
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu




ABSTRACT 

OPERATIONAL TECHNIQUES FOR APPLIED DECISION 
ANALYSIS UNDER UNCERTAINTY 

By 

Robert P. King 

The techniques developed in this study are designed for use 

during four phases of an applied decision analysis: problem formula-

tion, the determination of subjective probability distributions, the 

measurement of decision maker preferences, and the identification of 

preferred choices. When considered together, they represent an 

integrated set of techniques which facilitate the application of 

decision theory based on the expected utility hypothesis. 

Problem formulation is an important first step in any applied 

decision analysis. Two important consideratio~s related to problem 

formulation are emphasized in this study. First, the need to identify 

and classify the factors which have an important impact on the outcome 

of the decision to be made is noted, and a classificatory scheme based 

on systems identification is presented. Second, the need to give 

careful attention to the specification of what is to be decided is 

stressed. The desirability of flexible decision strategies in many 

situations is noted, and the use of feedback control rules to introduce 

flexibility into a strategy is described. 

Direct probability assessments of exogenous stochastic factors 

and the modelling of more complex stochastic processes are combined 

in the procedure for the determination of the distribution of outcomes 

associated with any choice which is presented in this study. Under 
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this approach, the decision maker's expectations concerning future 

levels of critical environmental variables are elicited directly. 

Monte Carlo simulation techniques are then used to determine the 

effect of these factors on the distribution of outcomes associated 

with any particular strategy. The value of this approach is greatly 

enhanced by the generalized procedure for the generation of sample 

vectors from multivariate distributions with non-normal marginals, 

which was developed as part of this study. 

With regard to the measurement of decision maker preferences, 

shortcomings of both single-valued utility functions and commonly used 

efficiency criteria such as first and second degree stochastic 

dominance are identified, and a new approach to the measurement of 

decision maker preferences is presented. This new procedure permits 

the construction of interval measurements of a decision maker's absolute 

risk aversion. 

Unlike other preference measurement function procedures, it allows 

the direct specification of the degree of precision with which pre­

ferences are measured, since the absolute risk aversion interval can 

be of any desired width. Interval measurements of this sort can be 

used in conjunction with the evaluative criterion of stochastic 

dominance with respect to a function to order alternative choices. 

The final methodological contribution of this study is the formu­

lation of a generalized risk efficient Monte Carlo programming model, 

which combines random search procedures, Monte Carlo simulation, and 

evaluation by the criterion of stochastic dominance with respect to 

a function within a single analytical framework for the identification 
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of preferred choices. This model is flexible and computationally 

efficient, and it is well-suited for use in the analysis of a wide 

range of practical decision problems. 

The methodological tools developed in this study are applied to the 

analysis of two related problems. The first is concerned with land 

rental and croo production decisions on a small cash grain farm under 

conditions of uncertainty v1ith respect to prices, yields, and time 

available for fieldwork. In the second problem analyzed, these same 

decisions are considered in conjunction with the selection of a 

flexible marketing strategy which evaluates forward contracting 

strategies over a seven-month period. 
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CHAPTER I 

INTRODUCTION 

1.1 Background and Need for the Study 

Uncertainty is that state of knowledge in which the consequences 

of actions being considered cannot be specified exactly; it is that 

condition in which knowledge is to some degree imperfect or incomplete. 1 

As such, the presence of uncertainty is a basic fact in nearly all 

decision situations. 

Though almost always present to some degree, uncertainty is not a 

factor which must be considered explicitly in every instance. Often the 

consequences of ignoring imperfectionsin knowledge are judged to be 

minimal, and decisions can be made as though all relevant factors were 

known with certainty. In many other instances, however, when the 

outcome of an important choice is highly uncertain, the failure to 

consider uncertainty explicitly may not be justifiable. 

Uncertainty can have an important impact both on the process by 

which decisions are made and on the character of decisions themselves. 

Learning, which has no value when knowledge is perfect, becomes a 

1Knight's (1921) distinction between risk and uncertainty is not 
made in this study. General acceptance of Ramsey's (1931) observation 
that knowledge of the true probability distribution of a random variable 
is not possible obviates the need for this distinction. It is important 
to recognize, however, that degrees of uncertainty can vary and that a 
decision maker's state of knowledge has an important impact on his 
actions (Wald, 1947; Johnson and Lard, 1961). 
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potentially worthwhile activity under uncertainty. As a result, the 

decision maker's attention may be focused primarily on the decision of 

whether or not to continue learning rather than on the actual choice of 

an action to be undertaken. 1 When learning stops and a choice of 

actions is made, the character of that choice may also differ from that 

of one made under certainty. For example, decisions made under uncer-

tainty often take the form of flexible strategies which make forth-

coming actions contingent upon future events that the decision maker 

can observe but cannot control . 2 Such strategies would be of little 

value if knowledge were perfect and all future occurrences could be 

known in advance. The presence of uncertainty also affects the character 

of the decision rules used to identify a preferred choice. Decision 

rules which give explicit consideration to uncertainty generally 

require more specific information about decision maker preferences 

than is required under certainty, and they must permit the synthesis of 

this normative information with probabilistic information about the 

possible outcomes of any choice being considered. 

Despite these and other impacts of uncertainty in the decision 

process, uncertainty is often not considered explicitly in the analysis 

of decisions upon which it may have a profound effect. In many instances 

the failure to give proper attention to such an important factor is not 

due to a lack of recognition of the impacts of uncertainty or to 

1The role of learning in the decision process is discussed in 
Bradford and Johnson (1953) and in Johnson and Lard (1961). More 
recently, the work of Aoki (1975), MacRae (1975) and others have dealt 
with the "dual-control" problem of learning and setting policies 
simultaneously. 

2Masse (1962), Cocks (1968), Rae (1971), and Day (1975) have all 
stressed the importance of such adaptive decision strategies. 

·--~-- ~-------
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inadequacies in the theory of decision making under uncertainty. Rather, 

this failure can often be attributed to a lack of workable analytical 

techniques which permit the explicit consideration of uncertainty in 

the analysis of practical decision problems, techniques which are 

flexible enough to allow the application of powerful theoretical results 

in a wide range of complex situations. 

This study is concerned with the development of an integrated set 

of techniques which facilitate the incorporation of explicit considera-

tions of uncertainty into a decision analysis. Particular emphasis is 

placed on the development of methodological tools which make the applica-

tion of decision theory based on the expected utility hypothesis more 

feasible in a wide range of practical problem solving contexts. The 

expected utility hypothesis has been the basis for much of the body of 

theory concerned with decision making under uncertainty and has been 
l used to explain a diverse range of behavioral patterns. It is also a 

potentially powerful tool for the analysis of decision problems in a 

practical context. But for a few notable exceptions such as Grayson 

(1960), Howard, Matheson, and North (1972), and Keeney (1973), however, 

this body of theory has rarely been applied successfully in the solution 

of 9ractical decision problems. 

A number of difficulties have limited the usefulness of decision 

theory based on the expected utility hypothesis. The expectations and 

preferences of decision makers have proved to be difficult to determine 

1Notable among the theoretical applications of the expected utility 
hypothesis are the important early articles by Friedman and Savage (1948), 
the more recent work of Samuelson (1967) and Ehrlich and Becker (1972), 
and the extensive literature concerned with portfolio selection they 
based on the work of Tobin (1958), and Markowitz (1959) and Baumol 
(1970), among others. 
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and represent accurately, and, as Zadeh (1973) and Watson, Weiss, and 

Donnell (1979) note, it is somewhat paradoxical that extremely precise 

decision rules based on the expected utility hypothesis are applied in 

situations where relevant information is highly imprecise. Computa­

tional problems associated with the implementation of expected utility 

maximizing decision rules are also a source of difficulty. Often they 

force the imposition of restrictive assumptions on the way expectations 

and preferences are represented and so further limit the theory's 

usefulness in an applied context (Anderson, 1975). Finally, as Johnson 

(1976), Day (1964), Cyert and March (1963), and others have observed, 

much more than the appreciation of a decision rule is involved in the 

choice process. Even when other methodological difficulties can be 

resolved, decision theory based on the expected utility hypothesis can 

be successfully applied only if a better understanding of problems and 

the process by which they are resolved is attained. 

These difficulties are serious ones, but they stem from problems 

with the way decision theory has been applied rather than from the 

theory itself. They point to a need to develop methodological tools 

which can be used to make decision theory based on the expected utility 

hypothesis truly operational in a practical context. 

1.2 Problem Statement 

In response to this need, this study focuses on the problem of 

formulating an integrated set of operational techniques for the analysis 

of decision making under uncertainty, techniques which are consistent 

with theory based on the expected utility hypothesis and which overcome 

a number of the problems encountered in earlier attempts to apply that 
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theory. Within this broad prob1em, four more specific areas of diffi-

culty can be identified: problem formulation, the determination and 

representation of expectations, the measurement of decision maker 

preferences, and the identification of preferred choices. 

A problem is said to exist when ''a condition, situation, or thing 

is not as good or is worse (more bad) than it could be," (Johnson, 

1976, p. 270). Before the information needed to resolve a problem can 

be collected and analyzed, before a course of action can be selected 

and implemented, the problem itself must be clearly defined. Problem 

formulation is the process by which such a problem definition is 

developed. It requires that performance criteria, choice variables, and 

relevant factors in the decision situation which are beyond the control 

of the decision maker must be defined and that the nature of the decision 

to be made must be clearly specified. Despite its importance, problem 

formulation is often given relatively little attention. Frequently, 

for example, the definition of a problem under consideration is dictated 

by the computational tools to be used as aids in its resolution. As a 

result, important sources of uncertainty may not be considered and the 

special character of decisions made under uncer,tainty may be ignored. 

Despite insights provided by Johnson (l96la~ Cyert and March (1963), 

Churchman (1968), Day (1971, 1975) and others, then, problem formulation 

continues to be a problem in the analysis of decisions made under 

uncertainty. 

The process of selecting a course of action which will best resolve 

a particular problem requires the synthesis of two types of knowledge: 

(1) positive knowledge, which pertains to beliefs about what is, what 
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will be, and what can be done; and (2) normative knowledge, which pertains 

to beliefs about the goodness or badness of particular conditions, 

situations, and things. The product of such a synthesis is prescriptive 

knowledge, which allows the decision maker to prescribe or specify the 

right strategy or set of actions. 1 

Expectations concerning the relative likelihood of alternative 

events occurring in the future represent an important part of the posi-

tive information required in any applied decision analysis. A number 

of methodological problems arise in connection with the determination 

and representation of expectations. Frequently, they are not well 

formulated in the mind of the decision maker, who may not be accustomed 

to thinking in probabilistic terms or may simply not be familiar with 

a particular factor which may have a significant impact on the conse-

quences of his choice. Even when the decision maker's expectations are 

well formulated, problems may arise because he is unable to express them 

in a form which is useful analytically. Other difficulties may stem 

from the fact that the process by which the outcomes of particular 

actions are determined may be so complex that it cannot be comprehended 

as a unified whole. Given these problems, there is a need for proce-

dures which help the decision maker structure his own thoughts and 

help him to use information from more expert sources, a need for tech-

niques which allow the decision maker to break down complex processes 

1The distinctions between "right" and "wrong" and "good" and "bad" 
made by Lewis (1955), is an important one. The adjectives "right" and 
"wrong" refer to the nature of an act, while "good" and "bad" refer to 
the conditions existing prior to an act or to its consequences. To say 
a condition or consequence is good is the statement of a normative 
belief. To say that an act is right is the statement of a prescriptive 
belief which is founded both on positive information concerning the con­
sequences of the act and on normative information pertaining to the 
quality of goodness of the consequences. 
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into more comprehensible sub-processes about which expectations can be 

more easily formulated and then reintegrate that information for use 

in the decision analysis. 

Information on decision maker preferences is the primary normative 

input in any decision analysis. Problems associated with the measure­

ment and representation of preferences also cause serious difficulties 

in the analysis of decisions made under uncertainty. Currently avail­

able measurement techniques are used to construct single valued utility 

functions, which are precise but often inaccurate representations of 

preference, and many place little faith in them. Efficiency criteria 

based on stochastic dominance, on the other hand, require little 

specific information about the decision maker's preferences, but they 

often fail to order choices and may not eliminate enough alternatives 

when a large number must be evaluated. These difficulties indicate 

that there is a need for preference measurement techniques which are 

more reliable and easier to use in an applied context. 

The fourth major area of difficulty is that of identifying a pre­

ferred choice or set of choices from what may be an infinitely large 

number of alternatives. This requires the synthesis of both positive 

and normative information, the simultaneous consideration of both 

expectations and preferences. Mathematical progra!l11ling techniques are 

commonly used as computational aids in the solution of complex quanti­

tative problems. They are best suited, however, for use in situations 

where uncertainty is not a major factor. As Anderson (1975) notes, 

the use of mathematical programming in the analysis of decisions made 

under uncertainty often requires that rather severe restrictions be 

placed on the manner in which a decision problem is posed and in the way 
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information on expectations and preferences is represented. These 

difficulties point to the need for more flexible computational procedures. 

1.3 Objectives of the Study 

The problems which motivate this study are primarily methodological. 

They have important implications, however, for the analysis of decision 

problems in a practical context. In response to them, the objectives of 

the study are: 

1. To present a framework for problem formulation which can 

serve as a guide in the identification and structuring of 

information required for the analysis of decisions made 

under uncertainty. 

2. To review procedures used in the elicitation of information 

on decision maker preferences and to refine techniques for 

the determination of probability distribution for outcomes 

which are the result of complex processes affected by a 

variety of stochastic factors. 

3. To develop and test a technique for the measurement of 

decision maker preferences which is well suited for use 

in an applied context and which overcomes some of the 

difficulties associated with other preference measurement 

procedures. 

4. To formulate and make operational a computational proce-

dure for the identification of preferred choices which is 

flexible enough to be used in the analysis of a wide 

range of practical problems and which imposes few restric-

tions on problem formulation or on the representation of 

decision maker expectations and preferences. 
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The fulfillment of each of these four objectives contributes to 

the primary purpose of this study, which is to develop an integrated 

set of techniques for use in the analysis of decisions made under 

uncertainty. Emphasis should be placed on the fact that the usefulness 

of the techniques presented below is greatly enhanced by their having 

been combined within a single methodological framework. 

1.4 Plan for the Remainder of the Study 

The principle objectives of the study are addressed in the next 

four chapters. Problem formulation is the subject of Chapter II. Par-

ticular emphasis is given to the usefulness of system identification 

(Manetsch and Park, 1977a) as an aid in structuring information in a 

practical decision context. The need to recognize the importance of 

opportunities for learning and adaptive behavior and the impact such 

opportunities have on the character of decisions is also stressed. 

Techniques for determining decision maker expectations are described 

in Chapter III. Procedures for eliciting information on subjective 

probability distributions are reviewed, and the use of Monte Carlo 

simulation techniques to model the performance of complex stochastic 

systems for which outcome distributions cannot be determined analytically 

is discussed. The value of this approach is greatly enhanced by the 

generalized multivariate process generator developed as part of this 

study. Described in detail in Appendix A, this analytical tool can be 

used to model multivariate probability distributions defined by marginals 

of any form and by any positive definite correlation matrix. 
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The measurement of decision maker preferences is the subject of 

Chapter IV. 1 Procedures used to derive single valued utility functions 

are first reviewed, and several commonly used efficiency criteria are 

discussed as possible alternatives to the use of single valued utility 

functions in applied decision analyses. 2 A more general and more 

powerful efficiency criterion, stochastic dominance with respect to a 

function (Meyer, 1977a), is then described and a new approach to the 

measurement of decision maker preferences, developed as part of this 

study for use in conjunction with this criterion, is introduced. This 

new approach allows the analyst to specify the degree of precision with 

which decision maker preferences are measured. Results of an experi-

mental test of this technique are also presented. They demonstrate its 

flexibility and its predictive power. 

Computational procedures for the identification of preferred 

choices are the subject of Chapter V. Uses of mathematical programming 

techniques in the analysis of decisions made under uncertainty are 

reviewed first, and the major shortcomings of these techniques are 

identified. A new procedure for the identification of preferred choices 

which combines random search methods, simulation techniques, and evalua-

tion by the criterion of stochastic dominance with respect to a function 

1Though the importance of multiple objectives in many decision 
situations is recognized, attention in this study focuses entirely on 
preference relationships which depend only on the level of a single 
performance criterion. 

2computer programs used in the implementation of this technique 
are listed in Appendix B. 
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is introduced and described in detail. 1 This computational tool is 

remarkably flexible, placing few restrictions on the way probabilities 

and preferences are represented or on the general form of the problem 

to be solved. 

Two related examples are used to illustrate the techniques developed 

in this study. Both are concerned with decisions affecting the opera­

tion of a southeastern Michigan cash grain farm. The simpler of the two 

examples, which focuses on land rental and crop mix decisions under price 

and yield uncertainty, is discussed at the end of the four methodological 

chapters. It is used to demonstrate how techniques for problem formula-

tion, the determination of expectations, the measurement of preferences, 

and the identification of preferred choices can actually be applied. 

The second example, which considers the selection of a marketing strategy 

in conjunction with production and land rental decisions, is the subject 

of Chapter VI. Again prices and yields are uncertain. The marketing 

strategies considered may include cash sales at harvest, forward 

contracting,or any combination of these. Emphasis is placed on the 

adaptive nature of such strategies and on the impact of preferences on 

the combined production-marketing strategy selected. 

Finally, in Chapter VII the strengths and weaknesses of the inte­

grated set of techniques developed in this study will be discussed. 

Particular attention will be given to an evaluation of the range of 

applications for which these techniques can be of use and to the identi-

fication of areas where further methodological improvements are needed. 

1The computer program which implements this decision model is 
presented in Appendix C. 



CHAPTER I I 

PROBLEM FORMULATION IN THE ANALYSIS OF 
DECISIONS MADE UNDER UNCERTAINTY 

2.1 Introduction 

A problem exists "when an indeterminate situation, present or 

projected, is regarded as unsatisfactory and a more satisfactory alter-

native situation is sought" (Johnson and Zerby, 1973, p. 3). Management 

l is the process by which problems of a practical nature are resolved. 

In describing the managerial process, Johnson (1976) has identified six 

major types of activities: problem definition, observation, analysis, 

decision, execution, and responsibility bearing. This study is concerned 

primarily with the development of analytical tools which can aid the 

decision maker during the analysis and decision phases of the management 

process--tools which facilitate the determination of distributions of 

outcomes associated with alternative actions, the measurement of decision 

maker preferences, and the application of decision rules used to identify 

preferred choices. These tools can be of little use in a practical 

context, however, if the problems to which they are applied have not 

been clearly and correctly specified. 

1As Johnson and Zerby (1973) note, problems can be practical or 
theoretical in nature. Practical problems are those which are related 
to the choice of an action and so demand some form of resolution. 
Theoretical problems, on the other hand, are not linked to a definite 
action which can be fixed in space and time and so may never be fully 
resolved. 

