A Computational Laboratory for
Evolutionary Trade Networks

David McFadzean
Deron Stewart

Leigh Tesfatsion *
Department of Economics
lowa State University

Economic Report No. 53
August 2000

*375 Heady Hall
Ames, |A 50011-1070
515-294-0138
tesfats @iastate.edu

Abstract: This study presents, motivates, and illustrates the use of a computational laboratory for
the investigation of evolutionary trade network formation among strategically interacting buyers,
sellers, and dealers. The computational laboratory, referred to as the Trade Network Game
Laboratory (TNG Lab), istargetted for the Microsoft Windows desktop. The TNG Lab is both
modular and extensible and has a clear, easily operated graphical use interface. It permits
visualization of the formation and evolution of trade networks by means of real-time animations.
Data tables and charts reporting descriptive performance statistics are also provided in real time.
The capabilities of the TNG Lab are demonstrated by means of labor market experiments.

Keywords — Computational laboratory; Buyer-seller trade networks; Evolution; Network
animation; Agent-based computational economics; C++ class framework; Labor market
experiments.

Copyright © 2000 by David M cFadzean, Deron Stewart, and Leigh Tesfatsion. All rightsreserved.
Readers may make verbatim copies of thisdocument for non-commercial purposes by any means,
provided this copyright notice appearson all such copies.

IOWA STATE UNIVERSITY ISAN EQUAL OPPORTUNITY EMPLOYER
lowa State University does not discriminate on the basis of race, color, age, religion, national origin,
sexual orientation, sex, marital status, disability, or statusasa U.S. Vietham Era Veteran. Any
persons having inquiries concer ning this may contact
the Director of Affirmative Action, 318 Beardshear Hall, 515-294-7612.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

A Computational Laboratory for
Evolutionary Trade Networks

David McFadzean, Deron Stewart, and Leigh Tesfatsion

Abstract— This study presents, motivates, and illustrates
the use of a computational laboratory for the investigation
of evolutionary trade network formation among strategically
interacting buyers, sellers, and dealers. The computational
laboratory, referred to as the Trade Network Game Labo-
ratory (TNG Lab), is targetted for the Microsoft Windows
desktop. The TNG Lab is both modular and extensible and
has a clear, easily operated graphical user interface. It per-
mits visualization of the formation and evolution of trade
networks by means of real-time animations. Data tables
and charts reporting descriptive performance statistics are
also provided in real time. The capabilities of the TNG Lab
are demonstrated by means of labor market experiments.

Keywords— Computational laboratory; Buyer-seller trade
networks; Evolution; Network animation; Agent-based com-
putational economics; C++ class framework; Labor market
experiments.

I. INTRODUCTION

GENT-BASED computational modelling is gaining

increased acceptance among social science researchers,
as evidenced by the growing number of journal articles and
books, designated conferences, and formally instituted re-
search groups that highlight this methodology for social sci-
ence applications.! A key stumbling block, however, is that
many social scientists do not know how to get started with
computational modelling because they lack a programming
background.

Languages such as Starlogo are simple and easily learned,
but they are not powerful enough for many social and eco-
nomic applications. Java and C++ are powerful general-
purpose languages, but they are difficult to master. Au-
thoring tools such as AgentSheets, Swarm, and Ascape pro-
vide useful repositories of software for building multiagent
interactive systems, but their appeal is primarily to more
experienced programmers.?

David McFadzean is Vice President of Technology with Javien
Canada Inc., Calgary, Canada. E-mail: david@javien.com. Deron
Stewart is a consultant computer programmer on Gabriola Island,
Canada. E-mail: deron@direct.ca. Leigh Tesfatsion (corresponding
author) is a Professor of Economics and Mathematics at Iowa State
University, Ames, Iowa 50011-1070. E-mail: tesfatsi@iastate.edu.

1For a general introduction to agent-based computational so-
cial science, see [1]. The online Journal of Artificial So-
cieties and Soctal Simulation (JASSS), freely available at
http://jasss.soc.surrey.ac.uk/, regularly provides surveys of on-
going work in computational social science. See also the
Web site on agent-based computational economics (ACE) at
http://www.econ.iastate.edu/tesatsi/ace.htm. ACE is the compu-
tational study of economies modelled as evolving systems of au-
tonomous interacting agents. The extensive resources available at
the ACE Web site include surveys, an annotated syllabus of readings,
software, teaching materials, information on conferences and special
journal issues, and pointers to individual researchers and research
groups.

2See http://www.econ.iastate.edu/tesfatsi/acecode.htm for an an-
notated list of pointers to these and other software tools for construct-

A computational laboratory (CL) is a framework that
permits the computational study of interactions among
autonomous structurally-differentiated entities by means
of controlled and replicable experiments.> CLs represent
a middle ground between authoring tools and fully cus-
tomized application software. A CL can present a clear
and easily manipulated graphical user interface that allows
an inexperienced user to systematically test the sensitivity
of a system to changes in a wide variety of key parameters
without becoming immersed in implementation details. On
the other hand, a CL can be designed to be both modular
and extensible. Thus, as users gain more experience and
confidence, they can begin to experiment with alternative
module implementations to broaden the range of system
applications encompassed by the CL.

This study presents a particular CL designed for the
study of trade network formation in a variety of market
contexts. The CL, referred to below as the Trade Net-
work Game Lab (TNG Lab), comprises buyers, sellers, and
dealers who repeatedly search for preferred trade partners,
engage in risky trades modelled as noncooperative games,
and evolve their trade strategies over time.

The top layer of the TNG Lab consists of a graphical
user interface (GUI) that permits the user to systemati-
cally test changes in key market parameter values: e.g.,
number of traders of each type; capacity constraints; trade
payoffs; transaction costs; inactivity costs; learning param-
eters; and number and length of trading periods. The ef-
fects of these market parameter settings on trade network
formation are visualized through a real time animation,
and the user is able to set animation physics parameters
to control this visualization. In addition, data tables and
charts are provided that report various market performance
measures in real time. This top layer is supported by three
lower layers consisting of a general class framework, ex-
tension classes, and an event model. These lower layers
are extensible and modular, permitting more experienced
users to support a much wider range of applications than
reflected by the current TNG Lab GUIL

The basic objective of this study is to explain the archi-
tecture of the TNG Lab and to demonstrative its capabil-
ities and usefulness by means of illustrative experiments.
Another objective, however, is to use the example of the
TNG Lab to encourage the routine construction and use
of CLs for social science applications. This second objec-
tive will require increased interdisciplinary efforts between

ing multiagent systems.

3The felicitous phrase “computational laboratory” was apparently
first introduced and formally defined by Catherine Dibble [2], a strong
advocate for the use of CLs in human geography.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

social scientists and programmers interested in evolution-
ary computation, efforts which could prove to be highly
stimulating and beneficial for both groups.

II. OvErViIEW OF THE TNG LAB ARCHITECTURE

The TNG Lab is constructed in a four layer architecture.
This architecture is illustrated in Fig. 1.

Fig. 1: Architecture of the TNG Lab

The bottom, most fundamental layer of the TNG Lab is
the SimBioSys class framework, a general C++ toolkit for
developing simulations involving the evolution of popula-
tions of autonomous agents [3]. The basic features of Sim-
BioSys are outlined in Section III. The SimBioSys class
framework implements a design pattern for evolutionary
simulations, controlling overall dynamics of the system, but
it does not specify any detailed or specific behaviors. To
create a useful application the framework must be extended
by subclassing several key classes.

