio

hypothesis (i.e.,  , ). From equations (1) and (2), the elements of the  matrixh̃12,t 
 0 ~ t H̃t

can be written as

Hence, a set of parametric restrictions sufficient to ensure , , is  ,h̃12,t
0 ~ t a11,i1
g11,j1
0

, and  (this last set of restrictions ensures ).8 ~ (i,j) 12
0 c12,t
0 , ~ t

It is possible to generalize our model to obtain a test for the hypothesis that optimal

hedge ratios vary only with exogenous variables  but are otherwise not time dependentxt

(i.e., not affected by lagged  and lagged ). Specifically, write  asut u
�

t Ht t

where   is a  (J × 1) vector of parameters on . Then the conditional covariancext

matrix becomes

Hence, if    , then  and, in this case, the optimal hedge ratio onlyh̃12,t
0 ~ t OHRt
x �

t

changes over time with changes in .xt
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a11, i1 
 0 , ~ i 
 1 , 2 , ... , q
g11, j1 
 0 , ~ j 
 1 , 2 , ... , r

12 
 0.
(8)

In conclusion, our modified BEKK model not only facilitates estimation (by

imposing the PD restriction) but also allows for a simple, informative test of the constant

(or varying only with ) optimal hedge ratio hypothesis. For both specifications of the xt t

matrix that we considered, the null hypothesis entails the following  (q + r + J)

parametric restrictions:

If the null hypothesis is not rejected, then either   or  is the optimal hedge ratio0 x �

t

(depending on the specification of  ).  If the null is rejected, then   ,t OHRt 
 h12,t h22,t

where  denote the unrestricted conditional moments from (4) or (7). Finally, if   ishij,t t

the identity matrix, then the model reverts to the conventional BEKK parameterization.

All of these restrictions can be tested easily using a likelihood ratio or Wald approach.

An Application to Hedging Corn 

     The modified BEKK model is applied to the problem of estimating and testing

optimal hedge ratios for speculative storage of corn in the Midwest. It is assumed that

an investor buys and stores corn for resale at a later period, the price of which is

unknown at the time of purchase. The investor can hedge the long cash position by

selling futures, has a weekly time horizon, and always uses  the nearby contract (the

contract with the nearest maturity date lying beyond the current month). The nearby

contract is typically the most actively traded, and this liquidity makes it attractive to

potential hedgers. It is assumed that the investor takes out futures positions and holds

the position for a week. At the end of the week, the investor reevaluates the futures

position and chooses a new hedge ratio for the following week. Hence, the hedge

ratio may be adjusted every week to reflect time-varying volatility. On dates when the

next week lies in a delivery month for the nearby future, it is assumed that the

investor switches to hedging in the next delivery month (the “nearby” contract

switches to the next delivery month).9 
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pt 
 0 � 1 (T	 t ) � M
4

i
2
i Dit � 5 pt	1 � 6 ft	1 (T) � u1,t (9)

ft (T) 
 µ � u2,t (10)

The price series used are mid-week (Thursday) prices. Cash prices are the average

corn cash prices quoted in North-Central Iowa. Futures prices are Thursday closing prices

for the nearby (as defined earlier) corn contracts quoted on the Chicago Board of Trade.

The sample period extends from January 1976 through June 1997, with a total of 1,120

weekly observations.

Conditional Means of Cash and Futures Prices. Estimation of hedge ratios requires

first specifying a model for the conditional means of cash and futures prices. We begin by

noting that futures prices at different points in time for contracts with the same maturity

date are clearly likely to be I(1) because of arbitrage considerations (if they were mean-

reverting we could always generate profitable trading rules). 