12 
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Problem formulation is the process by which a problem is defined 

and structured for analysis. It is the process by which features of the 

problematic situation judged to have an important impact on the choice 

to be made are identified and classified and the process by which the 

nature of the decision to be made is specified. The product of this 

process should serve as a guide in the collection of additional infor-

mation, should provide a framework for the organization of that infor-

mation, and should help structure the analysis which leads to a decision. 

As such, problem formulation is a critical activity within any applied 

decision analysis. Major expenditures of resources for information 

gathering and analysis may be required before a choice can be made in 

some decision situations. These resources can be used effectively only 

if the problem under consideration is clearly and correctly defined. A 

carefully determined solution to an irrelevant problem is of little use. 

Problem formulation is the subject of this chapter. The discussion 

in subsequent sections focuses on two important aspects of the process 

of problem formulation: the identification and classification of 

variables relevant to the analysis of a particular problem and the 

actual specification of what is to be decided. 1 With respect to both of 

these activities, emphasis is placed on the need to recognize the 

dynamic character of many decision situations and the impact it has on 

the choice process. The need to recognize the role of learning and 

the effect it has both on the way problems are formulated and the manner 

in which decisions are made is also stressed. The purpose of this 

discussion is not to introduce new concepts or to develop a comprehensive 

procedure for problem formulation. Rather, it is to restate some 
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valuable observations made by others and to present a general view of 

decision problems and a working vocabulary for the discussion of them 

that can provide insights into the process of problem formulation. 

2.2 The Identification and Classification 
of Factors Relevant to the Decision 

At the outset of a decision analysis the problem under consideration 

may be only vaguely defined in the mind of the decision maker. To better 

understand the nature of the problem, one of the first tasks usually 

undertaken is the identification of factors judged to have an important 

impact on the choice to be made. Not only does this help to clarify the 

problem, but it also establishes a set of variables which can be the 

focus of observations and analysis. As more is learned about the pro-

blem, this set of relevant factors is, of course, repeatedly revised. 

Efforts to identify the important factors in a particular decision 

situation are facilitated by the presence of a general classificatory 

framework which suggests broad types of variables that should be con­

sidered. Such a framework is presented by Manetsch and Park (1977a) in 

their discussion of system identification. A system can be defined as 

a collection of objects or processes which int~ract to perform a given 
' function or set of functions. System identification is a generalized 

scheme for structuring information about the characteristics of par-

ticular systems. It is a particularly valuable classificatory frame-

work in a practical problem solving context because it is well suited 

for the description of static as well as dynamic decision problems and 

because it encourages the explicit consideration of the sources of 

uncertainty in any particular situation. 
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Manetsch and Park identify five broad classes of variables which 

should be considered in any decision situation: system outputs, con­

trollable system inputs, exogenous system inputs, system state variables, 

and system design parameters. These are the major elements in Figure 2. 1. 

Before discussing each of these categories it should be noted that a 

"system" is a concept rather than an actual entity. The definition of 

a system--the specification of its functions and component processes--

depends on the purposes for which it is being considered. In the analysis 

of a particular decision, the function of the system considered should 

be to determine or at least affect the situation or condition which is 

judged to be problematic, and the system's component processes should 

include all those which have an important impact on that situation. For 

example, the problem facing a farm family may be that its standard of 

living is unacceptably low. In trying to improve this unsatisfactory 

situation they will want to consider the system whose functions it is to 

provide them with the resources for obtaining food, clothing, shelter, 

and other necessities. The component processes within that system 

would be that set of processes by which such resources are generated--a 

set which might include farm production and marketing, off-farm work, 

and public assistance. 

System identification begins with the specification of system 

output variables. System outputs are the products of the processes 

which comprise a particular system; and system output variables, which 

1neasure levels of system outputs, should serve as indicators of the 

degree to which the system under consideration performs its designated 

functions. They should be the basis for a reliable representation of 
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all relevant features of system performance, providing information 

about both the desired and undesired impacts of any choice being con-

sidered. For this reason, considerable care should be taken in identifying 

system output variables. In some situations all relevant information may 

be conveyed by a single output measure, but in other instances more than 

one system output variable is needed to adequately represent system 

performance. For the family in our example, net annual household income 

may be an adequate measure of system performance; but it may be necessary 

to specify other system output variables if, for example, there are 

important costs associated with the acceptance of public assistance 

which are not reflected by the level of net annual income. 

System output levels are determined by inputs to the system and by 

its structure. System inputs are factors or stimuli emanating from 

outside the system which affect its performance. They can be classified 

as controllable or exogenous. Controllable system inputs are those for 

which a level can, to some degree, be specified by the decision maker. 

The level of a controllable system input may represent an amount of some 

physical factor of production flowing into one pf the processes within 

the system or it may specify a level of some well defined activity. In 

our example the set of controllable system input variables might include 

designations of levels for each farm production enterprise and for 

hours of off-farm work activity and a binary variable indicating parti-

cipation or non-participation in public assistance programs. 

The levels of exogenous system inputs cannot be determined by the 

decision maker. Rather, they are determined by the system environment, 

a set of processes which affect system performance but are not, in turn, 
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significantly affected by the system's behavior. The set of exogenous 

system inputs in our example might include farm product prices, levels 

of rainfall, wage rates, and levels of public assistance. All of these 

have a potentially important impact on the family's standard of living 

but are beyond its control. The distinction between the system and 

its environment is not always evident, nor is it necessarily fixed. 

It depends on the problem under consideration and on the power of the 

decision maker. The distinction is an important one, however, especially 

in the analysis of decisions made under uncertainty, since stochastic 

factors in the environment can be viewed as the primary source of uncer­

tainty in most decision situations. 

System structure determines the relationship between system inputs 

and system outputs. The structure of a system is described by system 

state variables and by system design parameters. State variables are 

descriptors of the state or condition of a system at any point in time. 

In general system outputs can be viewed as functions of the system's 

state at some specified time or as functions of the system's state 

through time. In addition to determining system output levels, the 

state of the system may also affect the range of allowable levels for 

controllable system inputs. Therefore, it is important to give careful 

consideration to the specification of system state variables. In our 

example the set of system state variables related to crop production 

processes might include current levels of acreage planted to each crop 

grown, current amount of each crop harvested, current crop production 

expenses incurred, and current crop sales receipts. 

System design parameters define the relationship between inputs to 

the system and its resultant state. As such they describe the processes 
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which comprise the system. With regard to the crop production pro-

cesses in our example, the set of system design parameters could include 

variable production costs per acre of each crop grown, time required to 

plant or harvest an acre of each crop grown, and parameters indicating 

tillage practices and standard procedures concerning the order of pro-

cedures for the planting and harvesting of each crop. System design 

parameters have an important impact on system performance, and in some 

instances they can be altered by the decision maker. For example, a 

change in tillage practices may significantly affect both timeliness and 

crop yields for the farm in our example. Such a change, however, may be 

costly. As a result, alterations in system design are usually under-

taken only in response to serious problems which cannot be resolved by 

other means. 

In any decision analysis variables in each of these categories 

should be identified. The analysis itself focuses on the specification 

of a strategy to be undertaken to resolve the problem being considered. 

A strategy is defined by desired levels for controllable system input 

variables and by the new values of any system design parameters that 

are to be changed. Manetsch and Park (1977a) define "management" or 

"control" as the process by which desired levels for controllable system 

input levels and "design" or "planning" as the process by which specifi-

1 cations for system structure are made. In general there are limits on 

the range of strategies that can be undertaken in any particular situa-

tion. As indicated earlier in Figure 2.1, the state of the system, 

1This concept of management is a much more narrow one than that used 
in this study. The management of a system is but one activity within the 
broader managerial process. 
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system design parameters, and factors in the environment all affect 

the control process. They impose constraints which restrict the 

allowable range of values for controllable system input variables. 

Though not shown explicitly in Figure 2.1, similar constraints also 

limit design changes. As the process of system identification proceeds, 

then, it is also important to identify those factors which restrict the 

range of available choices. 

To this point in the discussion systems have been viewed as 

essentially unidirectional processes which convert inputs to outputs. 

This view is limited because it fails to recognize the fact that as 

strategies are implemented there may be opportunities for learning and 

for revising chosen plans of action on the basis of newly acquired 

information. Introduction of the concept of feedback into our view of 

system identification helps to overcome this limitation. Feedback is 

the return flow of information (both positive and normative) on the 

state of the system and into environment to the central process unit. 

Recognition of the feedback loop between the set of system state 

variables and the control unit changes our conceptualization of the 

process by which inputs are transformed to outRuts from one which is 

essentially unidirectional and disjointed to one in which this process 

is viewed as a continuous cycle or closed loop. This is a more 

realistic way of representing the context in which decisions are made, 

especially in situations where the impact of uncertainty is important. 

Most decisions are not made in isolation, nor are they implemented 

instantaneously. Rather, they are made sequentially, and the outcome 

of one decision affects the opportunity set from which future choices 

can be made. Furthermore, because decisions are implemented over a 
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period of time, there are often opportunities to revise them. In such 

a context, learning is of considerable importance, and feedback in the 

medium through which learning takes place. The recognition of such 

informational flows can have an important impact on the specification 

of what is to be decided. Therefore, there is a need to consider such 

factors during the process of problem formulation. 

Finally, it should be noted that the identification and classifica-

tion of the important factors in a particular decision situation is, in 

itself, a learning process. A decision maker's view of a oroblem and of 

the set of processes by which that problem can be resolved is repeatedly 

revised and made more complete. This kind of learning continues until 

further efforts are judged not to be worthwhile or until the decision 

maker is forced to take an action. 1 The degree of detail included in 

the description of a particular system, then, depends on the usefulness 

of that detail in helping the decision maker determine his preferred 

course of action. 

2.3 The Specification of the Decision to be Made 

As was noted in Chapter I, the presence of uncertainty can have 

an important impact on the character of decisions. All situations 

involving uncertainty are, in a sense, dynamic, since they are charac-

terized by changes in the decision maker's knowledge through time. 

One makes a choice and begins to act in the present, but only later do 

the consequences of one's actions come to be known. Often the outcomes 

1Johnson and Lard (1961) relate the decision of whether or not to 
continue learning to five more formally defined knowledge situations: 
learning, forced learning, forced action, inaction, and risk. 
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associated with a particular strategy unfold over an extended period of 

time, and there are opportunities for learning as the strategy is 

implemented. The existence of such opportunities may make it desirable 

to introduce flexibility into the specification of a decision strategy. 

The strategy becomes a conditional plan--a set of contingency rules 

which direct actions on the basis of currently available information. 1 

In this way the importance of future opportunities for learning is 

recognized explicitly when a choice is made. Though not all decisions 

made under uncertainty take this form, many do. The discussion in this 

section will focus, in part, on the specification of flexible strategies 

based on feedback control rules. 

Another important consideration which affects the character of 

decisions is the length of the planning horizon. Because current 

choices have an impact on future opportunities, it is often necessary 

to formulate strategies which extend into the future. When knowledge 

is perfect, it is possible to specify future actions extending over an 

infinite planning horizon. When knowledge is not perfect and reliable 

information about future events can be attained only at considerable 

cost, on the other hand, the time horizon for which it is worthwhile 

to formulate a plan may be shortened considerably (Modigliani and 

Cohen, 1961; Kleindorfer and Kunreuther, 1978). Specification of the 

relevant planning horizon and the distinctions among a plan, a decision, 

and an action, then, will also be considered in this section. 

1oreyfus (1968) demonstrates that flexible strategies are superior 
to inflexible ones in multistage decision problems and uncertainty. 
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Before beginning the discussion it should be noted that the 

specification of what is to be decided, like the identification and 

classification of the important factors in a decision situation, is a 

process which continues throughout a decision analysis. As more is 

learned about the problem at hand, as observation and analysis continue, 

one's conceptualization of what is to be decided is repeatedly revised, 

and refinements in this aspect of problem formulation continue until 

further changes are not worthwhile. 

2.3. 1 The Specification of Feedback Control Rules 

A feedback control rule is a rule for processing current informa-

tion on the state of a system and its environment in order to repeatedly 

update desired controllable system input levels. Feedback control rules 

can take a variety of forms. They can be as simple as the statement, 

~· ''If the forward contract price of corn is below $2.00 on May l, I'll 

comply with the federal set aside program requirements; if it's above 

$2.00, I won't participate." Alternatively, they can be complex 

functions of several state variables. In specifying a feedback control 

rule to determine the level of some controllable system input variable 

at any point in time, one must be concerned with the identification of 

state variables which can be expected to have a significant impact on 

the desired level of the controllable system input being considered, 

with the form of the rule, and with the actual parameters of the rule. 

The simple feedback control rule stated above determines the level 

of a binary controllable system input variable which has a value of 0 

if the operator chooses not to participate and if he chooses to par-

ticipate. The only state variable affecting the choice of a level for 
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this variable is the forward contract price of corn. The form of the 

rule is that of an "if-then" statement, and the parameters of the rule 

are a forward contract price of corn--$2.00--and a date when a decision 

will be made--May 1, It should be noted that the effectiveness of the 

rule is affected by the variables considered, by its form, and by its 

parameters, All affect its impact on system performance, and in 

selecting a preferred management one may be concerned with the specifi-

cation of all three factors. It should also be noted that this rule is 

but one component of a management strategy which might include other 

feedback control rules and direct specifications of some controllable 

system inputs. 

The specification of feedback control rules can be a difficult 

task in more complex situations. In some special cases optimal control 

methods can be used to derive feedback control rules which optimize 

system performance, but the presence of uncertainty greatly complicates 

the application of these analytical tools. 2 Often, then, it is necessary 

to specify a general form of a control rule and perform experiments to 

determine its parameters. A simple example related to forward contracting 

strategies by cash qrain farmers should help to explain how a reasonable 

form for a feedback control rule can be determined. 

Let v(t) be a controllable system input which specifies the number 

of bushels of corn which, at time t, the operator contracts to deliver 

1rn reality, of course, other variables may affect this decision. 

2optimal control techniques are discussed in detail in Aoki (1967), 
Karreman (1968), Sage (1968), and Kirk (1970). The first two are con­
cerned with optimal control decisions under uncertainty. 
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at harvest. Let x(t) be the total number of bushels contracted prior 
t-1 

to time t--i.e. x(t) = .I v(t)--and let d(t) be the total number of 
i=l 

bushels the operator desires to have contracted at time t. The level of 

v(t) is defined by the following expression: 

v(t) = d(t)-x(t) if d(t)>x(t) 2. l 

0 otherwise 

This is a feedback control rule which specifies the level of v(t) at 

any point in time. That level is equal to the difference between 

desired and actual contracting levels to date. Since a contract, once 

made, cannot be dissolved, however, levels of v(t) are restricted to 

non-negative values. 

Actual contracting levels can be observed, but desired contracting 

levels cannot be. 1 In order to implement this rule, then, a more 

complete specification is needed, a specification which defines desired 

contracting levels as a function of observable variables. 

The projected size of the operator's corn harvest, h(t), is one 

factor upon which the desired level of contracting is expected to 

depend. Initially, then, d(t) might be defined by the expression 

d(t) = oh(t) 2.2 

which implies that the desired level of contracting is some specified 

fraction,o, of the projected corn harvest. This is not a very satis-

factory specification, however, because the operator's estimate of how 

many bushels of corn he expects to harvest may not change much over the 

period during which the rule is to be applied. Furthermore, this 

specification ignores the impact of prices on desired contracting levels. 

1 If the operator knew his desired contracting level, he would have 
no need for this rule. 
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An additional factor which should be considered, then, is the 

sign and magnitude of the difference between the current forward contract 

price, c(t), and the farmer's current estimate of the expected cash 

price at harvest, e(t). 1 The more the contract price is above the 

expected cash price, the more the farmer will wish to have contracted; 

the more it is below the expected cash price, the less he will wish to 

have contracted. Therefore, a revised specification of d(t) could be: 

d(t) = h(t)[a(c(t)-e(t))] 2.3 

where a is a positive constant. 

The desired level of contracting may also depend on movements of 

the contract price. If it is rising rapidly the farmer may wish to 

delay the commitment of an additional portion of his crop to a forward 

contract. On the other hand if the contract price is falling he may 

wish to lock in a relatively high price. To reflect this, the specifi­

cation of d(t) can be further revised so that 

d(t) = h(t)[a(c(t)-e(t))+B d~~t)] 2.4 

where dc(t)/dt is the rate of change in the contract price and S is a 

negative constant. The interaction between the two terms in brackets 

should be noted. If the contract price is fa 11 iing but is 1 ess than the 

expected cash price, the first term should override the second, and no 

new contracting will be desired. On the other hand, if the contract 

price is both above the expected cash price and falling, the two terms 

reinforce each other to raise the desired contract level. 

1The expected cash price at harvest, e(t), can be determined by 
an expectations model, the complexity of which can be determined by 
the requirements of the particular decision situation. 
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A third factor which could influence a forward contracting strategy 

is the percentage of desired corn acreage actually planted at time t, 

p(t). Fearing unusually bad weather which could delay or prevent the 

planting of some of the specified acreage, some operators may hesitate 

to contract much of their projected harvest until planting is nearly 

complete. Similarly, many farm operators, fearing the consequences of 

a sharp downturn in prices, desire to have some of their crop contracted 

in nearly all situations. Therefore, the specification of d(t) can be 

revised once again to become 

d(t) = h(t)[a(c(t)-e(t))+s d~~t) +yp(t)] 2.5 

where y is a positive constant. 

One other restriction on d(t) should be noted. In some situations 

the desired contracting level implied by the specification above may be 

unacceptably high either for the farm operator or for the manager of 

the local elevator. Therefore, it may be advisable to establish an 

upper bound on d(t). This can be considered to be a prespecified con-

straint or it can be treated as a parameter. In this case the upper 

bound on d(t) will be set at 1.5 h(t), which implies that a maximum of 

5 "f h • d b I d l 1 0 percent i t e proJecte crop can e contracte . 

By substituting the right hand side of equation 2.5 for d(t) in 

equation 2. 1, the feedback control rule can be expressed in a form 

which contains only observable variables. This rule has been presented 

only as a relatively simple example of the types of rules that can be 

specified. In some situations it may be desirable to consider more 

1oue to the form of the feedback control rule no lower bound on 
d(t) is needed. Such a lower bound could be specified, however, if 
necessary. 
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factors and to experiment further with functional form. The power of 

such a rule should be evident, however. Once a functional form has been 

specified and values for the three parameters have been selected, an 

adaptive marketing strategy for an entire year has been established, a 

strategy which only requires information which is readily available 

to any farm operator and which allows the decision maker to take advan-

tage of opportunities to learn. In many decision situations such a 

rule may be preferable to a management strategy which specifies an 

inflexible marketing strategy prior to the planting season. 

2.3.2 Plans, Decisions, and Actions 

The preceding discussion has shown how the incorporation of feed-

back control rules into the specification of an action strategy intro-

duces flexibility into the concept of what is to be decided in a 

particular situation. In attempting to gain a better understanding of 

the general characteristics of decision problems involving uncertainty 

and in giving further consideration to the basic question of what con-

stitutes an action choice, it is also important to draw clear distinc-

tions among the three related concepts of a plan, a decision, and an 

action. The distinctions made here parallel those made by Modigliani 

and Cohen (1961) and by Day (1971 ). 