The second layer, TNG/SimBioSys, represents extension
classes that implement the rules and behaviors of the Trade
Network Game (TNG) [4]. This layer forms a complete
application sufficient for generating interesting research re-
sults [5],[6], but lacking a friendly interface. Configuration
data is read from an input file and simulation results are
captured in output files. The basic features of the TNG and
the TNG/SimBioSys layer are described in Sections IV and
V.

The third layer, TNG/COM, wraps the simulation func-
tionality in a Microsoft component interface that allows
it to be called and controlled by external programs. The
component interface also introduces an event model that
enables interactive applications. This layer is described in
more detail in Section VI. The drawback of using the Mi-
crosoft component model is that the framework is no longer
platform-independent at this level. This tradeoff was con-
sidered acceptable given that ultimately we are targeting
the Microsoft Windows desktop.

The fourth and final layer implements a graphical user
interface for the simulation. Simulation parameters can be
entered in a form-based screen though they can also still
be saved and read from an input file. An animation screen
and a physics screen allow the researcher to visualize the
simulation dynamics while they evolve, and to fine-tune
this visualization to the application at hand. A results
screen displays simulation output in a table format while
a chart screen displays the same data graphically, both in
real time. These aspects of the TNG Lab are explained
and illustrated in Sections VII and VIII.

III. SimMB10SYS

As detailed in [3], the SimBioSys class framework is de-
signed to handle simulations comprising the following four
features:

o A world defining the virtual environment where the sim-
ulation occurs;

o Populations of agents inhabiting the world;

e Programs driving the behavior of the agents;

o Fvolutionary mechanisms emulating natural selection
that act on the agents’ programs.

Agents are entities capable of displaying some kind of
active autonomous behavior. A population of agents of a
particular type is represented as a population of computer
programs. In addition to multiple populations of agents,
the world can also include passive entities such as spatially
distributed trails, obstacles, and energy sources.

At the highest level, SimBioSys represents the simula-
tion as an abstract base class, bioSimulation. This class
contains member functions and data for the construction
of a world, one or more populations of agents that inhabit
the world, and instruments for the design and control of
the user interface.

An abstract base class, bioWorld, is responsible for the
physics governing the virtual environment of the simula-
tion. Derived class instances of bioWorld implement spe-
cific environments, such as a rectangular grid or a torus.
An abstract base class, bioPopulation, identifies general
data and operations required for the initial construction
and genetic reproduction of the agent populations that in-
habit the world. For example, bioPopulation includes the
size and average fitness of a population as data members,
and it defines member functions for setting the size of the
population and for sorting the population by fitness.

An abstract base class, bioThing, represents all of the
inhabitants of the world. These inhabitants are either pas-
sive entities or active autonomous agents. The bioThing
class identifies certain general operations common to all
inhabitants and provides for the storage and retrieval of
the current positions and orientations of the inhabitants.

An abstract base class, bioAgent, is a derived bioThing
class that represents the subset of world inhabitants who
are agents. This class sets general protocols for communi-
cation and interactions among agents, and for interactions
between agents and passive entities. Each derived class in-
stance of bioAgent constructs a program that allows the
represented agent to perceive its local environment and to
act in response to this perception. The program thus acts
as the agent’s brain. An abstract base class, bioProgram,
sets general protocols for the communication between an
agent and its program. One advantage of separating the
function of the program into the class bioProgram is the
ability to substitute different program implementations,
such as finite state machines, artificial neural networks,
and Turing machines, without changing any other aspect
of SimBioSys.

Finally, an abstract base class, bioGType, identifies the
basic elitism, recombination, and mutation operations used
in the genetic reproduction of agent populations. These op-
erations act directly on agent genotypes, which are intrin-
sic characteristics of agents expressed as bit strings. De-
rived class instances of bioGType implement operations for
specific genotypical forms, either haploid (single bit string
form) or diploid (double bit string form). A class derived
from bioAgent, bioPType, stores an instance of bioGType
that is used by bioPopulation to construct an agent’s pro-
gram before the agent is added to the world.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

TABLE 1
SiMB10SYS SIMULATION CYCLES

int main () {
Initialize world and agent populations;
For (G = 0,...,GMax-1) { // Enter generation cycle loop.
For (E = 0,...,.EMax-1) { // Enter environment cycle loop.
For (A = 0,...,AMax-1) { // Enter action cycle loop.
Do agent actions;
}

Environment Step;

}

Evolution Step;

Return 0;

}

As depicted in Table I, applications built using the Sim-
BioSys framework typically execute three nested simulation
loops: generation cycles contain environment cycles, which
in turn contain action cycles. In each action cycle every
agent in the simulation is given the opportunity to make
a single move based on its current state and its perception
of the environment. After a set number of action cycles,
an environment step gives the environment an opportunity
to change the state of the world. After a set number of
environment cycles, an evolution step is executed during
which each agent’s relative fitness is evaluated and new
populations of agents are separately generated (by type)
based on the previous populations. It is this last step that
introduces evolutionary change into the simulation.

IV. THE TRADE NETWORK GAME

This section briefly outlines the basic features of the
Trade Network Game (TNG). A more extensive discussion
of these features can be found in [4].

The TNG models the formation and evolution of trade
networks among heterogeneous buyers, sellers, and deal-
ers strategically interacting within a market context. The
TNG differs in four essential respects from standard market
models in economics.

First, the TNG is a process model whose structure at
each point in time is given by the internal states and be-
havioral rules of the traders rather than by a system of
demand, supply, and equilibrium equations. The TNG
traders must act in accordance with physical feasibility con-
straints and accounting identities, by construction. How-
ever, the only equations that explicitly appear in the TNG
are those used by the traders themselves to represent as-
pects of their world and to implement their behavioral
rules.

Second, the TNG traders continually adapt their behav-
ior in response to interactions with other traders and with
their environment in an attempt to satisfy their needs and
wants. That is, behavioral rules are state-conditioned,
and the traders co-adapt their behavior in an intricate
dance of interactions. The TNG can therefore exhibit self-
organization.

Third, the evolutionary process is represented in the
TNG as natural selection pressures acting directly on
trader attributes rather than as population-level laws of

motion. These natural selection pressures induce the TNG
traders to engage in continual open-ended experimentation
with new rules of behavior. That is, the TNG traders co-
evolve.

Fourth, starting from given initial conditions, all events
in the TNG are contingent on trader-initiated interactions
and occur in a path-dependent time line. Consequently,
the market system described by the TNG develops over
time in a manner analogous to the growth of a culture in
a petri dish.

The TNG accommodates three distinct trader types:
(pure) buyers who only engage in buying activities; (pure)
sellers who only engage in selling activities; and dealers
who can engage in both buying and selling activities. Buy-
ers can only buy from sellers or dealers, and sellers can only
sell to buyers or dealers; but dealers can buy from sellers,
sell to buyers, or buy or sell with each other.

Alternative market structures are imposed in the TNG
by prespecifying the number of traders of each type, to-
gether with their capacity (resource) constraints. For ex-
ample, a 2-sided market is obtained if the number of dealers
is set to zero, an intermediary market is obtained if all three
trader types are present, and an “endogenous-type” mar-
ket is obtained if every trader is a dealer who can switch
from buying to selling, or vice versa, as the current situa-
tion warrants. In the 2-sided market the buyers and sellers
might represent workers with limited amounts of labor time
and employers with limited job openings.* In the inter-
mediary market the buyers might represent lenders (bond
purchasers) with limited funds, the dealers might repre-
sent financial firms with limited service capacity, and the
sellers might represent borrowers (bond suppliers) with lim-
ited collateral. In the endogeneous-type market the traders
might be resource-constrained agents who must each decide
whether to become a firm (hire workers) or to work for oth-
ers.