Similarly, theoretical and empirical considerations suggest that cash and futures

prices for the same commodity should be closely related because transportation and

storage activities ensure spatial and temporal arbitrage. To be sure, such arguments

should be qualified when applied to a data set such as ours. When a new harvest

intervenes between the delivery date T associated with the futures contract and the date t

at which both cash and futures prices are quoted, the arbitrage conditions hold as

inequalities and no exact relation between cash and futures price can be postulated. To

account for these considerations in a reasonable manner, we write the conditional mean

equations for cash and  futures prices in dynamic form as

where  is futures price at t for delivery at the nearby expiration date T, pt is cash priceft (T)

at t, the  are quarterly dummy variables, and   and  are random shocks.10 Dit u1,t u2,t

 The inclusion of the intercept  in (10) is motivated primarily by econometricµ

considerations, to ensure that the estimated residuals  have a zero mean. Theu2,t

parameter , on the other hand, captures the fact that (other things being equal) the cash0
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price rises throughout the crop year to reflect carrying charges (storage costs). However,

because we are using data spanning many crop years, we have to allow for the fact that

the rate of growth in cash prices may vary seasonally, and that the cash price normally

drops around harvest periods, hence the inclusion of the seasonal dummy variables .Dit

Equations (9) and (10) are consistent with cash and futures prices being I(1) and

cointegrated (Enders, 1995), but they allow the long-run equilibrium relation between

cash and futures prices to be influenced by seasonality   and by time to maturity (T-t) .Dit

Time to maturity is included in the equilibrium relationship to reflect the fact that we

expect cash and futures prices to converge at maturity (other things being equal, the cost

of storage should cause a larger difference between cash and futures prices the further the

futures are from maturity).

Estimation. In the present application the innovations   are assumed tout � [u1,t , u2,t]
�

follow a bivariate GARCH(1,1) process, which is parameterized by the modified BEKK

model discussed earlier with  , , and . Estimation  is carried out using quasi-K
2 q
1 r
1

maximum likelihood methods that employ a conditional normal distribution for . Manyut

studies have found commodity price innovations to have fatter tails than normal (e.g.,

Baillie and Myers, 1991). For this reason, we test the normality assumption and use

quasi-maximum likelihood standard errors for hypothesis testing (Bollerslev and

Wooldridge, 1992; Lumsdaine, 1996). There are I(1) variables in equation (9) but these

variables are assumed to form a stationary linear combination (long-run equilibrium), and

so maximum likelihood estimation, and any hypothesis tests done on the conditional

variance part of the model, is valid (Sims, Stock, and Watson, 1990; Phillips, 1991).

Results. Results for the general modified BEKK are shown in Table 1, along with

results when the deterministic hedge ratio restrictions (hedge ratios only vary with the

deterministic seasonal dummy and time-to-maturity variables) and constant hedge ratio

restrictions are imposed. The “t-ratios” in the table are a ratio of the estimated parameter

to the standard error estimated via quasi-maximum likelihood. The deterministic

component of the conditional variance part of each of these models has a constant , a ij,0
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TABLE 1. Estimated GARCH models for corn