A plan is a strategy for controlling system performance through 

management or design which extends into an uncertain future--a strategy 

based on information about the current situation and on expectations 

concerning future events. In general plans can be altered. Such 

alterations may be costly, however, because resources must be expended 

to gather and analyze new information and to reformulate the plan 
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itself and because actions undertaken to implement the initial phases 

of a plan may restrict the opportunities open to a decision maker. 1 

A decision, on the other hand, is a choice which is essentially 

irreversible. It is that part of a plan which is to be implemented 

before further planning is undertaken. As such, decisions are the 

desired output of the analytical process which is of primary concern in 

this study. 

Finally, an action is the realization of a decision. In a world 

free of uncertainty, decisions and actions would be effectively identical. 

In most instances, however, events that cannot be known with certainty 

at the time when decisions are made affect the extent to which they can 

be implemented and, of course, the outcomes associated with them. What 

is realized may not be what was chosen. It is necessary, then, to 

distinguish between decisions and actions. 

There is a crucial interplay among these three activities, an 

interplay which must be recognized during the formulation of decision 

problems. Though the primary focus of a decision analysis is on the 

· .;:. · choice of actions to be undertaken, one must be aware that the outcomes 

of current decisions affect the opportunity set which circumscribes 

future decisions. Therefore, it is often necessary to formulate plans 

0. for periods extending beyond the immediate period in which decisions are 

to be implemented. In the multiperiod model of decision making under 

conditions of perfect knowledge developed by Hicks in Value and Capital 

1This second point is demonstrated by Johnson (196l~)and Johnson 
and Quance (1972) in their discussions of asset fixity. 
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(1946) the olanning horizon is of infinite length, since an event at 

any time can have an effect on the total flow of system outputs. In 

most cases, however, information is not perfect, and Modigliani and 

Cohen (1961) have observed that in an uncertain context forecasts are 

subject to error and reliable information about future events can be 

attained only at a cost--a cost which is directly related to the degree 

of uncertainty and inversely related to the time proximity of the future 

event. In such situations it is not worthwhile to formulate plans over 

an infinite horizon. Rather, the planning horizon should be extended 

only to the point where current decisions cease to be affected. 1 Fur-

thermore, actions at the end of the planning horizon need not be planned 

in as great a detail as those at the beginning. In formulating decision 

problems, then, it is necessary to determine the appropriate length of 

the planning horizon. 

The act of planning, which involves the collection and analysis 

of information, is expensive, however, and it is also important to 

consider how often plans should be reformulated. If the costs of 

planning are high or if the benefits from it are comparatively low, 

frequent revision of plans may not be worthwhiYe. Therefore, when 
' 

formulating decision problems, it is also necessary to consider the 

length of what might be termed the decision horizon--the length of 

time over which decisions apply and replanning does not take place. 

The length of the decision horizon has an important impact on the 

1Kleindorfer and Kunreuther (1978) note that the cost of planning 
and the length of the planning horizon depend on the costs of fore­
casting future events, the degree of uncertainty, and the computational 
costs associated with the determination of an optimal plan. 
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character of decisions themselves. When it is short the importance of 

learning through feedback may be minimal, and a valid decision strategy 

would specify levels for all controllable system inputs over the entire 

decision horizon. When the decision horizon is long, however, imple-

mentation of a decision strategy may involve a series of actions which 

are affected by factors that cannot be known with certainty at the 

time when decisions are made. In such instances opportunities for 

learning may exist, but the reformulation of plans on the basis of new 

information is not worthwhile. As a result, the decision may be more 

concerned with the choice of adaptive decision rules to be followed 

over the entire decision horizon than with the determination of desired 

levels for all choice variables over that period. Relating this to the 

scheme of system identification, the management process unit is viewed 

as a controller which directs system performance through the applica-

tion of feedback control rules. 

In formulating rules of this sort, one must also consider what can 

be termed an action horizon--the length of time between successive 

reassessments of the current situation and expectations for the future 

and reapplications of the adaptive decision rule. The action horizon 

corresponds to the time increment embodied in a feedback loop. Its 

desired length will depend on the cost of monitoring the state of the 

system and the environment and on the relative costs and returns of 

applying the feedback control rule. As such, the length of the action 

horizon also has an impact on the nature of decisions, and attention 

should be given to its specification in the process of problem formulation. 
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The following example should help to clarify the distinctions among 

plans, decisions, and actions. It should also help to demonstrate the 

importance of making these distinctions when formulating decision pro­

blems. 

Production and investment decisions made by farmers in any given 

year have an impact on their operation for a number of subsequent years. 

They affect future cropping patterns, levels of available resources, and 

cash flow requirements, though their exact impact cannot be known in 

advance due to uncertainties with respect to a number of environmental 

factors beyond the control of the individual decision maker. Farmers 

find it desirable to formulate production and investment plans, then, 

but the high degree of uncertainty they face may cause them to limit 

their planning horizon to, perhaps, three years. Once a farmer has 

begun to implement his plan--once he has purchased seed, fertilizer, 

and other inputs needed to grow the first year's crops and, perhaps, 

new land or machinery--a decision has been made and in most cases exten­

sive revision of his plan will not be worthwhile until the end of the 

crop year. It can be said, then, that the decision horizon is approxi­

mately one year. The farmer's decision should ~ot be considered to be 

a rigid strategy which defines his actions for each day of that year, 

however. Rather, it is a set of specified levels for major controllable 

system inputs and a set of adaptive decision rules which structure 

future efforts to collect and analyze information and direct his actions 

in response to changes in the state of his operation and the environment. 

For example, a management strategy could be comprised in part of a set 

of desired acreage levels for each cropping activity and a set of adap­

tive rules which automatically adjust the crop plan in response to 
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information on current acreage planted and changes in relative prices. 

A simple adaptive rule might be to shift unplanted corn acreage to 

soybeans if the forward contract price for corn is below $2. 10 and the 

contract price for beans is higher than $6.50. If such a rule were 

applied weekly, the action horizon would be said to be one week. 

It is important to recognize the impact of each of these activities--

planning, decision making, and action--on the conceptualization of the 

decision problem. Failure to recognize the need to plan may lead to 

decisions which, while beneficial in the short run, have a harmful long-

run impact on the system. Similarly, it must also be recognized that 

planning itself is expensive and that in most cases a period of time 

exists over which extensive plan revision is not worthwhile. A portion 

of any plan, then, can be viewed as a decision which will not be altered. 

Finally, recognition of the fact that uncertain aspects of the environ-

ment are likely to affect the implementation of any decision and that 

opportunities for learning and adaptive behavior exist when the decision 

horizon is relatively long leads to the conclusion that in many instances 

decision makers should choose flexible rather than inflexible strategies. 

2.4 A Formal Statement of the Decision Probl~m 

In the analysis of complex decision problems it is often 

desirable to make a formal statement of the problem to be resolved. 

When mathematical decision aids such as those developed in this study 

are used in the decision analysis, this may be a necessity. In the 

most general terms, the basic decision problem under uncertainty can be 

stated in the following manner: identify a feasible action strategy 

which results in system performance over a specified time horizon that 
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can be considered optimal according to some relevant evaluative cri-

terion. System performance is measured by system output variables, 

at least some of which are stochastic. An action strategy is defined 

by a set of controllable system input levels and/or by a set of control 

rules which determine the levels. 1 This is, in essence, the statement 

of a stochastic optimal control problem. Though it may be impossible 

or prohibitively expensive to find the truly optimal solution to such 

a problem in most decision situations, this is a generalized formal 

statement of the problems decision makers seek to resolve. It is a 

problem which requires information on the physical, human, and institu-

tional realities of the context in which choices are made, assessments 

of probabilities associated with stochastic events beyond the central 

of the decision maker, and an understanding of the decision maker's 

normative beliefs if it is to be resolved successfully. As the process 

of problem formulation continues, a more comprehensive understanding 

of the problem being analyzed should be gained. This understanding of 

the problem should serve as a guide throughout the decision analysis. 

1symbolically, the problem is 
T max U = h(y(T),T) + 1
0 

g(y(t),t)dt, 
st 

y(t)=f(x(t),t) 

x(t)=a(x(t),v(t),e(t),t) 

r(x(t),x(t),t):ss 
s(u(t),t)'.::y 

where y(t) is a vector of system output variables, x(t) is a vector of 
system state variables, v(t) is a vector of controllable system inputs, 
e(t) is a vector of exogenous system inputs, and a is a function com­
prised of system design parameters. The final two constraints limit 
the set of allowable states and the set of allowable controllable input 
levels. The elements of the vector v(t) are the choice variables in 
this problem. 



, ' ~r· .. :~.·· 

1 
t 
i 

35 

2.5 An Application 

In this final section, the concepts related to problem formulation 

presented earlier are applied to a more concrete decision problem. The 

example introduced here will also be used to illustrate the techniques 

developed in subsequent chapters. This is not an actual case example. 

Rather, it might be termed a synthetic case study, since it synthesizes 

circumstances and concerns common to many individuals' situations. 

The decision maker in our example is the operator of a relatively 

small cash grain farm in southeastern Michigan. He owns 240 acres of 

tillable land on which he grows corn and soybeans. He is heavily in 

debt, with interest and principle repayment commitments on long and 

intermediate term debts of $35,000 per year. Except for approximately 

$6,000 income from off farm work by the operator and his wife, all of 

the family's income is derived from the farming operation. If the 

family's level of income is insufficient to meet debt repayment commit-

ments and family living expenses, they face the prospect of refinancing 

some loans or of being forced out of farming altogether. In 1978 their 

income was low, and they relied in part on savings to cover expenses. 

The operator views his current situation ~s uncertain and unsatis-
' 

factory. He feels a strong need for a higher, less uncertain level of 

income in the year to come. Though he has other needs and desires, 

this is his primary concern. The problem to be analyzed, then, is that 

of identifying a strategy which best provides a level of income adequate 

to meet debt repayment obligations and family living expenses. The 

operator believes this problem is a serious one, and he is willing to 

expend the resources required to undertake a careful analysis of his 

alternatives and their consequences. 
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Having identified the decision maker and the problem which motivates 

our analysis, it is necessary to look more carefully at the kinds of 

choices the farm operator can make and at the factors which will affect 

the outcome of these choices. One might begin by considering what pro­

cesses affect the family's level of income--by defining the system that 

will be the focus of the analysis. In this case the system is comprised 

of the set of production and marketing processes which constitute the 

farm operation and the set of processes associated with engaging in 

off farm work. In order to simplify this example, it is assumed that 

neither the operator nor his wife is willing to take a permanent off-

farm job. As a result, opportunities for affecting the pattern of off-

farm earnings are limited, and the level of off-farm income will be 

assumed given. 

The output of this system is measured by a single variable, y, which 

is defined as annual cash income available for family living expenses, 

income tax, and investment after all debt repayment commitments and 

other business expenses have been met. 1 The level of income realized 

depends on the structure of the system, on exogenous inputs to the 

system, and on the choices made by the operator. / 

The structure of the system defines more exactly the set of pro-

cesses by which the system output, net cash income, is generated. In 

this example the conceptualization of the system will be kept as simple 

as possible. Standard crop budgets, which are given in Table 2.1, define 

1other performance measures could be identified, but the cost of 
considering them is deemed excessive in this case, since it greatly 
complicates the analysis. 
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Table 2.1 Standard Crop Enterprise Budgets 

Seed, bu. 

Fertilizer 

Lime 

Nitrogen, lb. 
Phosphorous (P 2o5), lb. 

Potassium (K
2
0), lb. 

Herbicide, other chemicals 

Fuel and repair 

Utilities 

Miscellaneous 

Total Selected Cash Expenses 

Drying cost, per point per bu. 

Hauling cost, per bu. 

Time required for 

Planting, hours per acre 
Harvest, hours per acre 

Source: Nott, et al. (1977). 

Corn 

(.23) 

( 120) 
(75) 

( l 00) 

9.70 

16. 80 
13.50 

9.00 

.80 

l 0. 80 

14.40 

2.00 

2.20 

79.20 

. 01 

. 1 0 

.757 

.418 

Soybeans 

(. 83) 

( 1 0) 
(50) 

(25) 

8.30 

l.40 
9.00 

2.20 

l. l 0 

13. 00 

9.60 

2. l 0 

2.20 

48.90 

0 

. 14 

.757 

. 502 
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the basic production processes for corn and soybeans. They specify 

not only physical inputs such as seed, fertilizer herbicides and fuel, 

but also the time required for planting and harvesting, the two critical 

fieldwork operations. These budgets alone are not considered sufficient 

to adequately represent crop production, however. The timeliness of 

planting and harvesting also affects crop yields and, ultimately, the 

level of income realized. Therefore, the acreage planted in each crop 

is classified according to when it is planted and harvested. Six 

planting periods and five harvest periods are defined in Table 2.2, and 

possible planting-harvest combinations are specified for each crop. A 

final characteristic of the crop production process which should be 

noted is the rule of thumb that all corn is planted before soybeans are 

planted and that all soybeans are harvested before corn is harvested. 

Other relevant system design features include the fact that the farmer 

does all the fieldwork himself, though he gets some help from his wife 

who hauls grain at harvest. Again to simplify the example, it is 

assumed that all production is sold at harvest on the cash market. 

Marketing alternatives such as forward contracting, hedging, storage, 

and participation in government set aside programs will not be considered. 
' . 

These system design characteristics define the processes by which 

income is generated. System state variables are also useful in under-

standing the system's structure, since they serve as descriptors which 

represent fully the system's performance through time. In this example 

the set of state variables includes an indicate; of current net cash 

income which is repeatedly updated as costs are incurred and crop sale 

receipts taken in, an indicator of total the acreage of each crop 
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Planting 
Period 

April 25-May 10 

May l 0-18 

May 19-26 

May 27-June 3 

June 4-11 

June 12-19 

Table 2.2 Planting and Harvest Periods and Possible 
Crops for Each Combination 

Harvest Period 
September 27- October 4- l 0 October 11-17 October 18-
October 3 November 7 

Corn Corn Corn Corn 

Corn Corn Corn Corn 

Soybeans Corn/Soybeans Corn/Soybeans Corn/Soybeans 

Soybeans Corn/Soybeans Corn/Soybeans Corn/Soybeans 

Soybeans Corn/Soybeans Corn/Soybeans Corn/Soybeans 

Soybeans Corn/Soybeans Corn/Soybeans Corn/Soybeans 

Source: Black, et al. tnq__ date). 

November 8-28 

Corn 

Corn 

Corn 

Corn 

----

----

w 
l..O 
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planted and harvested to date, indicators of the number of acres of 

each crop which remain unplanted or unharvested, and indicators of the 

number of bushels of each crop harvested to date. In addition, time 

itself is monitored, as are the number of acres of each crop planted in 

each of the six planting periods and the number of acres of each crop 

planted in a particular planting period which are harvested in each of 

the five harvest periods. 

Inputs to the system, as well as its structure, affect the level 

of income realized by the farmer. A number of exogenous system inputs 

can be identified in this example. Those considered to be stochastic 

include: the price at harvest of each crop, the number of days avail-

able for fieldwork in any particular planting or harvest period, and 

the yield of either crop for each allowable planting-harvest combination. 

Subjective assessments of the probability distributions for these 

variables will be required for the analysis. 

Relatively few controllable system inputs will be considered in 

this example. Since the analysis focuses on decisions related to the 

farming operation, those of primary concern are the number of acres 

rented (land rental opportunities do exist) and the number of available 

acres planted in each of the two crops grown, corn and soybeans. 

Several factors limit the range of possible values for the three con-

trollable system inputs of primary concern. Due to the characteristics 

of the local land market, the number of acres rented, v1, can be assumed 

to take only five values: 0, 80, 160, 240, 320. Limits on available 

land imply that total crop acreage must be less than or equal to that 

which is owned plus that which is rented. If v2 is acreage planted in 
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corn and v3 is acreage planted in soybeans, then the following relation­

ship must hold: 

2.6 

The farm operator not only has control over the several system 

inputs discussed above, but he also may be able to affect the performance 

of the system through design changes such as the purchase of new 

machinery or the alteration of cultural practices. Given the operator's 

rather precarious financial position and the fact that his crop yields 

have not been notably low, however, it seems best to focus the analysis 

on the specification of controllable system input levels. Therefore, 

design changes will not be considered. 

What is the relevant planning horizon in this example? If herbicide 

carry-over problems are not considered to be of major importance, and if 

long term leases are not required for rental of any of the 80 acre 

tracts, then the choices to be made in this example have an impact on 

system performance and on the opportunities open to the farmer only in 

the year they are made. Therefore the relevant planning horizon is a 

. 1 1 sing e year. Because the costs of the analysis to be undertaken are 

not insignificant, the farm operator does not w~sh to consider major 

changes in his strategy unless conditions change so dramatically that 

this is deemed worthwhile. The decision horizon, then, is also one 

year. It is recognized, however, that there will be opportunities to 

learn over the course of the year and that new knowledge may lead to a 

1rf major design changes such as investment in new machinery were 
being considered, the planning horizon would need to be longer. 
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desire for some minor revisions in the strategy. Of particular concern 

are possible losses in yields due to a lack of timeliness in planting 

corn. Therefore, a simple feedback control rule will also be considered 

in the analysis. The rule takes the following form: "Regardless of 

specified crop acreage levels, soybeans will be planted on all unplanted 

acreage after v4 (a parameter indicating a specific date)." Soybeans 

will not be planted before May 19, nor will corn be planted after June 3, 

and the operator wishes to check the feedback control rule at the end 

of each planting period between these dates. Given these restrictions, 

the possible values for the parameter, v4 , are May 18, May 26, and 

June 3. The action horizon for this rule, then, is eight days during 

the period when it is operative. 

The management strategy in this example is defined by values of 

the three controllable input variables and by the single feedback 

control rule parameter. Our problem is to find the strategy, v*, which 

best satisfies the farm operator's need for a higher and more stable 

level of income. Constraints on allowable control variable levels and 

the structural characteristics of the system which determine the 

relationship between system inputs and outputs1 must be considered when 
,·' 

the choice is made. The fact that the choice must be made under condi-

tions of uncertainty with respect to product prices, crop yields, and 

time available for fieldwork must also be considered, since this means 

that the outcome of any strategy can be specified only in probabilistic 

terms. To make such a choice requires the integration of positive 

knowledge of what is and what may be with normative knowledge concerning 

the goodness or badness of particular outcomes. The expected utility 
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hypothesis, which states that the preferred choice of a decision maker 

is that which has the highest expected utility, will serve as the basis 

for this integration. Our problem, then, is to identify the management 

strategy v* for which the associated distribution of realized net cash 

income, f(y), maximizes the expected utility of the decision maker. 