Each trader in the TNG is modelled as an autonomous
agent with internalized social norms (market protocols), in-
ternally stored state information, and internal behavioral
rules. Although each trader has this same general internal
structure, trader types can differ from each other in terms
of their specific market protocols, fixed attributes, and ini-
tial endowments; and each trader can acquire different state
information and evolve different trade behavioral rules over
time on the basis of its own unique past experiences.

Activities in the TNG are divided into a sequence of gen-
erations. Each trader in the initial generation is assigned
a rule (“personality”) governing its behavior in its trade
interactions, an initial expected utility assessment for each
of its potential trade partners, and a capacity constraint
on the number of trade offers it can make or accept at any
given time depending on the trader’s type. The traders
then repeatedly engage in three types of activities for a
certain specified number of rounds: (1) a search for, and
determination of, preferred trade partner matches on the
basis of current expected utility assessments; (2) trade in-

4This example is used in Section VIII to demonstrate the capabili-
ties of the TNG Lab.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

teractions with trade partners, modelled as noncooperative
games; and (3) an updating of expected utility assessments
to take into account any newly incurred search costs, in-
activity costs, and trade payoffs. The traders of each type
then separately evolve (structurally modify) their trade be-
havioral rules based on the past net payoff outcomes se-
cured with these rules, and a new generation commences.

V. TNG/SiMBIOSYS

This section briefly outlines how the activities of the
TNG traders are implemented with the support of Sim-
BioSys. A more detailed discussion of the resulting
TNG/SimBioSys class framework can be found in [5].

The static structure of TNG/SimBioSys is expressed
through definitions and relationships for three principal
classes:

o tngSimulation, which manages the overall simulation;

o tngPopulation, which manages the evolution of the
traders;

e tngTradeBot, which simulates a single trader (either a
buyer, a seller, or a dealer).

These classes are derived from the SimBioSys abstract
base classes discussed in Section III. Specifically, as de-
picted in Fig. 2, tngSimulation is derived from bioSimu-
lation, tngPopulation is derived from bioPopulation, and
tngTradeBot is derived from bioPType, which in turn is de-
rived from bioAgent. TNG/SimBioSys constructs a single
instance of tngSimulation, which in turn constructs a sin-
gle instance of tngPopulation; and tngPopulation then con-
structs a collection of traders as tngTradeBot instances.®

Fig. 2: TNG/SimBioSys Class Structure

The key aspect of TNG/SimBioSys is the representa-
tion of each trader as a tradebot, i.e., as an instance of the
class tngTradeBot. A schematic description of the internal
structure of a tradebot is given in Table II. Three features
of this description are of particular interest.

First, social norms (market protocols) regarding the de-
termination of trade partners and the conduct of trades are
expressed as member functions of tngTradeBot that are
commonly inherited and implementated by all tradebots
of a given type. Second, additional aspects of the trade
behavior of each tradebot are expressed as individualized
behavioral rules, i.e., as member functions of tngTradeBot
inherited by the tradebots whose implementations can dif-
fer from one tradebot to another both within and across
tradebot types. These differences can occur both through
tradebot-specific initial configurations and through evolu-
tionary change. Third, each tradebot stores addresses for
other tradebots. This permits each tradebot to identify
itself to other tradebots it interacts with and to pass mes-
sages to other tradebots at event-driven times.

In principle, all of the behavioral rules of a tradebot
could be subject to evolutionary selection pressures. As

5As developed to date, TNG/SimBioSys does not exploit the ca-
pability provided by the SimBioSys abstract base class bioWorld to
situate the tradebots in a virtual spatial environment subject both
to biological processes (e.g., plant growth) and to physical laws (e.g.,
conservation of energy).

TABLE 11
INTERNAL STRUCTURE OF A TRADEBOT

class tngTradeBot
{
Internalized Social Norms:
Market protocols for communication;
Market protocols for search and matching;
Market protocols for trade interactions.
Internal Behavioral Rules:
My rules for gathering and processing information;
My rule for determining my trade behavior;
My rule for updating my expected utility assessments;
My rule for measuring my utility (fitness) level;
My rules for modifying my rules.
Internally Stored State Information:
My attributes;
My endowments;
My beliefs and preferences;
Addresses I have for myself and other tradebots;
Additional data I have about other tradebots.

developed to date, however, TNG /SimBioSys only permits
the evolution of each tradebot’s rule for determining its
trade behavior.

The dynamic structure of TNG/SimBioSys is depicted
in Table III. The simulation begins with an initialization
step during which each tradebot is constructed, assigned
a randomly specified trade behavioral rule, and configured
with various user-supplied parameter values according to
its type (buyer, seller, or dealer). For simplicity, in the
current implementation of TNG/SimBioSys it is assumed
that traders of each type are identically configured. Thus,
all buyers are configured with the same parameter values,
and similarly for all sellers and all dealers. The tradebots
then enter into a generation cycle loop comprising three
types of events: a “trade cycle loop,” an “environment
step,” and an “evolution step.”

The trade cycle loop consists of a user-specified number
of successive trade cycles. In each trade cycle, the trade-
bots undertake three basic activities: a search for and de-
termination of preferred trade partners, given current ex-
pected utility levels; trade interactions with trade part-
ners, modelled as noncooperative games; and the updating
of expected utility levels based on any new costs incurred
and/or payoffs received during trade partner determination
and trading.

At the end of the trade cycle loop the tradebots enter into
an environment step. In this step each tradebot assesses
its fitness, measured as the total payoff (net of costs) that
it earned during the preceding trade cycle loop.

At the end of the environment step an evolution step
is executed. In this step, each member of each distinct
tradebot population (buyers, sellers, or dealers) evolves its
trade behavioral rule. Specifically, in addition to engag-
ing in inductive learning by experimentation with the use

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

of new trade behavioral rules, each tradebot also engages
in social learning by mimicking aspects of the behavioral
rules used by more successful tradebots of its own type.
Experimentation and mimicry for each tradebot type are
currently implemented by means of a genetic algorithm in-
volving standardly specified elitism, mutation, and recom-
bination operations.®

At the end of the evolution step, each evolved tradebot
updates its initial expected utility assessment for each of its
potential trade partners. It does this by taking a weighted
average of the expected utility it assigned to this poten-
tial trade partner at the beginning of the latest generation
and the expected utility it currently assigns to this poten-
tial trade partner. The memory of each evolved tradebot is
wiped clean apart from its tag identifier (name) and its up-
dated initial expected utility assessments for its potential
trade partners. The three evolved tradebot populations
then enter into a new generation cycle, and the whole pro-
cess repeats.

As seen by comparing Table I with Table III, a genera-
tion cycle loop in TNG/SimBioSys corresponds to a gen-
eration cycle loop in SimBioSys, and a trade cycle loop
in TNG/SimBioSys corresponds to an action cycle loop in
SimBioSys. However, there is no environment cycle loop in
TNG/SimBioSys. Rather, for each generation there is in
effect a single environment cycle consisting of a trade cycle
loop, an environment step, and an evolution step.

VI. TNG/COM

In the two-layer implementation (TNG/SimBioSys), the
cycles are executed without interruption, generating a
batch output of simulation results. One challenge of wrap-
ping the functionality in a component layer was to intro-
duce an event model into the cycle dynamics that would
enable a graphical front end application to display simula-
tion results in real time and interactively.

The introduction of the event model was accomplished
by replacing the main SimBioSys loop with another im-
plementation that fires events at key points in the hierar-
chy of cycles. Pseudo-code for the TNG/COM main loop
with event firing is depicted in Table IV. For simplicity, the
events that signal that the simulation has been paused or
stopped have been omitted from Table IV. In the actual
TNG/COM code, the inclusion of these events is accom-
plished by splitting the main() function into event handlers.