Parameter

General Modified
BEKK

Deterministic
Hedge Ratio

Model
Constant Hedge

Ratio Model
Estimate t-ratio Estimate t-ratio Estimate t-ratio

Conditional Mean
µ -0.1598 -0.85 -0.1324 -0.71 -0.1069 -0.58

0 0.5987 0.94 1.2462 1.75 1.1789 1.65 

1 -0.0069 -1.59 -0.0147 -3.17 -0.0141 -3.01

2 -0.4938 -2.57 -0.4217 -1.98 -0.4083 -1.92

3 -1.4814 -5.25 -1.7112 -5.14 -1.7827 -5.25

4 -0.3010 -1.10 -0.3052 -1.04 -0.3098 -1.08

5 -0.0523 -4.00 -0.0599 -5.32 -0.0623 -5.01

6 0.0485 4.05 0.0543 5.23 0.0566 4.98

Conditional Variance

11,0 -0.6563 -0.97 -1.0959 -1.58 1.1307 1.87

11,1 -0.0154 -1.37 -0.0180 -1.61 0.0157 1.57

11,2 2.9748 4.49 1.5014 1.63 -1.5430 -2.07

11,3 -0.7121 -0.75 -1.0029 -1.65 1.1831 2.03

11,4 0.1250 0.13 0.0480 0.10 -0.0360 -0.07

12,0 -1.2602 -1.55

12,1 0.0169 1.21

12,2 2.3719 2.27

12,3 0.0972 0.07

12,4 0.3505 0.27

22,0 1.2669 1.83 -0.3540 -0.40 -2.2122 -2.31

22,1 -0.0046 -0.37 -0.0122 -0.96 0.0251 1.02

22,2 0.5667 1.24 3.2365 5.02 -1.1996 -2.97

22,3 -2.6184 -2.78 2.8192 2.87 2.0790 1.35

22,4 -2.5128 -3.59 2.3072 2.72 -0.2358 -0.31
a11,11 0.3775 8.42
a22,11 0.4312 8.03 0.4036 7.17 0.4017 7.08
a11,12 0.1219 2.70 0.2196 5.01 0.2204 4.88
g11,11 0.6943 9.31
g22,11 0.8723 27.67 0.8879 27.50 0.8915 28.30
g11,12 0.0448 0.26 0.3358 7.19 0.3448 8.28

0 0.0914 1.12 0.8855 13.70 0.8845 44.39

1 0.0019 2.19 -0.0011 -1.22

2 0.0326 0.73 0.0488 0.82

3 0.0227 0.45 0.1367 1.90

4 0.0131 0.20 0.0730 0.96

Log-
Likelihood

-6529.71 -6585.63 -6589.27
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time-to-maturity parameter  (time to maturity is measured in days), and quarterlyij,1

dummy variable parameters  and  (for quarters 2-4). The quarterly dummyij,2, ij,3 ij,4

variables represent seasonal variation in the conditional variance while the time-to-

maturity variable accounts for the fact that different futures prices may behave differently

depending on time to maturity. The time-to-maturity variable also accounts for a possible

“jump” in volatility when shifting from a maturing futures contract to the next nearby

maturity date. These same variables are used to investigate deterministic movements in

the hedge ratio over time [i.e., they are used as the   variables in (6)].xt

We see from the conditional mean estimates at the top of Table 1 that cash price

movements have statistically significant seasonality at conventional significance levels,

and that cash prices, futures prices, and time to maturity are related in an intuitive way

(for example, an increase in time to maturity increases the difference between the current

futures and cash price).11  In the conditional variance part of the models there appears to

be significant seasonality and time-to-maturity effects (as expected), as well as significant

conditional heteroskedasticity. It is also interesting to note that in all three models

reported in Table 1, at least some of the   parameters are statistically different from zerot

at conventional significance levels.

Table 2 contains model evaluation statistics for the three models (general modified

BEKK, deterministic hedge ratio, and constant hedge ratio). We see that the cash price

residuals from the general modified BEKK do not appear to be autocorrelated, and the

conditional variance model does a good job of explaining cash price conditional

heteroskedasticity. In the futures price equation there is weak evidence of high-order

autocorrelation in the residuals and in the squared standardized residuals (suggesting the

possibility of residual GARCH effects in the futures price equation not captured by the

model). Overall, however, the general modified BEKK seems to fit the data reasonably

well. In the models incorporating the deterministic hedge ratio restrictions and constant

hedge ratio restrictions, we see that there is very strong evidence of remaining conditional

heteroskedasticity in both the cash and futures price equations. This immediately suggests

that the general modified BEKK provides a better fit and that the deterministically

varying and constant hedge ratio models may not be consistent with these data. Sample 
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TABLE 2. Model evaluation statistics

Test

General Modified
BEKK

Deterministic
Hedge Ratio

Model
Constant Hedge

Ratio Model

Statistic p-value Statistic p-value Statistic p-value

Corn
Cash:

Q(1)
Q(5)
Q(10)

Q2(1)
Q2(5)
Q2(10)
K̂
JB

0.016
3.381

11.560

0.726
1.405
5.822

-0.402
3.847

63.478

0.899
0.641
0.316

0.394
0.924
0.830

0.000

0.001
3.439

11.390

4.671
12.684
19.846

-0.358
3.797

53.604

0.976
0.633
0.328

0.031
0.027
0.031

0.000

0.002 
3.350

11.222

4.406
17.321
23.854

-0.397
3.874

64.977

0.967
0.646
0.341

0.036
0.004
0.008

0.000
Futures:

Q(1)
Q(5)
Q(10)