' , 



CHAPTER III 

THE DETERMINATION OF SUBJECTIVE PROBABILITIES 

3.1 Introduction 

Choices made under uncertainty are affected by a decision maker's 

preferences for alternative outcomes and by his expectations concerning 

the likelihood of each possible outcome associated with the action 

strategies under coniideration. Both of these factors are subjective 

and vary from decision maker to decision maker, and information on both 

is a critical input in the analysis of any decision problem in which 

the impact of uncertainty is of major importance. In this chapter, 

techniques for eliciting information on expectations and methods of 

structuring that information for use in a formal decision analysis will 

be examined. 

Expectations are reflected in a decision maker's beliefs about 

the probabilities of different events occurrin9. These beliefs may be 

based in part on logical deductions, on infe~~~ces drawn from empirical 

observations, on intuition, or on a combination of all three types of 

information. In general, however, probabilities must be viewed as 

personal or subjective and, as such, cannot be judged to be correct or 

incorrect. 1 The problem in a decision analysis is one of representing 

1This personalistic view of probabilities whereby they are con­
sidered to be "degrees of belief" rather than objective facts has its 
origins in Ramsey's (1931) discussion of probability in the essay 
"Truth and Probabi 1 i ty." 

44 
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subjective probabilities in a manner which is consistent with the 

decision maker's actual beliefs and in a form which facilitates the use 

of this information in the evaluation of alternative choices. In many 

situations, this already difficult problem is made more so by the fact 

that the decision maker's beliefs may be poorly defined and may be 

based on quite limited information. As Hogarth (1975, p. 273) notes: 

. man is a selective, stepwise information processing 
system with limited capacity, and, as I shall argue, he is 
ill-equipped for assessing subjective probability distribu­
tions. Furthermore, man frequently just ignores uncertainty. 

The assessment of subjective probabilities, then, can be a difficult, 

complex task. Elicitation procedures should be designed to help the 

decision maker think in probabilistic terms. Furthermore, they should 

serve as an aid in structuring information from a wide range of sources, 

including that provided by experts more knowledgeable than the decision 

maker himself. 

Of primary concern. in the analysis of choices made under uncer-

tainty are the subjective probability distributions of the outcomes 

associated with each management strategy under consideration. In 

general, such distributions cannot be assessed directly by the decision 
! 

maker, however, since they are usually depentient both on specified 

levels of system control inputs and on a number of stochastic and 

non-stochastic environmental factors. Rather, their assessment requires 

both the encoding, or direct elicitation, of subjective probability 

distribution for important stochastic exogenous system inputs and the 

modelling of the relationships between system inputs--controllable and 

exogenous--and system outputs. The combined use of encoding and 

modelling allows the decision maker to break down what may be a complex 
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stochastic process into more manageable sub-units about which he can 

formulate expectations directly. It also encourages the decision maker 

to think explicitly about how controllable and uncontrollable factors 

interact to determine the outcome of any choice. 

The value of careful system identification should be evident here, 

since it is the process by which controllable and exogenous system inputs 

having an important impact on system performance are identified. The 

number of stochastic factors considered and the complexity of the model 

used to represent their effort on the outcome of a particular choice 

should be determined by the nature of the problem being analyzed. In 

many instances the stochastic process under consideration will be 

modelled more than once with new exogenous system inputs and a more 

refined view of the system itself being considered at each stage. As 

Spetzlerand Stael von Holstein (1975, p. 341-2) note: 

Modelling efforts tend to be most effective and most economical 
if they begin with a gross model that is successively refined. 
A model should be refined only as long as the cost of each 
additional refinement provides at least comparable improvement 
in information. The criterion for how much information is 
needed depends on how significantly the information bears on 
the decision at hand. 

The elicitation and structuring of informatio~ on subjective probability 
'! ' 

distribution~ then, can be viewed as a learn~ng process which extends 

the knowledge gained during system identification. It is a process 

which should lead to an improved understanding both of the system under 

consideration in a decision analysis and of the decision problem itself. 

In the remainder of this chapter, procedures for encoding subjec-

tive probabilities will first be reviewed. Methods for modelling 

stochastic processes will then be examined with particular attention 

beino given to the use of Monte Carlo methods and simulation techniques 

- --"-~ ~-<:,. ~---....-..-..... ,_ - ~ 
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to represent the performance of complex systems. Finally, these tech-

niques are applied to the analysis of the decision problem introduced 

in the concluding section of the preceding chapter. 

3.2 Probability Encoding Procedures 

During the system identification phase of problem formulation, 

stochastic exogenous system inputs which are expected to have an 

important impact on system performance are specified. In many instances, 

preliminary models may be constructed and sensitivity tests performed 

in order to better determine which environmental factors affect system 

performance most significantly. Once this has been done, the encoding 

of subjective probabilities associated with important exogenous 

variables can begin. 

Encoding is the process by which a decision maker's beliefs about 

the relative likelihood of different events are elicited and used to 

represent a subjective probability distribution. It is one means by 

which information from a range of sources is structured for use in a 

decision analysis. It should be emphasized once again that a single, 

correct subjective probability distribution does not exist. Furthermore, 

it should be noted that the decision maker ffii!Y not even think in 

probabilistic terms. As Winkler (1967, p. 778) notes: 

... there is no 'true' prior distribution. Rather, the 
assessor has certain prior knowledge which is not easy to 
express quantitatively without careful thought. An elici­
tation technique used by the statistician does not elicit 
a 'true' prior distribution, but in a sense helps to draw 
out an assessment of a prior distribution from the prior 
knowledge. 

Finally, it should be noted that the encoding process may also involve 

the consideration of information from outside expert sources or the use 
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of historical data. This may be particularly important when the 

decision maker's own knowledge about a particular factor is limited. 

In such instances he may be willing to accept the assessments of others 

or to base his expectations for the future entirely on past occurrences. 

Before actual encoding begins, the stochastic variable under con-

sideration should be clearly defined,and its importance in the decision 

analysis should be recognized by the decision maker. The variable 

should be viewed as truly exogenous to the system under consideration. 

If its level will be affected by the decision maker's actions, it cannot 

be considered to be exogenous. Finally, the variable's relationship to 

other random factors should be considered carefully. If its level is 

conditional uoon that of other exogenous variables, this should be 

recognized and dealt with explicitly during the encoding process. 

Possible sources of bias should also be considered before encoding 

begins. Biases are said to exist when an encoded subjective probability 

distribution does not conform with the decision maker's actual beliefs. 

As such, they are impossible to measure, since the elicited information 

is the only available indicator of the decision maker's beliefs. Evi-

dence from controlled experiments in which subjects use sample observa-

tions to assess probability distributions known to the experimentor, 

however, indicates that interview procedures can have on impact responses 

(Hogarth, 1975). Furthermore, experiments designed to reveal how sub-

jects assess probabilities rather than how well they assess them indicate 

that several of common oerceptual heuristics can cause problems in the 

1 
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assessment of probabilities. 1 The introduction of biases into the 

encoding process can be minimized through the careful design of inter-

view procedures. 

At the outset of the encoding interview, efforts should be made to 

gather and make note of all available information which may help the 

decision maker formulate his expectations. If a substantial data base 

of past values of the random variable being considered exists, and if 

the subject believes these data accurately reflect his expectations 

concerning future events, he may choose to let the historical data 

define his subjective probability distribution. This may be a reasonable 

procedure, for example, in the case of rainfall patterns. In other 

instances, this cataloging of available information may reveal that the 

decision maker knows little about the variable being encoded. A decision 

must be made, then, as to whether more information should be sought from 

expert sources or whether encoding should proceed. This decision will 

depend on the cost of new information and on the sensitivity of system 

performance to fluctuations in the variable under consideration. 

The purpose of an encoding interview is to construct a quantitative 

representation of the decision maker 1 s subjective probability distribu-
\ 

tion for a particular variable. In general, this representation takes 

the form of a cumulative distribution function, such as that in 

1of these, the most notable are availability (Kahneman and Tversky, 
1972), representativeness (Kahneman and Tversky, 1973), and anchoring 
(Tversky and Kahneman, 1974). 
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Figure 3.1. 1 Moments are sometimes used to describe subjective distri-

butions, but most subjects find it difficult to translate probabilistic 

beliefs directly into statements of the moments of a particular distri-

bution. 

Several types of questions can be used to elicit information on a 

decision maker's expectations. Spetzler and Stael van Holstein (1975) 

classify elicitation techniques according to encoding method and response 

mode. They identify three encoding methods: 

1. Those which require the assessor to specify a probability 

level while the value of the random variable is fixed--i.e., 

the respondent indicates the probability that the variable X 

will fall below x*. 

2. Those which require the assessor to specify a value of the 

random variable while the probability level is fixed--i.e., 

the respondent indicates a value of the variable X, x*, such 

that the probability X will fall below x* is equal to a 

specified probability level. 

3. Those in which the assessor specifies both a value of the 

random variable and a probability value associated with it. 
,,; ' 

In effect, this is done when historical data are said to 

reflect the decision maker's beliefs concerning future events. 

Two response modes are identified: direct and indirect. Under the 

direct response mode the assessor is asked to explicitly specify values 

1For any value x* of the random variable X, the corresponding 
value of the cumulative distribution function, F(x*), is the probability 
that a sample observation of X will have a value less than or equal 
to x*. 
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Figure 3. l A Cumulative Distribution Function 
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of the random variable or probability levels which define points on 

the cumulative distribution function. Under the indirect mode the 

f assessor is asked to indicate which of two or more bets he prefers. 

j One of the bets serves as a reference which allows a probability 

assessment to be inferred from the assessor's response. 

Several types of elicitation techniques may be used in a single 

encoding interview. Questioning might begin with direct response mode 

questioning to determine extreme values of the variable to be encoded. 

Indirect response mode questioning can then be used to determine a 

number of points on the cumulative distribution function. Finally, direct 

response mode questions can be asked to determine probability quartiles 

of the distribution which can be used as a consistency check. 

At the completion of the encoding process a number of points on the 

cumulative distribution function of the decision maker's subjective 

probability distribution for the variable under consideration have been 

identified. Similarly, if historical data are used in lieu of subjec-

tive assessments to define the distribution, each observation can be 

assigned a position on a cumulative distribution function according to 

the following rule: "If a sample of n observations is drawn from some 
,, 

distribution and arranged in order of size, the kth observation is a 

reasonable estimate of the k/ (n + l) fractile of the distribution" 

(Schlaiffer, 1959, p. 104). The cumulative distribution function must 

be defined for all possible values of the random variable, however, not 

simply at selected points. This is usually accomplished by sketching 

a smooth curve through the observed points, though if there are good 

reasons to believe the distribution of a random variable is from a 
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particular family of distributions with cumulatives of a known form, 

regression techniques can be used. In either case the reliability of 

such a representation may be questioned, especially when only a few data 

points have been identified. 

Anderson (1974b)has investigated the estimational reliability of 

hand-sketched smoothed cumulative distribution functions based on 

sparse empirical data. The questions he poses are also relevant in 

connection with the construction of smoothed cumulative distribution 

functions from a small number of subjectively assessed points. His 

results indicate that, as expected, estimational reliability increases 

when a large number of observations are available, but they also show 

that in a surprisingly large number of cases a fairly good estimate of 

an underlying distribution can be made on the basis of only three to 

five observations. These results are somewhat encouraging, but they 

should also serve as a warning of the need in some cases to consider 

explicitly the inexactness of assessed probability distributions, as is 

done by Watson, Weiss and Donnell (1979). 

The encoding interview should end with the decision maker's verifi-

cation of the quantitative representation of h~s beliefs. This can be 
\ ~ . 

done by asking him to examine either the cumulative distribution function 

which has been constructed or a random sample drawn from the distribu-

tion it defines. More formal verification procedures involve the use 

of scoring rules (Winkler, 1969; Stael von Holstein, 1970; Savage, 1971 ), 
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but as Hogarth (1975) notes, the usefulness of such rules is questionable 

. . t t. 1 in many si ua ions. 

Finally, it should be noted that the encoding procedures discussed 

above are designed for the determination of subjective probability 

distributions of random variables judged to be statistically independent 

of all other random factors under consideration. In many instances, 

however, random factors are not independent. On a particular farm, 

for example, yields for two crops such as corn and soybeans are likely 

to be highly correlated. Similarly, prices received for these two 

crops would not be expected to be statistically independent. In such 

a situation one of two alternative procedures can be followed: the 

process by which the correlated random variables are determined can be 

modelled back to the point where all stochastic exogenous factors can 

be assumed to be independent or the decision maker's joint probability 

distribution for the correlated variables can be assessed directly. 

Neither alternative is particularly attractive. Modelling can be 

costly, and as the model becomes more complex the number of variables 

to be encoded may increase rapidly. Furthermore, while the decision 

maker may have wel 1 formulated expectations ab1out many of the non-
,; ' 

independent random variables, he may have little or no knowledge of the 

statistically independent underlying variables in the more extensive 

1A scoring rule is a payoff function with the vector of stated 
probabilities for each of a set of mutually exclusive and expansive 
events and a vector of probabilities representing the decision maker's 
true beliefs being the arguments. If a scoring rule is strictly 
proper, it will be maximized when the stated probabilities coincide 
directly with the assessor's true beliefs. 
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model. Encoding of joint probability functions, on the other hand, is 

a difficult, time-consuming process. Experimental results indicate 

that many subjects are ill-equipped for the assessment of correlations 

between random variables (Chapman, 1967; Tversky and Kahneman, 1973). 

Therefore, elicited distributions may simply reflect poorly formulated 

expectations. 

When joint specification rather than more extensive modelling is 

the preferred course of action, it is advisable to rely on historical 

data whenever possible. For example, if distributions for rainfall 

and daylight hours without cloud cover over a particular two-week period 

are to be assessed, past weather data could probably be used to repre­

sent most decision makers' expectations. Similarly, yield data for 

several crops over an extended time period, if corrected for time 

trends and other identifiable factors, may provide adequate information 

to construct a marginal distribution for each crop and to estimate 

correlation coefficients between crops. Even in the case of crop 

prices for which past experience may not be relevant in the formulation 

of each marginal distribution, it may be possible to use historical 

data to estimate correlation coefficients which cDuld be used in con­

junction with marginal distributions determined by other methods. 

In cases where historical data are not available or are considered 

to be irrelevant, joint specification of bivariate subjective probability 

distributions can be accomplished by encoding one of the marginal distri­

butions and then encoding conditional distributions for the second 

variable at several values of the first. Anderson, Dillon, and Hardaker 

(1977) describe this procedure in some detail and explain how it can be 

extended to cases where more than two correlated variables are to be 

encoded. 
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3.3 Modelling Stochastic Processes 

The encoding techniques reviewed in the preceding section are used 

to elicit direct assessments of subjective probability distributions. 

In most decision situations, however, such direct probability assessments 

can be made only for the distributions of exogenous system input variables. 

They usually cannot be made for the distributions of system output 

variables, the distributions of primary concern in the evaluation of 

alternative choices. Rather, these distributions, which depend on 

complex interactions among a number of factors, must be determined 

indirectly by modelling system performance. A model is a deterministic 

mathematical representation of the set of processes by which controllable 

and exogenous system inputs determine system output levels. As will be 

demonstrated below, given information about the levels of controllable 

system inputs which define a particular strategy and information about 

the probability distributions of exogenous system inputs, a model can be 

used to determine the associated probability distribution of system out-

put levels. 

Even in situations where the distributions of system output 

variables associated with alternative strategi~s can be assessed 
'\)' 

directly, a model of the system under consideration can be useful for 

several reasons. First, it can increase the decision maker's under-

standing of the set of processes which determine the outcome of any 

strategy, since modelling can be viewed as a learning activity. Second, 

by providing a logical representation of the processes which comprise a 

system, a model allows the decision maker to focus his attention on the 

formulation and representation of expectations about future levels of 
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individual exogenous system input variables. He need not consider all 

such factors and their interactions with other determinants of system 

performance simultaneously. Finally, if the number of alternatives 

being considered is large relative to the number of exogenous system 

input variables, the use of a model to determine system output variable 

distributions can significantly reduce the number of probability dis-

tributions which must be encoded, since only the distributions of 

exogenous system input variables must be assessed. 1 

The exact nature and complexity of the model used in any particular 

decision analysis will depend on the characteristics of the problem 

under consideration. In some instances the appropriate model may be 

quite simple. For example, if the set of controllable inputs is defined 

by v, a column vector of acreage levels for each of several crops; if 

the set of exogenous system inputs is defined by e, a column vector of 

net returns per acre for each crop activity; and if the total net return 

for all crop activities, y, is the only system output variable of 

concern, the appropriate model of this system may simply be the 

following linear equation: 

y = e'v 3. l 

In other cases, much more complex models may be required to adequately 

represent the relationships among system inputs and system outputs. 

This is true, especially, when the system under consideration is 

dynamic and when strategies are defined by feedback control rules as 

1The same probability assessments for these variables are used in 
the determination of system output distributions for each strategy 
considered. Therefore, exogenous system inputs must be truly exogenous-­
i .e., their levels must not be significantly affected by system per­
formance. 
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well as by fixed specifications of controllable system input levels. 1 

Specific conceptual and quantitative tools used in systems modelling 

will not be discussed in this study. Excellent discussions of such 

techniques can be found in Forrester (1961 ), Manetsch and Park (1977a), 

and Manetsch (1978). 

As defined above, a model is a deterministic representation of the 

relationship between a set of system inputs and a set of system outputs. 

Given specified levels of all system inputs, controllable and exogenous, 

the set of system outputs can be calculated exactly. In decision 

situations involving uncertainty, however, levels of stochastic exo-

genous system inputs cannot be known exactly prior to their occurrence. 

This implies, of course, that the system output levels associated with 

a particular strategy cannot be determined exactly either. Rather, they 

can be specified only in probabilistic terms. In such instances a 

system model, despite its deterministic character, can be of use in 

describing system performance. 

In some special cases, a system model can be the basis for the 

analytical determination of the distribution of system outputs associated 

with any strategy being considered. Returning to the simple linear 
,, 

model specified in equation 3.1, for example, if each random factor in 

the vector of exogenous system inputs, e, is normally distributed, the 

distribution of total net revenue, y, is also normal with mean, µ, and 

variance, a
2, defined by the following expressions: 

1see Forrester (1961), Cyert and March (1963), and Dent and 
Anderson (1971) for examples of more complex models. 
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µ = m'v 

2 
a = v'0.v 

3.2 

where m is a column vector of the expected net revenues for each crop 

activity and 0. is the variance-covariance matrix for net returns. 

Anderson (1975) has shown that the distribution of y can also be 

determined analytically when each element of e has a Beta distribution. 

In situations where subjective probability distributions for exo-

genous system inputs are not all members of the same family of distri-

butions or where a more complex model is required to represent system 

performance, it may not be possible to analytically derive distributions 

for system outputs. In fact, when a model is particularly complex, it 

may not even be possible to calculate system outputs analytically for 

the special case when levels for all controllable and exogenous system 

inputs are known with certainty. In such instances, numerical simula-

tion techniques and Monte Carlo methods are required to determine sys-

tern output distributions. 