The calls to FireXxx() raise a corresponding event Xxx

6As currently implemented, all buyers in TNG/SimBioSys have
identical structural attributes apart from their evolving trade behav-
ioral rules, and similarly for sellers and dealers. Social learning is
then implemented by having each tradebot mimic the trade behavior
of other successful tradebots of the same type. Since each tradebot
in TNG/SimBios is uniquely tagged and tracked throughout each
simulation run, however, more general structural specifications and
learning implementations are possible. Note that the usefulness of
mimicry as a learning mechanism is substantially reduced in mar-
ket contexts in which the traders within each trader type have dis-
tinct structural attributes (e.g., differentiated capacities, payoffs, or
costs). Consequently, for such applications, the current implementa-
tion of TNG/SimBioSys should be modified to permit the tradebots
to engage in individual learning on the basis of their own unique past
experiences.

TABLE III
TNG /SiMB10SYS SIMULATION CYCLES

int main () {
Init(); Construct initial tradebot
populations (buyers, sellers,
and dealers) with randomly
specified trade rules, and
configure each tradebot
with user-supplied parameter
values (initial expected
utility levels, capacities,...).
Enter generation cycle loop.
Generation Cycle:
Enter trade cycle loop.
Trade Cycle:
Determine trade partners,
given expected utility
levels, and record search
and inactivity costs.
Implement trades and
record trade payoffs.
Update expected utility levels
using newly recorded
costs and trade payoffs,
and begin new trade cycle.
Environment Step:
Tradebots assess their fitnesses.
Evolution Step:
Tradebot populations separately
evolve their trade rules, and
a new generation cycle begins.

For (G = 0,...,GMax-1) {
For (A = 0,...,AMax-1) {

MatchTraders();

Trade();

UpdateExp();

AssessFitness();
EvolveGen();

R R R R E R R RS RS R S S S S S S S S S RS eSS
N O e N

Return 0;

TABLE IV
TNG/COM MAIN Loor Pseupo-CobeE WITH EVENT FIRING

int main () {

Init();

FireSimRunning();

For (G = 0,...,GMax-1) {
FireGenerationBegin();
For (A = 0,...,AMax-1) {

FireTradeCycleBegin();
MatchTraders();
Trade();

UpdateExp();
FireTradeCycleEnd();

AssessFitness();
EvolveGen();
FireGenerationEnd();

FireSimFinished();
Return 0;

}

which is (optionally) handled by a controlling program, in
this case the TNG Lab. Other substantially different inter-
active applications could also be built on the TNG/COM.

When the events fire at the TNG/COM level, control is
passed back up to the higher level application giving it an
opportunity to update its interactive displays and/or act
on user input such as a menu selection or a pushbutton
press to pause the simulation. As can be observed in the
Table IV pseudo-code, an appropriate event is fired at the
beginning and end of each major cycle. The SimRunning
event is fired after the simulation has been initialized to al-
low the controlling application to do necessary initialization
based on the configuration parameters. The correspond-
ing SimFinished event gives the controlling application a

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

chance to clean up and to carry out and report any final
calculations.

VII. TNG LaAB GRAPHICAL USER INTERFACE

As currently implemented, the TNG Lab GUI consists of
five distinct screens. A Settings Screen permits the user to
set key market parameter values. A Results Screen permits
the user to view simulation performance data in tabular
form in real time. A Chart Screen permits the user to view
simulation performance data in graphical form in real time.
An Animation Screen permits the user to view the evolu-
tion of trade networks in a real-time animation. Finally, a
Physics Screen permits the user to set animation physics
parameters to control the network visualization. The TNG
Lab GUI opens in the Settings Screen. The user can then
use tabs to enter or exit each of the other screens as desired.

More precisely, the Settings Screen permits the user to
set key market parameter values for each TNG/SimBioSys
simulation run. As will be illustrated in the context of a
concrete labor market application in Section VIII, these
values control market structure, payoffs, the finite state
machine (FSM) representation for trade rules, and the
form of the genetic algorithm (GA) learning mechanism.
A screen shot of the Settings Screen for a 2-sided market
simulation run with equal numbers of buyers and sellers is
shown in Fig. 3.

Fig. 3: TNG Lab GUI Settings Screen

As seen in Fig. 3, the market structure parameters in-
clude the total number of buyers, the total number of sell-
ers, the total number of dealers, the buyer quota level (for
buyers and dealers), and the seller quota level (for sellers
and dealers). The payoff parameters include four trade
(prisoner’s dilemma) payoffs, an initial expected utility as-
sessment, a refusal payoff, an inactivity payoff, and an ex-
perience gain parameter. The initial expected utility as-
sessment is the assessment used by each tradebot for each
potential trading partner at the start of the first genera-
tion. The refusal payoff is a nonpositive transactions cost
incurred by a buyer whenever one of its offers to buy is
refused. The inactivity payoff is the payoff incurred by
a tradebot who neither makes nor accepts offers during
the course of a trade cycle. The inactivity payoff can be
positive, zero, or negative depending on the application.
For example, the inactivity payoff might be positive in the
context of a market with welfare support. The experience
gain parameter is the weight that each tradebot applies to
its most recent experiences when updating its current ex-
pected utility assessments at the end of an evolution step
in preparation for the start of a new generation.

Also, the FSM parameters include the number of internal
states for the FSM representation, and a memory param-
eter controlling how many past moves of a current trade
partner are recalled (along with the current FSM state) to
condition the choice of a current action. The GA learning
parameters include the total number of generations, the to-
tal number of trade cycles per generation, a mutation rate,

and an elite percentage separately specified for each trade-
bot type (buyer, seller, and dealer). In addition, a seed
value has to be set to initialize the pseudo-random number
generator.

The Results Screen permits the user to view fitness data
for the tradebots as each simulation run proceeds. Mean
and standard deviation calculations for the fitness of each
tradebot type, and for all tradebots together, are provided
in separate columns. The key columns of interest are the
four columns that provide average fitness data for buy-
ers, for sellers, for dealers, and for all tradebots together.
These key columns are highlighted in colors that are con-
sistently used throughout the TNG Lab GUI: namely, blue
for buyers; yellow for sellers; green for dealers; and red for
all tradebots together. Only columns for tradebot types
actually present in a current simulation run are activated.

Fig. 4 shows a screen shot of the Results Screen for the
2-sided market simulation run in Fig. 3. This screen shot
was taken at the end of the simulation run with the Results
Screen scrolled to data for the final generations.

Fig. 4: TNG Lab GUI Results Screen

The Chart Screen permits the user to view in separate
charts the average, maximum, and minimum fitness lev-
els achieved by tradebots of each type, and by tradebots
as a whole, as each simulation run proceeds. The charts
for average fitness are color coded using the same colors
that were used for the Results Screen: blue for buyers; yel-
low for sellers; green for dealers; and red for all tradebots.
Only charts for tradebot types actually present in a current
simulation run are activated.

Fig. 5 shows a screen shot for one of the charts provided
by the Chart Screen for the 2-sided market simulation run
in Fig. 3. This screen shot was taken at the end of the
simulation run and uses color-coded line charts to depict
the average fitness levels achieved by buyers and sellers in
each generation.

Fig. 5: TNG Lab GUI Chart Screen

The Animation Screen was introduced to allow re-
searchers an opportunity to gain insight into the dynamics
of trade network formation by watching the tradebots in-
teract with each other in real time. The abstract game
simulation modeled in the lower layers of the architecture
(TNG/SimBioSys) is modeled as a physical simulation in
the top layer (TNG Lab).”