Q2(1)
Q2(5)
Q2(10)

Ŝ
K̂
JB

0.435
10.171
18.855

0.870 
11.783
18.061

0.024
3.648

19.669 

0.510
0.071
0.042

0.351
0.038
0.054

0.000

0.435
10.171
18.855

2.136
14.717
20.320

0.059
3.861

35.211

0.510
0.071
0.042

0.144
0.012
0.026

0.000

0.435
10.171
18.855

1.717
15.957
21.557

0.055
3.882

36.862

0.510
0.071
0.042

0.190
0.007
0.018

0.000

Note: Q(df) is the Ljung-Box Q statistic for testing df degree autocorrelation in the residuals; Q2(df) is the
corresponding statistic for testing df degree autocorrelation in the squared standardized residuals;  is theŜ
sample skewness of the standardized residuals;  is the sample kurtosis of the standardized residuals; andK̂
JB is the Jarque-Bera test for normality of the standardized residuals.

skewness and kurtosis of the standardized residuals differs from what we would expect

under normality, and the Jarque-Bera test rejects normality at essentially any significance

level in all three models.
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Because of the rejection of conditional normality we use Wald tests based on the

quasi-maximum likelihood covariance matrix to compare various specializations of the

model to the general modified BEKK. These Wald test results are reported in Table 3.

The first pair of tests investigate the restrictions that the covariance matrix is constant

(constant covariance matrix), and that the covariance matrix changes only with

deterministic seasonal and time-to-maturity effects (deterministic covariance matrix).

Both of these sets of restrictions are soundly rejected against the general modified BEKK.

Hence, there is strong evidence that the conditional covariance matrix of cash and futures

prices does vary through time, and that this variation cannot be explained simply by

seasonal and/or time-to-maturity effects.

The second pair of tests in Table 3 investigate whether a conventional BEKK

model (with and without deterministic components) can explain these data as well as

the general modified BEKK (i.e., we test the restriction that  is the identity matrix fort

all t). Both conventional BEKK specifications are also rejected against the general

modified BEKK. This suggests that the general modified BEKK may be a useful

parameterization in its own right, quite apart from its uses as a meaningful model to test

the constant hedge ratio hypothesis.

The third pair of tests in Table 3 investigate whether the deterministic hedge ratio

and constant hedge ratio restrictions given in (8) above are formally rejected against the

general modified BEKK alternative. In both cases the null hypothesis is rejected at

essentially any significance level. This provides strong evidence that optimal hedge ratios

are indeed time varying and in ways that cannot be explained simply by deterministic

seasonal and time-to-maturity effects. It appears that, in this application, hedge ratios do

vary over time in ways that can be captured using GARCH models.

To investigate how much time variation is occurring in the estimated optimal hedge

ratios, we graph the in-sample modified BEKK hedge ratios in Figure 1, together with the

constant hedge ratio estimate. In Figure 2 we graph the deterministically varying hedge

ratios (seasonal and time-to-maturity effects only), again together with the constant hedge

ratio estimate. It is clear that the modified BEKK hedge ratio displays considerable

additional time variation compared to either the constant hedge ratio or a hedge ratio
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TABLE 3. Quasi-maximum likelihood Wald tests 

Model
Number of
Parameters

Wald
 Statistic p-Value2

General modified BEKK 34
Constant covariance matrix 11 43,896.6 0.0000
Deterministic covariance matrix 23 7,945.6 0.0000
Conventional BEKK 
   (without deterministic component) 17 117.7 0.0000
Conventional BEKK 
   (with deterministic component) 29 12.3 0.0306
Deterministic hedge ratio 27 317.7 0.0000
Constant hedge ratio 23 372.7 0.0000

that only is allowed to vary deterministically with seasonal and time-to-maturity

effects. This indicates that, as well as being statistically significant, the time-varying

optimal hedge ratios estimated with the modified BEKK can lead to very different

hedging decisions compared to the alternative constant or deterministically varying

hedge ratio assumptions.