Manetsch and Park (l 977b, p. 8-1) define simulation as 11 a tech-

nique for obtaining particular time solutions of a mathematical model 

corresponding to specific assumptions regarding1model inputs and values 

assigned to parameters. 11 The model specified in equation 3.1 can provide 

the basis for a simple example of simulation. Consider the case in 

which 200 acres of land are to be planted and only two crop activities 

are possible. Let corn be crop 1 and soybeans be crop 2. If the 

controllable and exogenous system input vectors, v and e respectively, 

are defined as follows, 

= [150] v 50 L 95.00] 
e = l 00. 00 3.3 
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then simulation of system performance for this particular case requires 

only that the following matrix multiplication be carried out: 

y = [ 95.00 100.00 J 3.4 

In this case, with 150 acres of corn and 50 acres of soybeans planted, 

total net revenue, y, is equal to $19,250. 

Systems of concern in most practical decision situations are 

larger and more complex than this one, and their simulation is generally 

more involved. Frequently numerical solution techniques are required. 

and many simulation models are computerized. One of the distinct advan-

tages of simulation, however, is that it is a remarkably flexible pro-

cedure which allows complex processes to be represented realistically. 

Naylor, et al. (1966), Schmidt and Taylor (1970), and Manetsch and 

Park (1977b) all provide excellent discussions of simulation techniques. 

Monte Carlo methods are commonly used in combination with simula-

tion to model the performance of complex stochastic systems. Under this 

approach, numerical procedures are employed to generate sample observa-

tions from the decision maker's subjective probability distributions 

for exogenous system input variables. Each s~rnple vector, e*, specifies 

a level for each exogenous system input and,: as such, defines a state 

of the system's environment. By constructing a large number of sample 

states of the environment and simulating the system performance associated 

with a particular strategy for each of these environmental states, a set 

of sample observations from the distribution of system outputs associated 

with that strategy is generated. These observations can be used to 
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define a cumulative distribution function according to the procedures 

described in the discussion of encoding. 1 

Returning once again to the simple example discussed above, let 

the joint subjective probability distribution of the two elements of 

the exogenous systems input vector, e, be defined in the following 

manner. The marginal distribution of revenues for corn is normal with 

mean $115.00 and standard deviation $35.00. That for soybeans is a 

member of the gamma family of distributions with a mean of $135.00, a 

standard deviation of $40.00 and a minimum value of $55.00. The 

correlation coefficient for the two net revenues is .75. Using Monte 

Carlo techniques described in detail in Appendix A, the following five 

sample vectors from this joint probability distribution were generated: 

,= [107.87] 
e 107.43 

2 = [156. 77] 
e 128.99 

4=1158.18] 
e I 147.ll 

5 = [152.06] 
e 210.51 

e
3 

= [80. 08] 
92.23 

3.5 

They represent five sample states of the environment. Simulating system 

performance under the strategy defined by the controllable system input 

vector v' = [150 50], five sample observations from the distribution 

of net income levels associated with this stra~egy are determined: 
l 2 3 4 

y = $21552.00, y = $29965.00, y = $16623.50, y = $31082.50, 

5 y = $33334.50. These five sample observations were used to construct 

the cumulative distribution function shown in Figure 3.2 In general, 

1rn addition to Schlaiffer (1959), Mood and Graybill (1963) and 
Barnett (1975) also discuss the validity of the rule which, when N 
observations of a random variable are arrayed in increasing order, 
states that the Kth observation can be used as an estimate of the 
K/(N+l) fractile. 
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Based on Five Sample Observations 
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at least 20 sample environmental states should be simulated, and for 

many problems it may be desirable to simulate as many as 50 to 100 

sample states. 

Even this simple example demonstrates the power of this approach. 

Because the marginal distributions of the two net return variables are 

not of the same family, the distribution of net income levels cannot 

be derived analytically. The combinations of Monte Carlo sampling tech-

niques and simulation, however, permits the representation of the dis-

tribution. This same approach can be easily extended for use in the 

analysis of much more complex systems in which the interactions between 

controllable and exogenous system inputs are not so straightforward. 1 

It should also be noted that this method imposes no restrictions on the 

nature of the system inputs or system outputs. Subjective probability 

distributions for environmental factors can take a form which most 

closely reflects the decision maker's encoded beliefs, System output 

distributions are determined by the structure of the model, by the 

subjective probability distributions for exogenous system inputs, and 

by the management control strategy. When used in a decision analysis, 

these distributions can be described by their moments or by their 

cumulative distribution functions. 

One serious criticism of this approach to modelling stochastic 

processes is that statistical dependence between random environmental 

factors is often ignored (Anderson, 1974a~ This may be due, in part, 

to difficulties associated with the joint specification of subjective 

1 The example in the final section of this chapter demonstrates 
how this approach can be applied in the analysis of a more complex 
system. 
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probability distributions. Even when statistical dependence has been 

recognized in the encoding process, however, it is often ignored in 

stochastic system models due to a lack of available techniques for 

generating sample observations from multivariate probability distri-

butions. 

Procedures have been developed for the generation of random variates 

from a wide range of univariate probability distributions (Naylor, et al .. 

1966; Schmidt and Taylor, 1970). Process generators have also been 

formulated for several multivariate distributions, most notably the 

multivariate normal and Wishart distributions (Naylor, et al., 1966; 

Newman and Odell, 1971). More recently, Coleman and Saipe (1977) have 

developed a procedure for generating serially correlated lognormal 

variates, which is a special case of more general procedures for 

modelling bivariate random variables with rrescribed marginals and 

correlations (Coleman and Saipe, 1976). A need remains, however, for 

a generalized multivariate process generator which permits greater 

flexibility concerning the specification of marginal distributions and 

which has the capacity to be easily extended beyond the bivariate case. 

Such a procedure has been developed as part of thfs study and is 
\' ) .' 

described in detail in Appendix A. 1 This generalized multivariate pro-

cess generator can be used to generate sample observations from multi­

variate distributions comprised of up to fifty random variables. 2 The 

1Procedures used to generate sample observations from univariate 
distributions are also reviewed. 

2The program can easily be expanded to model processes with 
still more individual variates. 
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marginals of the distribution modelled can be of any form and they need 

not all belong to the same family of distributions. It is assumed only 

that enough information is available on each marginal to construct its 

cumulative distribution function and that the correlation coefficient 

between each pair of variates within the distribution can be specified. 

The only restriction placed on the matrix of correlation coefficients 

is that it be positive-definite and symmetrical, a condition required 

for feasibility and internal consistency. 

The existence of such a procedure greatly enhances the power of 

the approach to the modelling of stochastic processes described in this 

section. It permits greater realism in the representation of underlying 

probability distribution without requiring that the stochastic dependence 

between some random factors, which has an important impact on choices 

in many decision situations, be ignored. 

3.4 An Application 

The techniques introduced in this chapter can be applied to the 

cash grain farm example formulated in Chapter II. Crop yields for 

each planting-harvest period combination, product prices, and time 

available for fieldwork have been identified as:Jstochastic factors 

which have an important impact on the level of income realized by the 

farm operator. In this section the specification of subjective pro-

bability distributions for each of these exogenous system inputs and the 

use of simulation to determine the impact of these random factors on 

the outcomes associated with particular management strategies are 

discussed. 
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Because the case farm used in this example is a synthetic one, no 

actual decision maker has been identified. Therefore, experts in the 

Department of Agricultural Economics at Michigan State University were 

relied on for the assessment of probability distribution for the stochastic 

factors. This is not altogether unrealistic, since in many cases actual 

decision makers choose to rely heavily on the opinions of experts in 

the formulation of their expectations. 

The assessment of probability distributions for yields was based 

in part on historical data and in part on more subjective information. 

Estimates of expected corn and soybean yields for each planting-harvest 

combination are given in Tables 3.1 and 3.2. 1 These estimates are based 

on figures used in Telplan Program #18, a commonly used decision aid 

which focuses on choices similar to those being analyzed in this example. 

They are the product of a group assessment of experimental data and the 

personal observations of experts. No estimates of variances or other 

features of these probability distributions were made by this group; nor 

did they assess the degree of correlation between yields for different 

crops and different planting-harvest combinations. Therefore, the 

following subjective assessments were made. Al):yield distributions 
~· 

were assumed to be normal, having means equal to those specified in 

Tables 3.1 and 3.2. Specification of the variances of these distribu-

tions was based on the assumption that the coefficient of variation for 

all corn yields is 11 percent and that for all soybean yields is 

1Base yields of 100 bu/acre for corn and 33 bu/acre for soybeans 
are assumed. 



Planting 
Period 

April 25-May 10 

May 11-18 

May 19-26 

May 27-June 3 

June 4- 11 

June 12-19 

Table 3.1 Average Corn Yield and Moisture Content 
by Planting and Harvest Date 

Harvest Period 

September 27- October 18-
October 3 October 4-10 October 11-17 November 7 

90 bu @ 28% 100 bu @ 28% 99 bu @ 26% 98 bu @ 23% 

82 bu @ 30% 92 bu @ 30% 91 bu @ 28% 90 bu @ 25% 

None 84 bu @ 32% 83 bu @ 30% 82 bu @ 27% 

None 76 bu @ 35% 75 bu @ 33% 74 bu @ 30% 

None None None None 

None None None None 

Source: Black, et al. (no date). 

November 8-2 

88 bu @ 21% 

80 bu @ 23% 

71 bu @ 25% 

62 bu @ 27% 

None 

None 

8 

O"\ 
'-I 



Table 3.2 Average Soybean Yield by Planting and Harvest Date 

Planting Harvest Period 

Period September 27- October 4-10 October 11-17 October 18-
October 3 November 7 

April 25-May l 0 None None None None 

May 11-18 None None None None 

May 19-26 33 bu 31 bu 29 bu 22 bu 

May 27-June 3 32 bu 30 bu 28 bu 21 bu 

June 4-11 31 bu 29 bu 26 bu 20 bu 

June 12-19 27 bu 25 bu 23 bu 16 bu 

Source: Black, et al. (no date). 

November 8-2 

None 

None 

None 

None 

None 

None 

8 

(J) 
OJ 
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l 7.5 percent. Concerning yield correlations, the correlation coefficient 

between any two corn yield distributions or any two soybean distributions 

was set equal to .90, while that between any pair of distributions com-

prised of one corn yield distribution and one soybean yield distribution 

2 was set at .80. These parameters--means, coefficients of variation, 

and correlation coefficients--define a multivariate normal distribution. 

Since there are thirty-four individual yield distributions, eighteen 

for corn and sixteen for soybeans, this multivariate distribution is 

comprised of thirty-four random variables. One additional characteristic 

was specified for this set of distributions. It was felt that the 

multivariate normal distribution, as specified, did not adequately 

account for the possibility of extremely low yields due to serious 

drought. Such conditions occur in southeastern Michigan about one year 

in twenty. Therefore it was specified that in any year there is a .05 

probability that drought conditions will prevail and that corn yields 

will be one-half and soybeans two-thirds of what they would have been 

under more normal conditions. 

1The coefficient of variation, C, is definei:I by the expression 
\}' 

c = _'!_ 
µ 

where a is the standard deviation of a distribution and µ is its mean. 
If the mean and coefficient of variation are known, the variance of that 
distribution, 02, is defined by the expression a2 = (Cµ)2. 

2The correlation coefficient for any two random variables x only is 
defined by the expression 

r=~ 
crxcry 

where crxy is the covariance between x and y and ox and cry are the 
respective standard deviations of x and y. 
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Assessments of probability distributions of time available for 

fieldwork in each planting or harvest period were based on the informa-

tion presented in Table 3.3, which is also based on figures used in 

Telplan Program #18. All distributions of time available for fieldwork 

were assumed to be members of the Beta family of distributions. This 

assumption was made because of the flexibility of Beta distributions 

and because, like the amount of time available for fieldwork, Beta 

distributions are bounded from above and below. The choice of para-

meters for each distribution was based solely on the information in 

Table 3.3, which is adequate to determine upper and lower bounds and 

one intermediate point on the cumulative distribution function. With 

the aid of tables of twentiles of the standard Beta distribution given 

in Pratt, Raiffa, and Schlaiffer (1965), parameters were selected for 

each period according to the simple criterion that the cumulative 

distribution function should pass as close as possible to the single 

observed data point. These parameters are given in Table 3.4. No 

information on correlations between time available for fieldwork in 

different periods was available, but it was f~Jt that correlations do 
\!' 

exist between levels observed in adjacent or'nearly adjacent time 

periods. Therefore the following assumptions were made. The correla-

tion coefficient for the time available in any two adjacent periods was 

set at .5; that for periods separated by a single period was set at .3; 

and that for periods separated by two periods was set at . l. All other 

correlation coefficients were set at 0, including those between any 

planting period and harvest period. 

Encoding procedures such as those outlined in Section 3.2 above 

were used to elicit the author's own subjective probability distributions 
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Table 3.3 Percent of Time Available for Fieldwork by 
Calendar Period for Well Drained Sandy 
Loom Soils in the Lenawee, Monroe, 
Livingston County Area 

Period Calendar Percentagea Days 

April 25-May l 0 16 50 

May 11-18 8 37 

May 19-26 8 65 

May 27-June 3 8 70 

June 4-11 8 70 

June 12-19 8 70 

September 27-0ctober 3 7 53 

October 4-10 7 53 

October 11- l 7 7 53 

October 18-November 7 21 33 

November 8-28 21 14 

aThe probability that the percentage of days available for fieldwork 
will be less than this value is .3. 

Source: Black, et al. (no date). 
~) ' 
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Table 3.4 Beta Distribution Parametersa for Time Available 
for Fieldwork by Calendar Period 

Lower Upper s Meanc Standard 
Period Bound Boundb a Deviationd 

April 23-May 10 0 192 9 7 l 08 21. l 
May 11-18 0 96 7 9 42 11. 5 
May 19-26 0 96 14 6 67 9.6 

May 27-June 3 0 96 12 4 72 l 0. l 

June 4-11 0 96 12 4 72 l 0. l 

June 12-19 0 96 12 4 72 l 0. l 

Sept. 27-0ct. 3 0 84 10 7 49 9.7 

October 4-10 0 84 10 7 49 9.7 

October 11-17 0 84 10 7 49 9.7 

Oct. 17-Nov. 7 0 252 6 9 101 30.9 

November 8-28 0 252 3 12 50 25.2 

the 
aThe density function of the standard Beta distribution is given by 

expression: 

f(x) = t ::~) S r 1 (l-x)S-1 for O<x<l 

bTime is measured in hours under the assumption of twelve-hour 
work days. 

cThe mean of the Beta distribution is g\ven by the expression: 

µ = (a~S) (b2-bl) + bl 

where b2 and b1 are the upper and lower bound values. 

dThe standard deviation of the standard Beta distribution is given 
by the expression: 

where b2 and b1 are again the upper and lower bound values. 
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for corn and soybean prices at harvest in 1979. These assessments, 

which are representative of expectations in early January 1979, were 

reviewed by outlook specialists for these crops and revised to incor-

porate their opinions. Upper and lower bounds beyond which each price 

level could not reasonably be expected to fall and three intermediate 

points as each distribution were specified. As was the case with days 

available for fieldwork distribution, it was deemed reasonable to 

represent these probability assessments with Beta distributions, and 

Beta tables were again used to select appropriate parameters. The price 

distribution parameters are given in Table 3.5. Historical data series 

for November prices of corn and soybeans over the period 1958-1972 were 

used to assess the degree of correlation between the two prices. 1 The 

sample correlation coefficient on de-trended prices for this period is 

.56. Because some experts feel there is less basis for correlation 

between corn and soybean prices now than in the past, the subjective 

estimate was set at .45. Finally, production of corn and soybeans in 

the region surrounding southeastern Michigan does not represent a major 

portion of national production of either crop. Therefore, both prices 

were assumed to be statistically independent of yields and days avail-

able for fieldwork. 

,, ,, 

Clearly the determination of subjective probability assessments 

can, in practice, be an imprecise undertaking, though the resulting 

distributions in this instance are not unreasonable. This high degree 

of imprecision leads us to two important observations concerning the 

1The period after 1972 was considered to be somewhat atypical of 
the current situation due to the lack of government stocks from 1973-76. 
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Table 3.5 Beta Distribution Parameters for Corn 
and Soybean Price Distributionsa 

Harvest Price 
of Corn Lower Bound Upper Bound a s 

Corn $1.80 $3.50 2 8 

Soybeans $4.50 $8.00 2 2 

aSee Table 3.4 for explanation of parameters. 

'-

, ,._ '·. . ·---•·m-ii:i ... f•1'i•h1 MIMI.ff m · 10 . ~: hi, 

Mean 

$2. 14 

$6.25 

Standard 
Deviation 

$. 21 

$.78 

'-I 
.i:::. 
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analysis of decisions made under uncertainty. First, we note that 

there is a lack of available material which can serve as an aid in the 

assessment of probability distribution. The need for such information 

is generally not considered when agronomic experiments are designed or 

when outlook information is reported. When one considers the degree of 

uncertainty experienced by agricultural producers, however, and the 

impact of this uncertainty in the decision process, the need for more 

expert assessments of probability distribution is evident. Second, it 

should be noted that decisions must be made even in the absence of 

reliable information upon which to base probability assessments. The 

costs of obtaining additional information must be weighed against the 

possible benefits. Further refinements should not be made in subjective 

probability assessments beyond the point at which the decision maker and 

the analyst believe the farmer's expectations are reasonably well 

represented. 

To this point probability distributions for exogenous system inputs 

judged to have a significant impact on system performance, as measured 

by net cash income, have been specified. The task of actually deter-

mining the effect these factors have on the distr,ibution of net cash 
\)' 

income levels remains. This requires the application of the Monte 

Carlo simulation techniques outlined above in Section 3.3. For any 

management strategy under consideration, net cash income levels are 

determined for a number of randomly selected states of nature. These 

levels are viewed as sample observations from the distribution of net 

cash income levels under the particular management strategy. When 

arrayed in order of increasing magnitude they serve as the basis for the 

construction of the cumulative distribution function of that distribution. 

~ 

- - - -- +--- - - ~ __ ,...,,_,.,,.. ~ 
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In this example, it will be recalled, a management strategy is 

defined by levels of control variables indicating acreage rented, 

acreage to be planted in corn, and acreage planted to be planted in soy-

beans and by a single feedback control role parameter indicating the 

date after which all unplanted acreage is to be planted in soybeans. 

A state of the environment is defined by a set of specified values for 

all exogenous system inputs--by values for all non-stochastic environ-

mental factors and by one sample observation from the multivariate 

probability distribution comprised of crop yields, time available for 

fieldwork, and product prices. 

A simple simulation model was specified to determine the level of 

net income realized under any particular managerial strategy in a given 

state of the environment. The simulation begins with the computation 

of charges for land rental, if any. Subject to time available for 

fieldwork, the model then simulates the planting of corn until the 

specified corn acreage is attained or until the date after which all 

remaining acreage is to be planted in soybeans. Planting of soybeans 

then proceeds until all acreage is planted or until June 19, the final 

day of the last planting period. Throughout trhe planting process, 
) ' 

)' 

system state variables indicating the acreage of each crop planted in 

each planting period are repeatedly updated. There is no assurance 

that all available acres will be planted in a particular state of 

nature; this depends on levels of time available for fieldwork. Costs 

for seed, fertilizer, herbicides, and fuel are incurred for each acre 

actually planted. 