FEach tradebot is represented in the Animation Screen
by a point mass and is displayed as a letter with a numer-
ical subscript. The letters “B”, “S”, and “D” stand for
“buyer”, “seller” and “dealer” respectively. The numerical
subscript serves to differentiate tradebots of the same type.
The letters with numerical subscripts are color-coded in
conformity with the Results Screen and the Chart Screen:

"The animation physics for the TNG Lab is motivated in part by
previous work on network animation for iterated prisoner’s dilemma
games with choice and refusal of partners; see Stanley et al. [7] and
Smucker et al. [8]. Pointers to other work on network visualization can
be found at the Web Site on the Formation of Economic and Social
Networks at http://www.econ.iastate.edu/tesfatsi/netgroup.htm.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

namely, blue for buyers; yellow for sellers; and green for
dealers.

Forces, modeled as simple springs, act on the tradebots
to create relationships (bonds) among them. The anima-
tion physics distinguishes among three types of relation-
ships: latched (continuous); transient (temporary); and re-
current (intermittent). This classification is accomplished
by means of frequency threshold settings FL. and FT.

Specifically, at the end of each trade cycle A, the rela-
tionship between any two tradebots who are potential trade
partners is classified as follows. The two tradebots are in a
latched relationship if the tradebots have traded with each
other at least once in each of the last A/FL trade cycles,
and if each tradebot currently has a nonnegative expected
utility assessment for the other. A latched relationship is
implemented as a spring with a relatively short rest length
and displayed as a solid line. The two tradebots have a
transient relationship either if they have not traded with
each other at all in any of the last A/FT trade cycles, or
if at least one of the two tradebots currently has a nega-
tive expected utility assessment for the other. Once a re-
lationship between two tradebots is classified as transient,
the relationship is not depicted visually and any bond that
previously existed between the two tradebots is destroyed.
Finally, the two tradebots have a recurrent relationship if
their relationship is neither latched nor transient. A recur-
rent relationship is implemented as a spring with a rela-
tively long rest length and displayed as a dashed line.

Three additional forces are also introduced in the sim-
ulation in order to enhance the visualization. First, each
tradebot acts as a point charge, repelling every other trade-
bot with a force that varies inversely with the square of the
distance separating them. This prevents groups of trade-
bots from overlapping, which would obscure the visualiza-
tion. Second, the walls of the arena (the inside borders
of the window containing the animation) have a repelling
effect on each tradebot with a force that varies inversely
with the square of the perpendicular distance separating
the tradebot from the wall. This forces pushes each trade-
bot back into the arena when other forces threaten to push
it out of sight. Finally, a frictional force that is proportional
and opposite to a tradebot’s current velocity is introduced
to dampen oscillations.

Each step in the animation coincides with the end of
a trade cycle. The forces on each tradebot due to bonds
with other tradebots and repulsion forces are summed up,
and the resulting vector is applied to the tradebot’s posi-
tion in the arena. The result of these simple calculations
is the emergence of a dynamic trade network visualization.
Groups of tradebots are seen to make initial deals with each
other and to tentatively form a network. One or more of
these tradebots may ultimately engage in too many defec-
tions, however, breaking the alliance. The ostracized de-
fectors then move elsewhere, seeking more profitable trades
with new partners. The visual effect is quite compelling.

A screen shot of the Animation Screen for the 2-sided
market simulation run in Fig. 3 is shown in Fig. 6. For this
run, the 12 buyers and 12 sellers manage to self-organize

into 12 disjoint buyer-seller pairs by about the twenti-
eth generation, and this network formation then persists
throughout the remaining thirty generations. Fig. 6 gives
the still display of the network formation at the end of the
final (50th) generation.

Fig. 6: TNG Lab GUI Animation Screen

Finally, the Physics Screen permits the user to set the
frequency theshold parameters FL. and FT, the spring rest
lengths and strengths for both latched and recurrent rela-
tionships, the repulsion forces (trader, boundary), and the
frictional force. These physics parameters permit the user
to tailor the network visualization in the Animation Screen
to the application at hand. A screen shot of the Physics
Screen for the 2-sided market simulation run in Fig. 3 is
shown in Fig. 7.

Fig. 7: TNG Lab GUI Physics Screen

VIII. LABOR MARKET APPLICATION

This section first outlines a labor market frame-
work that has been implemented with the support of
TNG/SimBioSys [6]. Experiments conducted with this
framework are then used to illustrate the capabilities of
the TNG Lab. These experiments address an important
unresolved issue in current labor market research, referred
to as the “excess heterogeneity” problem [9]. Briefly, the
issue is why observationally equivalent workers and em-
ployers have markedly different earnings and employment
histories.

A. Labor Market Framework

The labor market is a 2-sided market consisting of NW
worker suppliers (“buyers” of job openings) and NE em-
ployers (“sellers” of job openings), where NW and N E are
arbitrary positive integers. Each work supplier is assumed
to have the same (work) quota WQ, where W@ is the max-
imum number of potential work offers that each work sup-
plier can have outstanding at any given time.® Similarly,
each employer is assumed to have the same (employment)
quota EQ, where EQ is the maximum number of job open-
ings that each employer can provide at any given time.

As in Table III, activities in the labor market are di-
vided into a sequence of generations. Each work supplier
and employer in the initial generation is assigned a ran-
domly generated rule governing its worksite behavior, an
initial expected utility assessment for each of its potential
worksite partners, and a quota governing its size. The work
suppliers and employers then enter into a trade cycle loop
during which they repeatedly search for preferred work-
site partners on the basis of their current expected utility
assessments, engage in worksite interactions modelled as
prisoner’s dilemma games, and update their expected util-
ity assessments to take into account newly incurred job

8When WQ exceeds 1, each work supplier can be interpreted as
some type of information service provider (e.g., broker or consultant)
that is able to supply services to at most W@ employers at a time
or as some type of union organization that is able to oversee work
contracts with at most W@ employers at a time.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

search costs, inactivity costs, and worksite payoffs. At the
end of the trade cycle loop, the work suppliers and em-
ployers each separately evolve (structurally modify) their
worksite behavioral rules based on the past net payoff out-
comes secured with these rules, and a new generation then
commences.

Matches between work suppliers and employers are de-
termined using a one-sided offer auction. Each work sup-
plier first submits work offers to a maximum of W@ em-
ployers it ranks as most preferable on the basis of expected
utility and who it judges to be tolerable in the sense that
their expected utility is not negative. Each employer then
selects up to EQ of the work offers it has received to date
that it finds tolerable and most preferable on the basis of
expected utility, and it places these selected work offers
on a waiting list; all other work offers are refused. Work
suppliers who have work offers refused then redirect these
work offers to any tolerable preferred employers who have
not yet refused them, and the process repeats. Once an em-
ployer stops receiving new work offers, it accept all work
offers currently on its waiting list.

A work supplier incurs a job search cost in the form
of a negative refusal payoff R each and every time that an
employer refuses one of its work offers during a trade cycle;
the employer who does the refusing is not penalized. A
work supplier or employer who neither submits nor accepts
work offers during a trade cycle receives an inactivity payoff
0 for the entire trade cycle. The refusal and inactivity
payoffs are each assumed to be measured in utility terms.

If an employer accepts a work offer from a work supplier
in any given trade cycle, the work supplier and employer
are said to be matched for that trade cycle. Each match
constitutes a mutually agreed upon contract stating that
the work supplier shall supply labor services at the worksite
of the employer until the beginning of the next trade cycle.
These contracts are risky in that outcomes are not assured.