Conclusion

In this paper we have provided a new GARCH parameterization that modifies the

Engle and Kroner (1995) BEKK formulation. The new parameterization is particularly

useful for estimating time-varying optimal hedge ratios and testing the null hypothesis

that they are constant over time. Our approach overcomes an important limitation of

previous studies, where the null hypothesis of a constant hedge ratio was only identified

jointly with other restrictive conditions (such as, for example, that the distribution of

cash and futures prices is time-invariant). As shown in this paper, such additional

restrictive conditions are not necessary to obtain a constant optimal hedge ratio. In

particular, we have developed modified BEKK parameterizations for the bivariate

GARCH(q,r) model that nest the hypothesis of a constant hedge ratio (or of an

exogenously varying hedge ratio) but retain flexible time-varying variances and

covariances, even under the null hypothesis.
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FIGURE 1. Stochastic time-varying hedge ratios for corn, January 1976 through
June 1997

FIGURE 2. Deterministic time-varying hedge ratios for corn, January 1976 through
June 1997
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These modified BEKK parameterizations were utilized to estimate bivariate GARCH

models for corn cash and futures prices, based on weekly data spanning the period 1976

to 1997. We find significant GARCH effects in the cash and futures prices, and these

GARCH effects are still present even when accounting separately for seasonality and time

to maturity, which are themselves significant components of the time variation in the

covariance matrix. Furthermore, using Wald quasi-maximum likelihood tests we formally

reject the null hypothesis that the ratio of conditional covariance of futures and cash

prices to conditional variance of futures prices (the optimal hedge ratio) is constant at

essentially any significance level. We also reject the null hypothesis that optimal hedge

ratios vary only systematically with seasonality and time-to-maturity effects at essentially

any significance level. Thus, our statistical tests support the conclusion that optimal

hedge ratios for weekly storage hedging of corn in the Midwest are indeed time varying in

ways that cannot be explained simply by seasonality and time-to-maturity effects.



Endnotes

1.   This setting applies mostly to commodity handlers (country elevators, shippers, millers, storers, etc.) but
not to producers because the latter are typically also exposed to quantity (production) uncertainty. For a
review of more general hedging problems see Moschini and Hennessy (2001).

2.    If cash and futures prices follow a martingale process, for instance, the slope of a regression of
cash price changes on futures price changes (and not the slope of a regression in levels) estimates
the relevant hedge ratio.

3.   This useful result can actually be obtained under slightly weaker conditions than normality
(Benninga, Eldor, and Zilcha, 1983; Moschini, Lapan, and Hanson, 1991; Lence, 1995). 

4.   This time variation should be carefully distinguished from the revision of the hedge ratio that may be
due to the gradual resolution of uncertainty, as in Anderson and Danthine (1983) and Karp (1988).

5.   Cash and futures prices for the same commodity tend to move closely together and have similar
variances, so their  is almost singular. Thus, maximum likelihood estimation of  often iteratesHt Ht
into the parameter range where , at which point estimation breaks down (under
Ht
 � 0
normality).  Whereas there are various programming approaches that can help overcome this
problem, it is preferable to impose the PD restriction a priori whenever possible.

6.   In keeping with our hedging model, here we present our modified BEKK model for the bivariate case.
Extension to the n-variate case is straightforward and is left to the interested reader.

7.    McNew and Fackler (1994) model time-varying hedge ratios with such a structural specification of
the covariance matrix but do not embed that in an ARCH or GARCH model.

8.   As apparent from (5), we could substitute   for  but this would destroya22,i1
g22,j1
0 a11,i1
g11,j1
0
the flexibility of the model (  is restricted to equal just  under the null of a constant OHR).h̃22,t c 2

22,t

9.   There are five delivery months for Chicago Board of Trade corn: March, May, July, September,
and December.

10.  Because we are chaining quotes from several contracts by using nearby futures prices, it is important to
ensure that the difference ft(T) is computed from two contiguous observations of the same contract.
Also, weekly dummy variables could have been used instead of quarterly, but empirical results
suggested that quarterly dummy variables are sufficient to capture the major seasonal patterns in growth
rates for corn cash prices in our data.

11.  This is indicated by the negative signs on the estimated  and , together with the positive sign on1 5
the estimate of .6
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