Harvesting is simulated in a similar manner. Subject to time 

available, soybeans are harvested as quickly as possible, with acreage 

-ii 

' ' 
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planted first being harvested first. This continues until all planted 

soybeans acreage is harvested or until November 8, the date after which 

unharvested acreage is judged to be a total loss. The harvest of corn 

then begins, again with acreage planted first being harvested first. 

This process continues until all planted corn acreage is harvested or 

until November 28, the last day of the final harvest period. Again, 

there is no assurance that all acres planted will be harvested. 1 All 

harvested acreage is classified according to crop, planting period, and 

harvest period, and system state variables indicating the number of acres 

in each category are repeatedly updated. The values of these variables 

are multiplied by corresponding crop yields for each planting-harvest 

combination to determine the total number of bushels of each crop 

harvested. Drying and hauling costs are assessed for each bushel har-

vested. Finally, receipts from crop sales are determined by multiplying 

the number of bushels of each crop harvested by the relevant price, 

and net cash income is computed by subtracting costs incurred and debt 

repayment commitments from the sum of crop receipts and off-farm income. 

This model was used to determine net cash income levels realized 

in twenty randomly selected states of nature for each of the two manage­

ment strategies defined in Table 3.6. Levels for stochastic factors 

in each state of nature were generated using the Monte Carlo procedures 

described in Appendix A. In effect each state can be viewed as a sample 

observation from the combined multivariate probability distribution of 

prices, yields, and days available for fieldwork. Net income levels 

realized under Strategy 1 are given in the first column of Table 3.7. 

1Nothing is recovered from unharvested soybean acreage, but yields 
equal to one-half those realized for corn planted in the fourth planting 
oeriod and harvested in the final harvest period are assumed to be 
recoverable on unharvested corn acreage. 
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Table 3.6 Two Possible Management Strategies 

Central 
Variable 

Land Rental 

Corn Acreage 

Soybean Acreage 

Stopping Date for 
Corn Planting 

0 

0 

240 

June 3 

Strategy 

'' ,, 

2 

240 

180 

300 

May 26 



Table 3.7 SysteM Performance under Strategy l 

Corn Soybeans 
Cash I Acres Acres Average cres cres verage 
Income Planted Harvested Yield Price Planted Harvested Yield Price 

6~',1. H (I .oo 0 .oo I a ?.C7 240 .00 'H.00 ~2.00 6 .17 

3.,H .cS ".on o .0n 1 2 .1 () 24 o. 00 ?40.00 3?.. 91 '.t7 

-tJ 7l., 4. 70 i.oo 0. 00 I 2 .14 240,00 240,00 23.2S 6.2c -...J 

~ (l \. > .{;4 0 .<•O 0.00 I 'i' .07 2 4 0. 00 ?40,00 ~ 1. 0 7 6.0 \.0 

413t.OO o. 00 o.oo I 2 • '(1 ?40,00 2 40 ,00 30 .d6 6.,; 

461:1,17 ,), 00 o.oo I 2 .13 2 40. ('() 24r._oo .~o .1 • 6,39 

2540.96 0 .oo o.oo 1 2.C7 240.00 240.00 20.11 11.zc. 
3 o~· c;·. r: 'i o.oo (J .oo I 7.77 ?40,00 240.00 20. 7 s 6 .2l 

•, 1 f~ 7 r • l1 0 0 .llO G .no 1 , .n 24'1.00 240.00 27.20 4,55 

2030 .IP [, .oo ,, o.oo I 2 .r: 240,00 24C.OO 32.73 1,q 

' 13t.SI .91' (J .oo . 0 .oo I 2. 31 ?40,00 240.00 ~o .24 7.t' 

151~2.27 (I .oo 0 .o 0 I 2. 31 24 0. 00 240.00 32 .2 7 7.35 

-7~ 2( .• o5 o.oo o.oo I 1 • F' ?40.00 240.00 27.64 ~.os 

-u.~7 .o? o .oo 0 .00 I 2.~9 ?40 .00 24C,OO 20.42 .., • e ~ 
71'"' .f, 1 (). 00 o.oo ~ 2 • 111 240,00 240.00 76.10 7. 77 

-1<,"4.70 0 .oo n .oo I 2. 20 240 .00 240.00 27 ,P 1 6.r7 

-2517 .40 n .00 o .or, I , • ~ 1 2 4 (). 00 240.00 29.0? 5. ti 

31~.47 n.oo 0 .oo I 2 .22 240.00 ?40.00 31 ,66 5 • 5 4 

• 30 7 ! • 31 0 .oo 0 .oo I 2 .20 241J,00 2 4 (\, 00 32.22 7.C9 

'1~,1. ~ 7 [) .(Jl) (l .oo T ?. 3 2 240.00 240.00 31 • 2 5 7 .15 
-
alhe average corn yield is undefined when no corn ls planted. 

µ = $3815. 71 

0 8357.33 
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Information on soybean prices and average yields per acre is also given. 

If this strategy is selected by the operator of the farm in our example 

the expected level of net cash income is rather low--only $3,816. The 

probability is .3 that net cash income will be negative, but there is 

only a probability of .05 that losses will exceed $10,000. On the other 

hand, there is a probability of .25 that net cash income will exceed 

$10,000 and a probability of .05 that it will exceed $20,000. Net 

income levels realized under Strategy 2 are given in Table 3.8. Under 

this strategy, which calls for the rental of 240 acres and a more 

balanced crop mix, the expected level of net cash income is much 

higher--$10,798. The probability is .6 that net cash income will 

exceed $10,000 under this strategy and .3 that it will exceed $20,000. 

The probability of realizing a negative net income level is .25, which 

is less than under Strategy 1. When losses occur, however, they tend 

to be substantial and there is a . 15 probability that net cash income 

will be less than $10,000. The other information in Table 3.8 demon-

strates how the management strategy is revised by the feedback control 

rule. In ten of the twenty states of nature less than 190 acres of corn 

are planted because of the stipulation that all'unplanted acreage be 
) ' 

~ 1 

planted in soybeans. after May 26. The information in this table also 

demonstrates that when the number of acres cultivated reaches this high 

a level, there is no assurance that all available acreage will be 

planted or that all planted acres will be harvested. 

The figures given in Tables 3.7 and 3.8 can be used to construct 

cumulative distribution functions of net cash income levels associated 

with each of the two strategies. These are shown in Figure 3.3. The 



Table 3.8 System Performance under Strategy 2 

Net Corn Soybeans 
Cash cres cres verage cres cres Average 
Income Planted Harvested Yield Price Planted Harvested Yield Price 

(~~~1r.i' 1 '4. (l,'I 174. 0' , 1 ~." 7 7.07 1() s. 0' '05."2 31.? 3 6 .17 
~,,:'.•? 1' 11.(1() , , <> .r, o <;) • ., Q ? • 19 •00.00 'oo.oo 30.93 ' .• t 7 
-~'·Hi.I>< 144.76 1, '). 57 70.54 2 .14 ~,5.24 3~5.?4 Z1. 1 Z (,_2( 

OJ 
C\)[J 0 :, • '~ 1 ~ (I • !) (J 1" n .oo 1('1.1" 2. 07 300.00 300.00 29 ·'· 3 6 .M 

___. 

H44.6S 1 '' • ~ 6 n.1.1 t ll.? 5 ?,30 321.64 3C4.9t. 2 ... 9, 6.1<; 
,.,, ;t,.61 1 I (I .oo 1 r· n .0 u U.4P 2. 1 3 300.00 3CO.OO 29. 2 ~ 6. 3c; 
'(10 s 1. 1 (\ 1 ~ ( • 21 1 ~ 7.? 1 c; ".' • b r, 2.07 ~22. 79 ~22.79 U.25 ti .2 c 
'2'L4.~1 1 ~· :1. 'Jll 1H'.00 01.19 2. 2 2 300.00 3CO.IJO 2~. 1 ~ (,. { t 

-13t1r."1 , .'10. 00 1.0.nc p 1 • , 0 1.P7 300,00 3CO.OO 26.0S 4. ~ ~ 
341 'f .7~ 1' n.oo -- 1' (). 00 1 oo.4~ 2. C3 300.00 3<'0 .oo 31 .6? 7 • ~ 1 
2<1~-:t.77 1 > o. ()() 1.;'0 .oo 95.45 ? • 3, 'no.on 300.00 2 ~. 0 2 7 .6 3 
?'flt' .)o H0,00 1'0.00 c; 2. 41 ? • 3 1 3ro.oo 300.00 30.97 7. 3 5 

_, 72 11. 711 13".34 77 ,)<; 51 • 5 (1 1 • t 3 341 .M 341 .c6 25 .of 5. cc; 
-14cr.4s 1 r,f) • 0(1 1- 0 .o 0 47.2f 2.~9 3110. 00 300,00 19,63 6.E~ 

74r,1, .12 i 11(\ .no io ().cc 7 5. ~ 3 2 .C1 U?. 3.~ 2eZ.'f 25.41 7. 77 
56~c .63 1 7? • r '' 11<1 .1 r p ;: • 01 2 .20 ~00.20 300.?0 Zl .11 6 .C7 
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procedure for ordering alternative choices which is introduced in the 

next chapter requires that such a function be constructed for each 

strategy considered. 

'' ,, 



CHAPTER IV 

THE MEASUREMENT OF DECISION MAKER PREFERENCES 

4.1 Introduction 

Choices made under uncertainty are affected by decision maker pre-

ferences for alternative outcomes as well as by subjective assessments 

of probability distributions of system outputs. When confronted with 

the choice between participation in two uncertain activities for which 

all possible outcomes and their probabilities are specified exactly, 

one decision maker may choose the first alternative while another may 

choose the second. This divergence in behavior cannot be attributed 

to a difference in subjective probabilities, since all relevant pro-

babilities are specified prior to the time when a choice must be made. 

Rather, it must be attributed to a difference in the preferences of the 

two decision makers. Preferences, like assessments of probabilities in 

situations less highly structured than this example, are personal in 

nature, and some determination must be made of 4ti'em in any applied 
)' 

decision analysis. This chapter examines procedures for eliciting 

information on decision maker preferences and techniques for combining 

this information with subjective probability assessments to identify 

preferred choices. 

A decision maker 1 s preferences can be represented quantitatively 

by a utility function, 

U = u(y) 4. 1 

84 
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This is simply a relationship between the outcome of a choice as 

represented by a vector of system output levels, y, and an index of 

its desirability, U. It is a relationship which assigns values to 

alternative situations or conditions. When combined with a decision 

rule, such as utility maximization, a utility function becomes the 

basis for the identification of a preferred course of action. 

If the system output levels associated with a particular strategy 

can be known with certainty, and if the decision maker's utility 

function is also known, calculation of the utility level of this 

choice is a relatively simple, direct matter. In uncertain decision 

situations, however, levels of system outputs realized under a specified 

strategy cannot be known exactly at the time when a choice is made, and 

the associated level of utility cannot be detennined directly. In 

such situations the expected utility hypothesis provides a way of 

assigning assessments of value to alternative choices. First proposed 

in the eighteenth century by mathematician Daniel Bernoulli to explain 

the gambling behavior of some decision makers in uncertain situations, 

and derived more formally nearly 200 years later by Ramsey (1931) and 

by von Neumann and Morgenstern ( 1944), the expected utility hypothesis 
) ' ,, 

states that for any decision maker whose preferences are complete, 

transitive, continuous, and independent: 

(1) An ordinal utility function, u(y), can be constructed 

such that u(y) is defined for all system output levels 

and u(y
1 

)>u(y2) if the outcome defined by y1 is preferred 

to that defined by y2. 

(2) The utility of an uncertain prospect is equal to the expected 

utility of its possible outcomes. 
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(3) The scale of u(y) is arbitrary up to a positive linear 

transformation--i.e., rankings of the utility function 

V(y) = a+bu(y) are identical to those according to u(y) 

l if a and b are constants and b>O. 

The second result is the key one, since it is the basis for the 

commonly used decision rule which states that a decision maker's pre-

ferred choice is that which maximizes his expected utility. 

If the expected utility hypothesis is to be applied in a practical 

context, the decision maker's utility function must be represented 

accurately enough to serve as a reliable aid in the identification of 

a preferred course of action. As is true in the determination of sub-

jective probability distributions, however, the degree of accuracy 

sought in the measurement of preferences is dependent largely upon the 

characteristics of the decision problem under consideration. In some 

instances a very precise measure of preferences may be required, while 

in others nearly all feasible alternatives can be eliminated from con-

sideration on the basis of only an approximate measure of preferences. 

In the remaining sections of this chapter several alternative 

approaches to the measurement and representation of decision maker 
\;' 

preferences will be examined along with the evaluative criteria used in 

conjunction with each type of measurement to order action choices. 2 

1see Fishburn (1970) and Hirshleifer (1970) for more extensive dis­
cussions of the derivation of the expected utility hypothesis and for a 
complete explanation of the axioms which underlie it. 

2Though the importance of preference measures based on more than one 
system output variable is recognized, the difficulty and cost of deter­
mining such measures preclude their use in most practical decision situa­
tions. The discussion below focuses entirely, then, on the measurement 
of preferences for outcomes which are adequately described by a single 
system output variable. See Keeney and Raiffa (1977)for an excellent dis­
cussion of the measurement of multidimensional preference relationships. 
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Each of the approaches considered is based on the expected utility 

hypothesis, but each requires a different level of precision in the mea-

surement of preferences. Techniques for the representation of decision 

maker preferences and for the identification of preferred choices based 

on the use of single valued utility functions are reviewed first. The 

concept of an efficiency criterion, which allows the partial ordering 

of possible alternatives on the basis of relatively unrestrictive 

assumptions about decision maker preferences, is then introduced and 

several commonly used criteria are examined. A more recently developed 

efficiency criterion, stochastic dominance with respect to a function 

(Meyer, 1977a) is then described, and a procedure for determining the 

interval measurements of decision maker preferences required for the 

application of this criterion is presented. This new measurement 

technique, developed as part of this study, permits the construction of 

a representation of decision maker preferences which is only as precise 

as the decision problem under consideration requires. Results of an 

empirical test of this procedure, which are also presented below, 

demonstrate that it is both accurate and flexible. In the final 

section of the chapter, the incorporation of information on preferences 

into the sample problem discussed in the preced{~,g two chapters is 

examined. 

4.2 The Use of Single Valued Utility Functions to 
Represent Decision Maker Preferences 

Perhaps the most direct approach to the measurement of preferences 

is to actually derive the decision maker's utility function. This re-

quires that a number of points in the utility function be determined by 
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direct elicitation. A curve is then fitted through these points, and 

that curve is said to be the decision maker's utility function. 

A utility function is a highly structured representation of a 

decision maker's preferences. Like probabilities, however, preferences 

are often not clearly formulated in the mind of the decision maker. 

Therefore, the interview procedures used to elicit information on 

preferences should be designed both to clarify and to structure the 

decision maker's assessments of value. Several procedures have been 

developed for the elicitation of information on preferences. The most 

commonly used are reviewed in Officer and Halter (1968) and Anderson, 

Dillon, and Hardaker (1977). Each procedure requires that a series of 

choices be made between oairs of uncertain alternatives or between 

certain and uncertain alternatives. If these choices are properly 

structured, each should reveal enough information about the decision 

maker's preferences to determine one point on his utility function. 

Once a set of data points has been elicited, a curve is fitted 

through them to obtain an explicit relationship between levels of 

utility and all relevant levels of the system output variable. In 

choosing a functional form, a number of factor~ should be considered. 
,; ' 

Goodness of fit is, of course, important, since the estimated utility 

function should conform as closely as possible to the information ob-

tained in the elicitation interview. Ease of estimation and the tracta-

bility of a function in the calculation of expected utilities should 

also be considered. Polynomial specifications are, perhaps, the most 

corrmonly used in empirical work, but a number of other alternative forms 

have also been prepared (Lin and Chang, 1978). 
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Having estimated a decision maker's utility function, action 

choices can be ordered by calculating the expected utility of each. 

If the outcome associated with a particular management strategy, v*, 

is described by a single discrete system output variable, y, the 

expected utility of the strategy, EU(ylv*), is given by the expression: 

n 
EU(yl v*) = I: 

i=l 
f (y. l v*) u (y. ) 

1 1 
4.2 

where f(yilv*) is the probability of the ;th possible outcome under 

strategy v* and u(y.) is the utility of that outcome. When the system 
1 

output variable, y, is continuous, the expected utility is defined by 

the expression: 

EU(ylv*) = f 00 

f(ylv*)u(y)dy 
-oo 

4.3 

where f(ylv*) is the probability density function of y under strategy v*. 

Consider, for example, the case in which the decision maker's utility 

function is of the form 

u(y) = ln(y) 4.4 

and the probability distributions associated with two strategies, A and 

8, are as specified in Table 4.1. Since the system output variable is 

discrete, equation 4.2 can be used to calculate the expected utilities 

for these two alternatives. That for strategy~iA is 

EUA = .5 ln(500)+. l ln(lOOO)+. l ln(l500)+.3 ln(2000) 4.5 

= 6. 81 

while that for strategy B is 

EU 8 = .2 ln(500)+.6 ln(lOOO)+.l ln(l500)+.l ln(2000) 4.6 

= 6.88 

For this decision maker, then, strategy A is preferred to strategy B. 
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Table 4,1 Probability Distribution Associated with 
Two Alternative Action Strategies 

System Output Probability 
Level Strategy A 

500 . 5 
1000 . 1 
1500 . 1 
2000 . 3 

Strategy B 

.2 

.6 

. 1 

. l 

Representation of a decision maker's preferences with a single-

valued utility function has several serious shortcomings in an applied 

decision analysis. With regard to preference measurement procedures, 

the hypothetical choices posed in the elicitation interviews are, in 

general, less complex and less interesting than those actually facing 

a decision maker. As a result, it may be difficult to hold the full 

attention of the respondent through a series of similar questions. 

Furthermore, it can be argued that, because the types of choices made 

during the elicitation interview bear little resemblance to those made 

in real life, the value of the interview itself as a learning process 

whereby the respondent can gain a better understanding of how he makes 

decisions is limited. Other problems encountered }n the elicitation 

of the information required to construct single Valued utility functions 

are discussed in Officer and Halter (1968). 

Still more serious problems arise as a result of the way empirically 

estimated utility functions are generally used in a decision analysis. 

Once a set of data points from a decision maker's utility function has 

been elicited, a curve is fitted through its elements. Rare indeed is 

the case in which the fit is perfect so that the parameter values of 
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the utility function can be known with certainty. Even if the fit were 

perfect, shortcomings of the preference elicitation procedures make it 

likely that the data points themselves include measurement errors. 

Therefore, an empirically estimated utility function cannot be con-

sidered to be an exact representation of decision maker preferences. 