Specifically, work suppliers and employers can each shirk
on the worksite, to the detriment of the other, and can pos-
sibly improve their own welfare by doing so. Work suppliers
can reduce their disutility of work in the short run by not
working as hard as their employers expect, and employers
can enhance their profit in the short run by not providing
benefits their work suppliers expect to receive. Offsetting
these incentives are factors that discourage shirking. Em-
ployers can punish shirking work suppliers by firing them
(i.e., by refusing their future work offers), and work sup-
pliers can punish shirking employers by quitting (i.e., by
redirecting their future work offers elsewhere).

These various possibilities are captured by having each
matched work supplier and employer engage in a worksite
interaction modelled as a two-person prisoner’s dilemma
game. The work supplier can either cooperate (exert high
work effort) or defect (shirk). Similarly, the employer can
either cooperate (provide good working conditions) or de-
fect (shirk). The range of possible worksite payoffs is as-
sumed to be the same for each worksite interaction in each
trade cycle: namely, a cooperator whose worksite partner
defects receives the lowest possible payoff L (sucker payoff);

a defector whose worksite partner also defects receives the
next lowest payoff D (mutual defection payoff); a coop-
erator whose worksite partner also cooperates receives a
higher payoff C' (mutual cooperation payoff); and a defec-
tor whose worksite partner cooperates receives the highest
possible payoff H (temptation payoff).

The worksite payoffs are assumed to be measured in util-
ity terms and to be normalized about the inactivity payoff
0 so that L < D < 0 < C < H. Thus, a work supplier or
employer that ends up either as a sucker with payoff L or in
a mutual defection relation with payoff D receives negative
utility, a worse outcome than inactivity (unemployment or
vacancy). The worksite payofls are also assumed to satisfy
the usual prisoner’s dilemma regularity condition (L+H)/2
< C' guaranteeing that mutual cooperation dominates al-
ternating cooperation and defection on average.

FEach trader, whether a work supplier or an employer,
uses a simple reinforcement learning algorithm to update
its expected utility assessments on the basis of new pay-
off information during the course of each trade cycle loop.
Specifically, a trader v assigns an initial expected utility
U? to each potential worksite partner z with whom it has
not yet interacted. Each time an interaction with z takes
place, v forms an updated expected utility assessment for
z by summing U? together with all payoffs received to date
from interactions with z (including both worksite payoffs
and refusal payofls) and then dividing this sum by one plus
the number of interactions with z.

The personality of each trader, as expressed in its work-
site interactions, is governed by a worksite (behavioral) rule
that is maintained throughout the course of each trade cy-
cle loop. These worksite rules are represented as finite-
memory pure strategies for playing a prisoner’s dilemma
game with an arbitrary partner an indefinite number of
times. At the commencement of each trade cycle loop,
traders have no information about the worksite rules of
other traders; each trader can only learn about these rules
by engaging other traders in repeated worksite interactions
and observing the actions and payoff outcomes that ensue.
Each trader keeps separate track of its interaction history
with each potential worksite partner, and each trader’s
choice of an action in a current worksite interaction with
another trader is determined on the basis of its own past
interactions with this other trader plus its initial expected
utility assessment of the trader. This means, in particular,
that a trader can end up revealing different aspects of its
personality to different worksite partners due to differences
in their interaction histories. For example, a work supplier
may develop a mutually cooperative relationship with one
employer while at the same time it is shirking on the job
with a second employer.

At the end of each trade cycle loop, the wutility (fitness)
of each trader is measured by normalized total net payoff,
that is, by total net payoff divided by the fixed number of
trade cycles constituting each trade cycle loop. For work
suppliers, total net payoff is measured by total net work-
site payoffs plus the (negative) sum of any incurred refusal
payoffs. For employers, total net payoff is simply measured

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

by total net worksite payoffs.

The work suppliers and employers then separately evolve
their worksite rules by means of standardly specified ge-
netic algorithms involving elitism, mutation, and recom-
bination operators biased in favor of more successful (fit)
traders. The elitism operator ensures that the most suc-
cessful worksite rules are retained unchanged from one gen-
eration to the next. The mutation operator ensures that
work suppliers and employers continually experiment with
new worksite rules (inductive learning). The recombina-
tion operator ensures that work suppliers and employers
continually engage in mimicry (social learning). Specifi-
cally, if the use of a worksite rule successfully results in a
high fitness for a trader of a particular type, then, through
recombination operations, other traders of the same type
will tend to modify their own worksite rules to more closely
resemble the successful rule.

At the end of the evolution step, each work supplier
or employer v updates its initial expected utility assess-
ment for each of its potential trade partners z by taking
a weighted average of the expected utility it assigned to z
at the beginning of the latest generation and the expected
utility it now assigns to z at the end of this latest genera-
tion. For example, suppose the current generation is G' > 0,
the expected utility assigned by v to z at the beginning of
G was U°(@), and the expected utility now assigned by v
to z at the end of generation G is U*(G). Then

UNG+1) = [1—¢] - U(G) +e-UG), (1)

where the experience gain e lies between 0 and 1.7

B. llustrative Experimental Findings

Consider the special case of a balanced concentration la-
bor market consisting of NW =12 work suppliers (buyers of
job openings) and N E=12 employers (sellers of job open-
ings). Each work supplier has a quota W@ on the number
of work offers it can have outstanding at any given time,
and each employer has a quota F@Q on the number of job
openings it can provide at any given time. Define the (rela-
tive) job capacity (JCAP) of this economy to be the ratio of
total potential job openings (NE - EQ) to total potential
work offers (NW - W@). Under the balanced concentra-
tion assumption, JCAP simply reduces to the size ratio
EQ/WQ.

This section reports TNG Lab experimental findings re-
garding the effects of systematic variations in JC'AP on
the work suppliers and employers. The primary purpose
in reporting these findings is to convey in general terms
the capabilities of the TNG Lab in facilitating interesting
socioeconomic research. Consequently, the findings will be
explained and motivated here at a general intuitive level.

9For simplicity, it is currently assumed that all tradebots use the
same fixed values for the initial expected utility level U°(0) and for
the experience gain parameter e, as specified by the user on the Set-
tings Screen for the TNG Lab GUI. Eventually, however, it would
be interesting to permit individual tradebots to have different U°(0)
values and to evolve e over time on the basis of their own unique
experiences.

A detailed and rigorous discussion of these and many ad-
ditional related findings can be found in Tesfatsion [6].

Three distinct JCAP treatments are tested by speci-
fying three distinct settings for the quotas WQ and FQ,
as follows: (1) WQ=2 and EQ=1, implying JCAP=1/2
(tight job capacity); W@ = 1 and EQ = 1, implying
JCAP=1 (balanced job capacity); and W@ = 1 and
EQ = 2, implying JCAP = 2 (excess job capacity). Apart
from these quota parameter variations, and changes in the
seed value for the pseudo-random number generator, all
other TNG/SimBioSys parameters in the Settings Screen
are maintained at fixed values throughout all experiments.
Fig. 3 displays the Settings Screen for a balanced job ca-
pacity experiment with the “buyer quota” W@ set to 1,
the “seller quota” EQ set to 1, and the seed value set to
19.

Intuitively, work suppliers should be favored when
JC AP is large, since the labor market then has a poten-
tially excess supply of job openings. Conversely, employers
should be favored when JC' AP is small, since the economy
then has a potentially excess demand for job openings. The
following plausible hypothesis will therefore be tested:

JCAP Hypothesis: As JCAP increases, all else equal, the
average utility level (fitness) attained by work suppliers
increases and the average utility level (fitness) attained
by employers decreases.