Despite the possible sources of imprecision, however, a utility function, 

once estimated, is usually treated as though it were an exact representa-

tion of preferences when alternative choices are ordered, and any absolute 

difference in the expected utilities associated with two choices is 

taken as a clear indication that one is preferred to the other. If a 

utility function does not accurately reflect a decision maker's actual 

preferences, this can result in the recommendation of a choice which is 

not actually the preferred choice of the decision maker. When empirically 

estimated single valued utility functions are used to order alternative 

choices, then, there is a high likelihood that errors of this sort will 

be made. 

4.3 Efficiency Criteria and the Representation 
of Decision Maker Preferences 

The difficulties associated with the use of single valued utility 
\) . 

functions to order choices in a practical context have been the impetus 

for the development of several efficiency criteria which overcome some 

of the shortcomings identified above. An efficiency criterion is a 

preference relationship which provides a partial ordering of feasible 

action choices for decision makers whose preferences conform to certain 

rather general specifications. As such, an efficiency criterion can be 

used to eliminate some feasible choices from consideration without 
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requiring detailed information about the decision maker's preferences. 

In many instances, the use of such a criterion may greatly reduce the 

number of alternatives to be considered. If enough alternatives can be 

eliminated, it may be possible for a final choice to be made on the 

basis of direct comparisons of the distributions of outcomes associated 

with each of the remaining alternatives. 

First and second degree stochastic dominance are among the simplest 

and most commonly used efficiency criteria. Both were formulated 

independently by Hadar and Russell (1969) and Hanoch and Levy (1969). 

First degree stochastic dominance holds for all decision makers who 

prefer more of the system output to less--i.e., for all decision makers 

having positive marginal utility with respect to the system output 

variable. An alternative for which the associated distribution of the 

system output variable is described by the cumulative distribution 

function F(y) is preferred to a second alternative with associated 

cumulative distribution G(y) by the criterion of first degree stochastic 

dominance of 

F(y)$G(y) 4.7 

for all possible levels of y and if the inequa1ity in 4.7 is a strict 
)' 

)' 

inequality for at least some value of y. In Figure 4. l, for example, 

F(y) dominates G(y) by this criterion, since it is always below and to 

the right. Neither F(y) nor G(y) can be ordered with respect to H(y) 

according to this criterion, since both are strictly greater than H(y) 

for some system output levels. 

While first degree stochastic dominance holds, in effect, for 

all decision makers, second degree stochastic dominance places an 
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P(y) 

G(y) 

Figure 4.1 Illustrations of First)~nd Second 
Degree Stochastic Dominance 
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additional restriction on preferences. It requires that the marginal 

utility of the system output variable be both positive and decreasing--

i.e., it requires that the decision maker's utility function be concave. 

Given two alternatives having system output distributions defined by the 

cumulative distribution functions F(y) and G(y), respectively, the first 

alternative is preferred to the second under the criterion of second 

degree stochastic dominance if 

1Y F(x)dx~Jy G(x)dx 
-oo -oo 

4.8 

for all possible values of y and 1f the inequality in 4.8 is a strict 

inequality for at least some value of y. In effect, this means that 

the first alternative dominates the second if the area under cumulative 

F(y) is always less than or equal to that under G(y). In Figure 4. 1, 

for example, F(y) dominates both G(y) and H(y) by this criterion, since 

the area order this cumulative is less than that order either of the 

others at all values of y. G(y) and H(y) cannot be ordered by this 

criterion, however, since the area order H(y) is at times less than 

that order G(y) and vice versa. 

Other efficiency criteria depend on additional restrictions in the 

maker's preferences or in the nature of the probabi_,lity distributions 

of system outputs. The mean-variance efficiency ~~iterion (Markowitz, 

1959) is simply a special case of second degree stochastic dominance in 

which all probability distributions are normal. Third degree stochastic 

dor.inance (Whitmore, 1970) is similar to first and second degree stochas-

tic dominance, but it requires the additional assumption that the 

decision maker 1 s utility function have a positive third derivative with 

respect to the system output variable. 



95 

Once a particular criterion with its associated restrictions on 

preferences has been specified, an ordering of any two alternatives can 

be made strictly on the basis of properties of the two associated 

probability distributions of the system output variable. Under such 

an ordering, one alternative will dominate the other, or the criterion 

will not be able to order the two alternatives and both will be con-

sidered efficient. If one alternative does dominate the other, it is 

unanimously preferred by the class of decision makers for whom the 

criterion applies. By making a series of pair-wise comparisons of all 

alternatives under consideration and eliminating from consideration any 

alternative which has been dominated, an efficient set of choices can 

be determined for any finite set of alternatives. This set will contain 

the preferred choice of any member of the class of decision makers for 

whom the criterion applies. 

The use of an efficiency criterion to order alternative choices is, 

in many respects, preferable to the use of a single valued utility 

function. No direct measurements of preferences need be made. Rather, 

relatively easily accepted restrictions are simply imposed on the 

decision maker's preferences. Unfortunately, however, none of the 

efficiency criteria mentioned above is a particularly discriminating 

evaluative tool. In an application of second degree stochastic 

dominance by Anderson (1975), for example, twenty of forty-eight 

randomly generated farm plans were in the efficient set. Furthermore, 

though the restrictions on preferences required by most efficiency 

criteria do not appear to be unduly strict, they often run counter to 

empirical evidence. Again focusing attention on second degree stochastic 
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dominance, despite the fact that strong theoretical arguments have been 

made for the near universality of concave utility functions (Arrow, 1971 ), 

the weight of empirical evidence indicates that decision makers do at 

times exhibit increasing marginal utility (Officer and Halter, 19GS; 

Conklin, Baquet, and Halter, 1977). 

While the concept of an efficiency criterion is an attractive one, 

then, efficiency criteria have not proved to be useful tools in practice. 

There is a need for efficiency criteria which are both more flexible 

and more discriminating than those described above. Furthermore, there 

is a need for techniques for obtaining measures of decision maker 

preferences which, though less precise than those used to construct a 

single-valued utility function, facilitate the empirical determination 

of whether or not a particular efficiency criterion adequately repre-

sents the preferences of a decision maker. In the sections which 

follow, a more powerful efficiency criterion, stochastic dominance with 

respect to a function (Meyer, 1977a), is introduced, and a method for 

measuring decision maker preferences designed to be used in conjunction 

with this criterion is presented. 

4.4 Stochastic Dominance with Respect 
to a Function 

,;' , 

Stochastic dominance with respect to a function is an evaluative 

criterion which orders uncertain action choices for classes of decision 

makers defined by specified lower and upper bounds, r1 (y) and r 2(y), on 

the absolute risk aversion function. The absolute risk aversion 

function (Arrow, 1971; Pratt, 1964), r(y), is defined by the expression: 

r(y) = -u" (y)/u' (y) 4.9 
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where u' (y) and u" (y) are the first and second deri va ti ves of a 

von Neumann-Morgenstern utility function u(y). In the most abstract 

terms, values of the absolute risk aversion function are simply local 

measures of the degree of concavity or convexity exhibited by a decision 

maker's utility function. Since u' (y) is assumed to be positive, a 

positive value of r(y) implies a negative value of u" (y) which in turn 

implies a concave utility function. Similarly, the utility function 

is convex at y if r(y) is negative. As such, the absolute risk aversion 

also serves as a local indicator of the extent to which a decision maker 

is risk averse or risk loving. Following Arrow's (1971) definition, 

an individual is risk averse (loving) if, from a position of uncertainty, 

he is unwilling (willing) to take a bet which is actuarially fair 

(unfair). 1 Concavity of the utility function and risk aversion are 

synonymous under this definition, and both are implied by a positive 

value of r(y). A negative value of r(y) implies both local convexity 

of the utility function and risk loving behavior. Perhaps the most 

important property of the absolute risk aversion function, however, is 

that it is a unique measure of preferences, while a utility function is 

1Arrow's definition of risk aversion has be~~ the source of some 
confusion, since risk aversion and risk preference have often been 
equated with an aversion to and a love for gambling. Unless some 
measure of the degree of gambling associated with a particular choice 
is identified as a system output and included as an argument in a 
decision maker's utility function, however, his choices are, by the 
omission of this factor, assumed to be unaffected by the degree of 
gambling involved. Arrow's concept or risk aversion refers only to 
the characteristics of a utility function with a single argument. As 
Friedman and Savage (1948) demonstrate, such a utility function can be 
used to explain why gambling has utility or disutility in certain 
situations without requiring that preferences for gambling per se be 
measured. 
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unique only to a positive linear transformation. 1 In effect, then, 

upper and lower bounds on a decision maker's absolute risk aversion 

function define an interval measurement in his preferences. Stochastic 

dominance with respect to a function orders choices on the basis of 

such a measurement. 

The major advantage of this criterion is that it imposes no re-

strictions on the width or shape of the relevant region of risk aversion 

shape. The interval measurement can be as precise or imprecise as is 

deemed necessary for a particular decision analysis. Negative as well 

as positive levels of absolute risk aversion can lie within the risk 

aversion interval at some or all levels of system output. Less flexible 

efficiency criteria such as first and second degree stochastic dominance 

can be viewed as special cases of this more general criterion. The 

requirement under first degree stochastic dominance that the decision 

maker have positive marginal utility places no restrictions on the 

decision maker's absolute risk aversion function--i.e., r1 (y) = - 00 and 

r 2(y) = 00 for all possible values of y. The requirement under second 

degree stochastic dominance that marginal utility be decreasing as well 

as positive, on the other hand, implies that r 1 (y) 1= 0 and r 2(y) = 00 for 

all values of y. 
~; . 

More formally stated, stochastic dominance with respect to a 

function is a criterion which establishes necessary and sufficient 

1Because a utility function is unique only to a positive linear 
transformation, u(y) and 

u*(y) = a+bu(y), b>O 
are strategically equivalent, though perhaps highly dissimilar, utility 
functions. The absolute risk aversion functions of these two utility 
functions are identical, however: 

r(y) = -u 11 (y)/u'(y) 
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conditions for the distribution of system outputs defined by the cumu­

lative distribution function F(y) to be preferred to that defined by 

the cumulative distribution function G(y) by all agents whose absolute 

risk aversion functions lie everywhere between lower and upper bounds 

r1(y) and r 2(y). As developed by Meyer (1977a), the solution procedure 

requires the identification of a utility function u0(y) which minimizes 

1 
J [G(y)-F(y)Ju 1 (y)dy 
0 

subject to the constraint 

r1 (y)~ -u 11 (y)/u 1 (y)::r2(y) z[O, 1] 
y 

4.9 

4. 10 

The expression in equation 4.9 is equal to the difference between the 

expected utilities of system output distributions F(y) and G(y). 2 If, 

for a given class of decision makers, the minimum of this difference is 

positive, F(y) is unanimously preferred to G(y). If the minimum is zero, 

it is possible for an agent in the relevant class of decision makers to 

be indifferent between the two alternatives and they cannot be ordered. 

Should the minimum be negative, F(y) cannot be said to be unanimously 

preferred to G(y). In this case, the expression 

16 [F(y)-G(y)Ju 1 (y)dy 4.11 

1The range of system outputs is normalized so that all values of 
y fa 11 on the bounded i nterva 1 [0, 1]. 

2This can be demonstrated in the following manner. Let f(y) and 
g(y) be the probability density functions associated with F(y) and G(y) 

1 1 1 10 f(y)u(y)dy - 10 g(y)u(y)dy = 1
0 

[f(y)-g(y)Ju(y)dy 

is the difference between the expected utilities associated with the two 
distributions. Integrating by parts, 

1 1 1 10 [f(y)-g(y)Ju(y)dy = [F(y)-G(y)Ju(y) \0-J0 [F(y)-G(y)]u 1 (y)dy = 

1 
JO [G(y)-F(y)Ju 1 (y)dy 

since [F(O)-G(O)] and [F(l )-G(l)] are both equal to zero. 
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must then be minimized subject to 4.10 to determine whether G(y) is 

unanimously preferred to F(y). It should be noted that a complete 

ordering is not ensured by the criterion. It is possible for the 

minimum of both (4.9) and (4.11) to be negative, which implies that 

neither distribution is unanimously preferred by the class of decision 

makers being considered. 

Meyer uses optional control techniques outlined in Arrow and Kurz 

(1970) to derive the necessary and sufficient conditions for the solu-

tion of this problem. These conditions do not represent a closed form 

solution. Rather, they define a rule for determining the absolute risk 

aversion function of the utility function which minimizes 4.9--a rule 

can be applied if the relatively unrestrictive assumption that [G(y)-F(y)] 

changes a sign finite number of times over the interval [0, 1] is met. 

The following theorem (Meyer, 1977a, p. 333) is the basis for that rule: 

Theorem An optimal control -u0(y)/u0(y) which minimizes 

1b [G(y)-F(y)]u 1 (y)dy subject to r1 (y):::[u0(y)Ju0(y)J::r2(y) 

and u0(0) = 1 is given by: 

-u11(y) 
0 
" rl (y) if 1; 

·r 2 (y) if J ~ 

[ G ( x ) - F ( x ) ] u O ( x ) d x::· 0 
\J'' 

[G(x)-F(x)Ju 0 (x)dx~O 

This theorem implies that the value of the absolute risk aversion 

function which minimizes the difference in the expected utilities 

associated with F(y) and G(y) is determined at any point y* by the 

sign of the objective function integrated from y* forward to using 

the optimal control. Furthermore, it implies that the value of the 

absolute risk aversion function is always either r 1(y) or r 2(y). 
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Application of the rule requires that the solution procedure work 

from back to front as is commonly done in dynamic programming. A simple 

example should help to illustrate how this can be done. Consider the 

two cumulative distribution functions shown in Figure 4.2. Neither 

dominates the other by first or second degree stochastic dominance. Let 

the lower and upper bounds on the absolute risk aversion functions both 

1 be constants--r1 = .001 and r 2 = .002. The utility function associated 

with each of these can be shown to be of the negative exponential form 

(Pratt, 1964), so that 
-r .y 

Ui (y) =-e l i=l, 2, 4. 12 

where r. is the upper or lower bound absolute risk aversion level. 
l 

The function [G(y)-F(y)] is graphed in Figure 4.3. Between y=5000 and 

y=7000 its value is negative, and above y=7000 its value is zero. 

According to the theorem above, this implies that for values greater 

than 5000 ri(y) = .001 is the optimal control. Calculating the value 

of the objective function from y=5000 and upward, 

00 

15000 [G(y)-F(y)JuO(y)dy 

= !~~~~ (-1/3)(.001 )e-.OOlydy 

= -.00194 
) ' ,, 

4. 13 

we see that it is negative. 2 The solution rule indicates that the 

optimal control remains at r(y)=.001. The procedure continues back 

1There is no requirement that they be constant. This assumption 
is made here to facilitate calculation. 

2The value of the integral is zero over regions where [G(y)-F(y)]=O. 
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until the point where y = 4000. At this point 

1;000 [G(y)-F(y)Ju0(y)dy 4.14 

= l~6~6 (-l/3)(.00l)e-.OOlydy-.00194 

= 0. 

Therefore, the optimal control switches to y = .002 for values of y less 

than 4000. The procedure continues back with the same optimal control until 

1:
00 

[G(y)-F(y)Ju0(y)dy 

= 13000 (l/3)(.002)e-.002ydy 
2000 

=.00528 

4.15 

Since the value of the objective function is positive, distribution F(y) 

is preferred to G(y) by all decision makers whose absolute risk aversion 

functions lie everywhere between r1 = .001 and r 2 = .002. The utility 

function which minimizes the objective function has an absolute risk 

aversion function such that: 

r(y) = .002 when y~4000 

.001 when y>4000 

4.16 

Note that this utility function does not have constant absolute risk 

aversion. 
\' 

~' 

Stochastic dominance with respect to a function is a remarkably flex-

ible evaluative criterion which has considerable potential for use in the 

analysis of practical decision problems. Unlike other efficiency cri-

teria, it does not require that fixed restrictions be imposed on the 

representation of the decision makers' preferences; and, because the 

bounds on absolute risk aversion can be as close or as far apart as desired, 

stochastic dominance with respect to a function can be used to order more 

choices than can be done with other criteria. Unlike a single valued 
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utility function, it does not require that an exact representation of 

the decision maker's preferences be specified. Furthermore, stochastic 

dominance with respect to a function is relatively easy to app)y. A com-

puter program which implements the solution procedure defined above has 

been developed by Meyer, and a modified version of that program is pre-

sented in Appendix B. 

4.5 An Interval Approach to the Measurement 
of Decision Maker Preferences 

Stochastic dominance with respect to a function is a powerful 

analytical tool. Before it can be used in an applied context, however, 

an operational procedure must be developed for the determination of 

lower and upper bounds on a decision maker's absolute risk aversion 

function. A technique for making such interval measurements of decision 

maker preferences is introduced in this section. This procedure uses 

information revealed by a series of choices between carefully selected 

distributions to establish lower and upoer bounds on an individual's 

absolute risk aversion function. The degree of precision with which 

preferences are measured--i.e., the size of the interval between the ,, 

lower and upper bound functions--can be specified directly in accordance 

with the characteristics of the problem under consideration. At one 

extreme the interval can be of infinite width, and at the other extreme 

it can converge to a single line. 

The procedure for constructing interval measurements of decision 

maker preferences is based on the fact that under certain conditions a 

choice between two outcome distributions defined over a relatively narrow 

range of system output levels divides absolute risk aversion space over 

that range into two regions: one consistent with the choice and one 
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inconsistent with it. The level of absolute risk aversion at which the 

division is made depends solely on the two distributions--i .e., their 

properties define the two regions. The decision maker's preferences, as 

revealed by his ordering of the bm distributions, however, determine 

into which of these two regions his level of absolute risk aversion is 

said to fall. By confronting the decision maker with a series of choices 

between carefully selected pairs of distributions, the region of absolute 

risk aversion space which is consistent with the decision maker's prefer-

ences can repeatedly be divided. With each choice a portion of that region 

is shown to be inconsistent with the decision maker•s preferences, and the 

interval measurement for the level of absolute risk aversion is narrowed. 

The procedure continues until a desired level of accuracy is attained. 

Upper and lower limits for the level of absolute risk aversion are deter-

mined at a number of income levels. These values are used to estimate 

upper and lower limits for the absolute risk aversion function over the 

relevant range of incomes. 

The validity of the statement that a choice between two distributions 

is, under certain conditions, the basis for a division of absolute risk 

aversion space into regions consistent and inconsi~tent with a decision 
,, 

maker's revealed preferences can be demonstrated Lsing concepts developed 

by Meyer in "Second Degree Stochastic Dominance with Respect to a Function." 

In that paper Meyer (1977b, p. 483) proves the following theorem: 

Theorem For cumulative distributions F(y) and G(y) 

!~ [G(x)-F(x)]dk(x)~O yI[O, l] and 

1 
J0 [G(x)-F(x)]dk(x)=O only if 

!; [G(x)-F(x)]dk(x)~O yI[O, l] 
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The theorem states that F(y) is preferred to G(y) by all decision makers 

more risk averse than the utility function k(y) and that decision makers 

having utility function k(y) are indifferent between the two distributions 

only if G(y) is preferred to F(y) by decision makers less risk averse than 

k(y). 1 The function k(y), then, can be considered to be a boundary func-

tion, since it separates a class of decision makers who prefer F(y) from 

a class who prefer G(y). 