Table V reports findings for each of the three tested
JC AP treatments. For each treatment, 20 runs were gen-
erated using 20 different seed values for the pseudo-random
number generator. As will be clarified further below, the
first two columns of Table V report observed network for-
mation clusters, the next three columns report means and
standard deviations for observed behavioral attributes sup-
ported by these network formation clusters, and the final
two columns report means and standard deviations for ob-
served welfare and market power outcomes supported by
these network formation clusters.

The first column of Table V, labeled D?°, classifies ob-
served network formations in accordance with a distance
measure D°. The origin 0 of this distance measure cor-
responds to a benchmark “competitive” network forma-
tion in which any unemployment is distributed uniformly
across work suppliers, any vacancies are distributed uni-
formly across employers, and all traders always cooperate
(implying all relationships are recurrent). By construction,
larger D° values imply larger deviations away from this
competitive network formation.

The second column of Table V, labeled “% of Runs,”
gives the percentage of the twenty runs for each treatment
that lie within the indicated range of D° values. The first
interesting aspect to note about the Table V results is that,
for each JCAP treatment, the network formations lie in
two or three sharply distinguished distance clusters, with
one cluster markedly dominating the others in percentage
terms. The dominant distance cluster (55%) for tight job
capacity is the D? interval 1-7, the dominant distance clus-
ter (70%) for balanced job capacity is the D° level 12, and

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

the dominant distance cluster (70%) for excess job capacity
is the D? interval 14-17.

Thus, for each treatment, the network histogram is spec-
tral in form with two or three isolated peaks; there is no
smooth, bell-shaped, central tendency distribution. Figs.
8 through 10 illustrate the three distinct types of networks
that arise for the tight job capacity treatment with JC AP
= 1/2: namely, largely

recurrent; a mix of latched and transient; and fully tran-
sient (a “wallflower” economy). FEach figure presents an
Animation Screen still display of the network formation in
the final generation of a single simulation run. The only
change from one run to the next is a change in the seed
value for the random number generator.

Fig. 8: Network Formation Under Tight Job Capacity
with D° in 1-7

Fig. 9: Network Formation Under Tight Job Capacity
with D in 12-14

Fig. 10: Network Formation Under Tight Job Capacity
with D° = 24

Next consider the Table V columns labeled “Aggressive,”
“P-Inactive,” and “P-Nice.” These columns report means
and standard deviations for the behavioral characteristics
of work suppliers and employers in the final generation of
each run. For each treatment, these behavioral attributes
are separately calculated for each distinct distance cluster
indicated in column one.

The Aggressive column reports means and standard de-
viations for the percentages of work suppliers and employ-
ers in the final generation who defect against work part-
ners who have not defected against them in previous trades
or with whom they have not previously traded. The P-
Inactive column reports means and standard deviations for
the percentages of work suppliers and employers who be-
come persistently inactive (unemployed or vacant) by the
final generation. Finally, the P-Nice column reports means
and standard deviations for the percentages of work sup-
pliers and employers in the final generation who become
persistently cooperative.'?

The final two columns of Table V labeled “Utility” and
“MPower” report means and standard deviations for the
utility (fitness) and market power levels achieved by the
final generation of work suppliers and employers. These
levels are separately calculated for each distinct distance
cluster indicated in column one. Market power is measured
in percentage terms as the difference between the utility a
trader attains in the experimental labor market and the
utility the trader would instead attain in the competitive
network formation, in ratio to the latter utility.

Consider, now, the JC' AP hypothesis. Restricting atten-
tion to dominant distance clusters in Table V, it is seen that
this hypothesis receives strong support. The mean utility
level attained by work suppliers in the dominant distance

10The technical meaning of the important qualifier “persistently”
is carefully explained in Tesfatsion [6]. The objective is to avoid
classifying behaviors on the basis of transient attributes.

10

cluster increases dramatically as JCAP increases from 1/2
to 2 whereas the mean utility level attained by employers
declines. As shown in Tesfatsion [6, Table 6], the JCAP
hypothesis is still supported even when, for each treatment,
the data for the dominant distance cluster is pooled with
the data for less dominant distance clusters. Nevertheless,
Table V shows how misleading it can be to simply pool
data across distance clusters for each treatment.

For example, in the tight job capacity case reported in
Table V(a), complete coordination failure is seen to occur
in 25% of the runs: namely, in distance cluster D°=24. In
this distance cluster, 100% of the work suppliers end up
persistently unemployed and 100% of the employers end
up persistently vacant. The difficulty is that each work
supplier has a hard time finding job openings because jobs
are scarce relative to work offers. Consequently, each work
supplier tends to accumulate many (negative) refusal pay-
offs during the job search process. Moreover, employers
have an incentive to defect on the worksite, which can in-
duce the evolution of protective defecting behavior in work
suppliers since work histories with any one employer tend
to be short. If a work supplier accumulates too many re-
fusals from any one employer, or if the worker and employer
are both aggressive and engage in mutual defection in their
first worksite interaction, then the work supplier will cease
making work offers to this employer because the expected
utility it assigns to this employer will drop below zero. If
this happens for too many employers, the work supplier
will simply withdraw altogether from the labor market,
preferring unemployment (at inactivity cost 0) to the risk
of sustaining additional negative payoffs. As it turns out,
the latter situation is exactly what occurs in every run in-
cluded in distance cluster D° = 24. By the final (fiftieth)
generation every worker and employer has evolved into an
aggressive agent who defects against every new worksite
partner, and this mutual defection behavior quickly leads
to complete market coordination failure.

Finally, consider the implications of Table V for the
“excess heterogeneity” issue highlighted at the beginning
of this section. The issue in question is why observa-
tionally equivalent workers and employers are observed to
have markedly different earnings and employment histo-
ries. Recall that, for each treatment reported in Table V,
all work suppliers have observationally identical structural
attributes at the start of the first generation, and simi-
larly for all employers. The work suppliers and employers
separately evolve their worksite rules over time, but these
rules are not directly observable by other traders in any
given trade cycle loop. Consequently, standard labor mar-
ket theories purporting to explain the distribution of wages
and profits on the basis of observable structural attributes
would presumably predict that these work suppliers and
employers should be earning approximately similar wages
and approximately similar profits.

To the contrary, however, Table V indicates a strong de-
gree of path dependency (hysteresis) in this labor market,
resulting in wage and profit distributions that have spec-
tral rather than central tendency features. Specifically, for

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

each job capacity treatment reported in Table V, the la-
bor market is capable of evolving multiple distinct clusters
of network formations with markedly different utility (wage
and profit) levels for work suppliers and employers. Indeed,
as indicated by the high standard deviations for some of the
mean utility outcomes reported in Table V, there can be
a rather substantial degree of within-cluster variability in
wages and profits as well.

As indicated in Table V and elaborated in Tesfatsion
[10], the variability in wages and profits (utility levels) ob-
served in the current labor market context arises from two
sources: network hysteresis effects, and behavioral hystere-
sis effects. Regarding network hysteresis effects, temporary
shocks in the form of idiosyncratic worksite interactions
can result in persistently heterogeneous network relation-
ships for traders who have identical observable worksite
behaviors and structural attributes. Regarding behavioral
hysteresis effects, temporary shocks in the form of idiosyn-
cratic worksite interactions can result in persistently het-
erogeneous worksite behaviors for traders who have iden-
tical observable structural attributes. Fither effect can
support persistently heterogeneous earnings patterns and
employment histories across employed work suppliers and
across non-vacant employers.

IX. CONCLUDING REMARKS

This study presents, motivates, and illustrates the use
of the Trade Network Game Lab (TNG Lab), an agent-
based computational laboratory (CL) for the study of evo-
lutionary trade networks. In doing so, it constructively
demonstrates how CLs can be used to explore complex
socioeconomic processes that are difficult to model using
standard analytical and statistical tools. In particular, a
CL permits exploration to proceed at three levels of anal-
ysis: interaction patterns (who is interacting with whom,
and with what regularity); interaction behaviors (how do
agents behave within any given interaction pattern); and
welfare outcomes (what consequences arise for individual
agents and for society as a whole as a result of these inter-
action patterns). It is hoped that this study will encourage
the increased use of CLs for serious social science research.

NOTES

The TNG Lab, along with user instructions and tu-
torials, is available as freeware at the TNG Home Page
(http://www.econ.iastate.edu/tesfatsi/tnghome.htm).

REFERENCES

[1] Joshua M. Epstein and Robert Axtell, Growing Artificial Soci-
eties: Social Science from the Bottom Up, Cambridge, MA: The
MIT Press, 1996.

[2] Catherine Dibble, “Theory in a Complex World: GeoGraphic
Smallworlds as Computational Laboratories,” , Ph.D. Disserta-
tion, Department of Geography, University of California at Santa
Barbara, 2000.

[3] David McFadzean, SimBioSys: A Class Framework for Evolu-
tionary Simulations, Master’s Thesis, Department of Computer
Science, University of Calgary, Alberta, Canada, 1995.

[4] Leigh Tesfatsion, “A Trade Network Game with Endogenous
Partner Selection,” in Computational Approaches to Economic

11

Problems, H. Amman, B. Rustem, and A. Whinston, Eds.:Kluwer
Academic Publishers, Dordrecht, 1997, pp. 249-269.

[5] David McFadzean and Leigh Tesfatsion, “A C++ Platform for
the Evolution of Trade Networks,” Computational Economics,
vol. 14, pp. 109-134, 1999.

[6] Leigh Tesfatsion, “Structure, Behavior, and Market Power in an
Evolutionary Labor Market with Adaptive Search,” Journal of
Economic Dynamics and Control, vol. 25/3-4, pp. 419-457, 2001.

[7] E. Ann Stanley, Daniel Ashlock, and Leigh Tesfatsion, “Iterated
Prisoner’s Dilemma with Choice and Refusal of Partners,” pp.
131-175 in C. Langdon (ed.), Artificial Life III, Vol. XVII, Santa
Fe Institute Studies in the Sciences of Complexity, Reading, MA:
Addison-Wesley, 1994.

[8] Mark D. Smucker, E. Ann Stanley, and Daniel Ashlock, “Analyz-
ing Social Network Structures in the Iterated Prisoner’s Dilemma
Game with Choice and Refusal,” Technical Report CS-TR-94-
1259, Department of Computer Science, University of Wisconsin-
Madison, December 1994.

[9] John M. Abowd, Francis Kramarz, and David N. Margolis, “High
Wage Workers and High Wage Firms,” Econometrica, vol. 67, pp.
251-333, 1999.

[10] Leigh Tesfatsion, “Hysteresis in an Evolutionary Labor Market
with Adaptive Search,” in S.-H. Chen (ed.), Fvolutionary Com-
putation in Economics and Finance, Springer-Verlag, 2001, to
appear.

BIOGRAPHIES

David McFadzean received the B.Sc. in Elec-
trical Engineering in 1987 and the M.Sc. in
Computer Science in 1995, both from the Uni-
versity of Calgary. He has worked for the past
several years as a software developer building
decision analysis tools for the energy industry.
He is currently Vice President, Technology, for
Javien Canada, Inc., an Internet start-up com-
pany that is developing a next-generation in-
frastructure for distributed collaborative appli-
cations. His research interests have focused on
artificial life and complex adaptive systems.

Deron Stewart received the B.Sc. in Engi-
neering Physics in 1988 from Queen’s Univer-
sity in Kingston, Ontario. He worked for five
years with Merak, Inc., Calgary, as a pro-
grammer building C++/MFC Windows appli-
cations. Currently he is a consultant program-
mer on Gabriola Island, Canada. He has a par-
ticular interest in artificial life and evolutionary
theory.

Leigh Tesfatsion received the Ph.D. in Eco-
nomics, with a minor in mathematics, from the
University of Minnesota, Minneapolis, in 1975.
She is currently Professor of Economics at Iowa
State University, with a courtesy appointment
as Professor of Mathematics. Her recent re-
search has focused on agent-based computa-
tional economics (ACE), the computational
study of economies modelled as evolving sys-
tems of autonomous interacting agents. She is
applying the ACE methodology to the study
of market power in labor markets and to the study of restructuring
in electricity markets. She currently serves as co-editor in charge of
the Complexity-at-Large section of the journal Complezity as well as
associate editor for the Journal of Economic Dynamics and Control,
the Journal of Public Economic Theory, the IEEE Transactions on
Evolutionary Computation, and Applied Mathematics and Computa-
tion.

ISU ECONOMIC REPORT 53, REVISED NOVEMBER 28, 2000

EXPERIMENTAL FINDINGS FOR VARYING JOB CAPACITY LEVELS

TABLE V

D° % of || AGGRESSIVE || P-INACTIVE P-NICE UTILITY MPOWER
Runs w | e w | e w | e w | e w | e
1-7 55% 2% 5% 23% 2% 74% 95% 0.87 1.38 -38% -1%
(4%) (1%) 9%) | 6%) || (11%) | (12%) || (.13) | (.04) (9%) (3%)
12-14 | 20% 10% 75% 38% 4% 48% 50% 0.88 1.46 -37% +4%
(18%) | (43%) || (9%) | (7%) || (25%) | (42%) || (.21) | (.22) || (15%) | (15%)
24 25% 100% 100% 100% | 100% 0% 0% -0.12 | -0.02 |[-109% [-101%
(0%) | (0%) || (0%) | (0%) || (0%) | (0%) || (0) [(0) | (0%) | (0%)
(a): Tight Job Capacity (JCAP = 1/2)
De° % of || AGGRESSIVE || P-INACTIVE P-NICE UTILITY MPOWER
Runs w | e w | e w | e w | e w | e
1 5% 0% 0% 8% 0% 100% | 100% 0.45 | 1.37 -68% 2%
NA NA NA NA NA NA NA NA NA NA
12 70% 12% 31% 0% 0% 85% 85% 1.23 1.33 -12% -5%
(26%) | (44%) || (0%) | (0%) (26%) | (26%) || (.19) | (.14) || (13%) | (10%)
13-15 | 25% 63% 33% 13% 15% 48% 67% 1.08 | 0.97 -23% -31%
(45%) | (40%) || 4%) | (3%) (40%) | (35%) || (.30) | (:29) || (21%) | (21%)
(b): Balanced Job Capacity (JCAP = 1)
De° % of || AGGRESSIVE || P-INACTIVE P-NICE UTILITY MPOWER
Runs wo | e w | e w | e w | e w | e
0 5% 17% 0% 0% 0% 83% 100% 1.42 | 1.30 1% 1%
NA NA NA NA NA NA NA NA NA NA
4-6 25% 2% 0% 0% 0% 98% 98% 1.37 | 1.38 2% -1%
(3%) (0%) (0%) | (0%) (0%) (0%) | (.00) | (.04) || (0%) | (2%)
14-17 | 70% 100% 29% 2% 29% 10% 60% 1.74 | 0.61 +26% | -56%
(0%) | (45%) || (3%) | (9%) (26%) | (32%) || (.32) | (.27) || (20%) | (19%)

(c): Excess Job Capacity (JCAP = 2)

12