If the distributions F(y) and G(y) are defined over a narrow range 

of system output levels and if the decision maker's absolute risk aversion 

function can be approximated by a constant value A over that range, pre-

ference for F(y) implies that A is greater than or equal to the minimum 

value of the absolute risk aversion associated with k(y). Otherwise, the 

decision maker would be less risk averse than k(y) and his choice would 

be inconsistent with expected utility maximization. Preference for G(y), 

on the other hand, implies that A is less than or equal to the maximum 

value of the absolute risk aversion function associated with k(y), since 

F(y) is preferred by all decision makers more risk averse than k(y). It 

1 Using Pratt 1 s definition of risk aversion: in the 1 arge, a decision 
maker with utility function u(y) is more riskl&verse than k(y) if 

~ < -u''(y) 
k I (y) - Li'TYJ 

ldy' 

while he is less risk averse than k(y) if 

~>~ 
k I (y) - U I (y) 

ldy 

Meyer (1977b) shows that F(y) is preferred to G(y) by all decision makers 
more risk averse than k(y) if 

fb [G(x)-F(x)]dk(x)~O ldye[O, l] 

and if the inequality is strict for some value of y, 
G(y) is preferred to F(y) by all decision makers less 

!~ [G(x)-F(x)]dk(x)~O ldye[O, l] 
and if the inequality is strict for some value of y. 

He also shows that 
risk averse than k(y) if 
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should be noted that the assumption that a decision maker's absolute 

risk aversion function can be adequately approximated by a constant value 

over a narrow range of system output levels is critical here. The theorem 

stated above does not imply that decision makers who prefer F(y) to G(y) 

are more risk averse than k(y); nor does it imply that decision makers 

who prefer G(y) to F(y) are less risk averse than k(y). With the assump-

tion of constant absolute risk aversion in the neighborhood of a given 

system output level, however, it can be inferred that decision makers who 

prefer F(y) to G(y) are not less risk averse than k(y) and those who pre­

fer G(y) to F(y) are not more risk averse than k(y). 

The properties of a utility function which serves as a boundary func­

tion between two distributions are dependent upon the two distributions. 1 

By careful selection of distributions, a boundary function can be placed 

anywhere in risk aversion space. A series of questions can be devised, 

then, which allows the repeated reduction of region of risk aversion 

space consistent with the revealed preferences of a decision maker, thereby, 

narrowing the interval measurement of absolute risk aversion. 

A simple example should help to illustrate how the procedure works. 

Let the boundary function for two distributions~ k1 (y), have an absolute 

risk aversion function which lies everywhere oh, the interval (Al ,A 2), 

and let the first distribution be preferred by decision makers more risk 

averse than k(y) while the second is preferred by those less risk averse 

than k1 (y). In this case the decision maker prefers the first distribu­

tion. Given the assumption of constant absolute risk aversion over 

this range of system output levels, this implies that his level of 

1A boundary function does not exist for each pair of distributions. 
One would not exist, for example, if one distribution dominates the other 
by first degree stochastic dominance. Similarly, the existence of one 
boundary function does not preclude the existence of others. 
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absolute risk aversion between y1 and y2 lies everywhere above A1, as 

is shown in part (a) of Figure 4.4. If choices between two additional 

pairs of distributions indicate first that the level is greater than 

A2 and second that it is less than A3, it can be inferred that the 

decision maker's level of absolute risk aversion over this range of 

system outputs lies between A2 and A3, as is shown in part (c) of 

Figure 4.4. With each choice, then, a portion of the region of absolute 

risk aversion space consistent with prior choices is shown to be incon-

sistent with the decision maker's preferences and the interval measure-

ment of absolute risk aversion is narrowed. Choices are presented to 

the decision maker until a desired level of accuracy is attained. An 

interval measurement of a decision maker's absolute risk aversion 

function can be constructed over a much broader range of system outputs 

by making interval measurements in the neighborhood of several system 

output levels and connecting known portions of the upper and lower 

bound absolute risk aversion function with linear segments, as is done 

in Figure 4.5. In this case direct interval measurements have been made 

in the neighborhood of three system output levels: 3,000; 10,000; and 

17,000. 
\ ~ ' 

4.6 Implementation of the Procedure 

The discussion above describes an iterative approach to the con-

struction of interval measurements of a decision maker's absolute risk 

aversion function. It does little, however, to answer the basic opera-

tional questions of how appropriate distributions can be selected and 

of how the boundary interval for any pair of distributions can be 

identified. The techniques used to implement the interval approach to 
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the measurement of decision maker preferences are described briefly in 

this section. A more technical explanation of them is given in Appendix B. 

The first step in the implementation of the procedure is to estab-

lish a measurement scale, which is defined by a number of reference 

levels for absolute risk aversion. In Figure 4.6, for example, four 

reference levels are specified: -.0001, .0001, .0005, and .0010. This 

scale or grid determines the accuracy with which absolute risk aversion 

can be measured. Any number of reference levels can be specified. The 

intervals between them can be as wide or narrow as is deemed necessary, 

and they need not all be of equal size. In many cases it may be desirable 

to put more fineness or detail in the measurement scale in regions of 

risk aversion space where it is believed a priori that the decision 

maker's level of absolute risk aversion is likely to fall. 

Next, a set of distributions which will serve as the basis for the 

choices made by the decision maker must be constructed. These distri-

butions should be defined over a relatively narrow range of system 

output levels, since the decision maker's level of absolute risk aver­

sion is assumed to be constant over that range. 1 As described in 

Appendix B, they are constructed in a random ma·nner by generating 
\)' 

several hundred random numbers from a specifi~d distribution and 

grouping them into sets of six observations each. Each is a distribu-

tion of outcomes, and each element is said to have a 1/6 probability of 

occurrence. Only six elements are included in each distribution because 

more complex distributions might make decision makers' choices unduly 

1Experience to date indicates that a range of five to ten percent 
the size of the entire range of system output levels over which pre­
ferences are to be measured is adequate. 



113 

r(y) 

\' 
~, 

Figure 4.6 An Absolute Risk Aversion 
Measurement Scale 

r (y) = • 001 0 

r(y) = • 0005 

r (y) = . 0001 

y 

r (y) = - . 0001 



114 

difficult. Distributions with fewer elements, on the other hand, may 

not be rich enough to make the choices interesting. The use of six 

element distributions also facilitates explanation of the choice situa-

tion to the decision maker, since the probability of any one element 

occurring can be equated directly to the probability of obtaining a 

specified number of dots on a single role of a die. Three distributions 

constructed in this manner are shown in Table 4.2. 

Once a measurement scale has been specified and sample distribu-

tions have been constructed, the interval on the measurement scale 

which contains the risk aversion function associated with the boundary 

function for each pair of distributions must be identified. The proce-

dure by which this is done is described in detail in Appendix B. In 

essence, criteria identified by Meyer (1977b) are used to identify the 

highest reference level on the measurement scale, Al, such that all 

decision makers less risk averse than Al prefer one distribution and the 

lowest reference level in the measurement scale, A2, such that all 

decision makers more risk averse than A2 prefer the other distribution. 

It follows that the absolute risk aversion function associated with the 

boundary function for the two distributions lies everywhere within the 
\)' 

interval (A 1,A 2), which is called a boundary interval. The boundary 

intervals for each pair of distributions from Table 4.2 are given in 

Table 4.3. In this case each pair has a different boundary interval. 

It should be noted that more narrow boundary intervals could have been 

identified if a more detailed measurement scale had been specified. 

After the boundary interval has been identified for each pair of 

distributions, a series of questions is formulated. Each question asks 
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Table 4.2 Sample Distribution from a Normal Distribution 
With µ = 3000 and a = 1000 

Distributiona 

2 3 

l 000 1750 

2050 1950 

2650 2500 

3800 2750 

3900 3950 

5200 4000 

2808 µ = 3100 µ 

488 0 = 1370 0 = 

2817 
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aThe elements of each distribution are rounded to the nearest 
50 units. 
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Table 4.3 Boundary Intervals for Pairs 
of Sample Distributions 

Distribution Preferred Distribution Preferred Distributions Boundary Interval Below Boundary Interval Above Boundary Interval 

vs 2 ( . 0001 ' . 0005) 2 

vs 3 (-. 0001 ' . 0001 ) 3 

2 vs 3 (. 0005,. 0010) 2 3 

O'l 
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the decision maker to indicate which of two selected distributions he 

prefers. His responses serve as the basis for the interval measurement 

of absolute risk aversion. Each question focuses on a particular 

interval of risk aversion space--an interval which corresponds to the 

boundary interval for the two distributions the decision maker is asked 

to rank. Let the first question in the example being developed here be: 

Compare distributions 1 and 2 and indicate which 

you prefer. 

This question focuses on the interval (.0001, .0005). 1 If distribution 

is preferred, the information in Table 4.2 indicates that the decision 

maker's level of absolute risk aversion is greater than .0001. If 

distribution 2 is preferred, his level of absolute risk aversion is 

below .0005. 

The choice of a second question will depend on the respondent's 

answer to the first. If the respondent prefers distribution 1, for 

example, it makes little sense to ask him to rank distributions 1 and 3. 

Such a question indicates whether his level of absolute risk aversion 

is greater than -.0001 or less than .0001. Since his level of absolute 

risk aversion is already said to be greater than :.0001, this information 
'' ~' 

would be of value only as a consistency check. A choice between distri-

butions 2 and 3, on the other hand, would add to our knowledge. If 

distribution 2 is preferred, the decision maker's level of absolute 

risk aversion can be said to fall on the interval (.0001, .0010), while 

if distribution 3 is preferred, the level must be greater than .0005. 

1It is advisable to focus the first question on a boundary interval 
at or near the middle of the measurement scale. 
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Because the order of questioning is contingent upon the decision maker's 

responses, the interview schedule takes a form similar to that of a 

programmed learning text, as is exemplified in Figure 4.7. 

Clearly, the set of questions specified in this example does not 

lead to an accurate measure of a decision maker's preferences. By 

specifying a finer measurement scale, however, and by asking a series 

of three or four questions rather than only two, much more accurate 

measurements can be made. It should also be noted that these questions 

serve as the basis for a measurement of absolute risk aversion only for 

system output values between 1000 and 5000. Similar sets of questions 

must also be constructed to measure preferences in the neighborhood of 

several other system output levels so that upper and lower bound 

absolute risk aversion functions can be constructed for a wider range 

of possible system output levels. 

Figure 4.5 above shows uoper and lower bounds on an absolute risk 

aversion function based 0n int~rval measurements at three system output 

levels. Note that the slope of the absolute risk aversion function is 

not restricted. In this example it rises, then falls, and at lower 

levels of system output the measurement interval tncludes negative as 
) ' 

~' 

well as positive values. When absolute risk aversion functions are 

derived from empirically estimated utility functions, on the other hand, 

their form is often severely limited by the functional form used to 

estimate the utility function. It should also be noted that the inter-

val approach to the measurement of preferences also avoids another common 

problem encountered in the estimation of single-valued utility functions. 

Because all questions posed require a choice between two uncertain 
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Compare distributions l and 2 and circle 
the one you prefer. 

2 

If you prefer distribution l go to question 3, 
otherwise go to question 2. 

2. Compare distributions l and 3 and circle 
the one you prefer. 

3 

3. Compare distributions 2 and 3 and circle 
the one you prefer. 

2 3 

Figure 4.7 A Sample Questionnaire 

~) ' 
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prospects, biases due to preference for an aversion to gambling per se 

are eliminated. 

One final step is required for the implementation of the interval 

approach to the measurement of preferences. Although Meyer's (1977a) 

analytical development of stochastic dominance with respect to a 

function depends only on absolute risk aversion functions, the computer 

program he has developed to implement the criterion requires that 

utility functions having absolute risk aversion functions corresponding 

to lower and upper bounds, r1 (y) and r 2(y), be specified by the user. 

Given the definition of the absolute risk aversion function, 

r(y) - -~ 4 .17 

the following system of differential equations, which relates levels 

of absolute risk aversion to values of u(y) and u' (y) can be derived: 

d [ u(y) J dy U I (y) = [-~(y) al [ u (y) J 
oj U I (y) 

4. 18 

Once initial values of u(y) and u' (y) have been specified, recursive 

numerical integration techniques can be used to solve for u(y) and 

u'(y) at any level of system output. 1 Utility functions associated 

with the lower and upper absolute risk aversio~1functions are repre-

sented by a table look-up routine in the computer algorithm which 

implements the stochastic dominance with respect to a function criterion. 

Corresponding values of y and u(y) determined by numerical integration 

serve as data points for each table look-up function. 

1The initial values of u(y) and u'(y) correspond to the arbitrary 
scale factors of a van Neumann-Morgenstern utility function. See 
Appendix B for a listing of the computer program which performs the 
numerical integration. 
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4.7 A~ Empirical Test 

A simple experiment was designed and conducted to test the efficacy 

of the interval approach to the measurement of decision maker preferences. 

Three questionnaires were administered to a group of graduate research 

assistants from the Department of Agricultural Economics at Michigan 

State University. The first questionnaire employed the procedure 

described above to obtain an interval measurement of each subject's 

absolute risk aversion function. The second questionnaire was used to 

elicit information required for the construction of a single-valued 

utility function for each subject. 1 Finally, the third questionnaire 

asked the respondent to make a series of six choices between pairs of 

distributions, each distribution being comprised of six elements and 

each being defined on the interval over which preferences had been 

measured. Information from the first two questionnaires was used to 

predict the choices made by each respondent in the third questionnaire, 

and these predictions were compared to the actual responses. In this 

way the accuracy of each of the two approaches to the measurement of 

preferences was tested. 

In evaluating each approach, two criteria were considered: the 
\)' 
; 

number of correct predictions and the number of choices for which a 

definite ordering was made. A prediction was said to be correct if the 

respondents' actual choice was not excluded from the efficient set of 

choices and incorrect if it was excluded. The preference measure having 

the highest proportion of correct predictions was said to be the more 

1Because it is the most commonly used and most easily implemented 
elicitation technique, the ELCE method (Anderson, Dillon, and Hardaker, 
1977) was used to identify points on the decision maker's utility 
functions. 
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accurate according to this criterion. Concern with the proportion of 

correct predictions is analogous to concern with the probability of 

Type I error in a statistical test, the latter being the probability 

that a true statement will be judged to be false and be rejected. This 

measure of accuracy is not a good indicator of the relative discriminatory 

power of preference measurements based on these two approaches. The 

criterion of first degree stochastic dominance, which holds for all 

decision makers who prefer more of the system output to less, should 

never exclude a preferred choice from the efficient set and so should 

be perfectly accurate according to the criterion defined above. Often, 

however, it also fails to exclude many choices from the efficient set. 

A single-valued utility function, on the other hand, is the basis for 

a complete ordering of choices--i.e., it always leads to an efficient 

set having a single element. Therefore, the number of choices actually 

ordered was also considered. Concern with this measure of discriminatory 

power is analogous to concern with the Type II error associated with a 

statistical test, which is the probability that a false statement will 

be judged to be true and not rejected. 

Clearly there are trade-offs between the accuracy and the discrimi-
~} ' 

nating power of a preference measurement. Unlike other measurement 

techniques and evaluative criteria, the combined use of interval pre-

ference measurements and stochastic dominance with respect to a function 

permits explicit consideration of these trade-offs. As the precision 

of the interval measurement increases, it becomes a more discriminating 

basis for the ordering of choices; but the probability of excluding 

preferred choices from the efficient set also increases. 
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Such trade-offs between accuracy and discriminatory power were 

also analyzed in the experimental test of the interval approach to the 

measurement of preferences. Direct interval measurements of absolute 

risk aversion were made at three levels of income--the relevant system 

output variable in this instance. These measurements were based on a 

sequence of four questions at each income level. By constructing 

interval measurements on the basis of information available at the end 

of each question, however, four preference measurements--each more pre-

cise than the one which preceded it--were made for each subject. 

Nine of ten subjects correctly completed all three questionnaires. 

Since each subject made six choices on the third questionnaire, each 

preference measurement was used to predict a total of fifty-four 

choices. The results of the experiment are presented in Table 4.4. 

They show that there is a clear trade-off between accuracy and discrimi-

natory power. First degree stochastic dominance and the single-valued 

utility function are at opposite extremes in this trade-off relation-

ship, and the interval measurements are arrayed between the two. 

Several factors should be noted. With regard to the accuracy of the 

interval measurements, it falls at a relatively cqnstant rate as the 
'} ' 

number of questions posed increases, but even at' the higher levels of 

precision it exceeds that realized with the single-valued utility function. 

The discriminating power of the interval measurements, on the other hand, 

increases dramatically as the number of questions asked at each income 

level increases. First and second degree stochastic dominance, on the 

other hand, clearly do not discriminate well among the distributions 

which were the basis for the decision makers' choices. 
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Perfo rma nee 
Indicator 

1. Percent of choices 
predicted 
correctly 

2. Percent of choices 
ordered 

Table 4.4 Performance Indicators for Alternative 
Preference Measures 

Interval Measurement Single 
Number of Questions Valued 

Uti 1 ity 
1 2 3 4 Function 

98 88 78 72 65 

9 50 83 91 100 

First 
Degree 
Stochastic 
Dominance 

100 

0 

Second 
Degree 
Stochastic 
Dominance 

98 

7 
N 
_p,. 
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It should be noted that these results represent but one test of 

the interval approach to the measurement of decision maker preferences. 

Results presented in the next section and in Chapter V provide addi-

tional evidence of the power of this approach, but further experimenta-

tion is needed. It should also be noted that few attempts have been 

made to apply this technique. With more applied experience may come 

refinements that will improve the discriminatory power of preference 

measurements based on this approach without leading to increases in the 

probability of excluding the preferred choice from the efficient set. 

4.8 An Application 

In order to test the interval approach to the measurement of 

decision maker preferences in a more practical setting, questionnaires 

implementing the procedure were administered to seventeen farmers who 

were all participants in an extension workshop on cash grain marketing 

strategies. The questionnaires were viewed as an exercise in the 

workshop--an exercise designed to help individuals think systematically 

about how they make decisions. Interval measurements of absolute risk 

aversion were made in the neighborhood of four income levels: -$3,000, 

$7,000, $17,000, and $27,000. Each measurement was ba~ed on a series 
,: ' 

of three questions. In addition, the respondents were also asked to 

make a series of choices between distribution~ as was done in the experi-

ment described in the preceding section. 

The farmers had little difficulty in completing the questionnaires, 

I 
and they seemed to find the choices to be interesting. The range of 

responses was quite broad. Individuals within the sample of seventeen 
r 
t ranged from the extremely risk averse to the extremely risk loving. 
t 

i 
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Several discernable patterns did emerge, however. Most decision makers 

exhibited increasing absolute risk aversion over the lower income 

levels and decreasing absolute risk aversion at higher levels. For 

most, the interval measurement of absolute risk aversion included 

negative values at some level of income. In fact, only four of the 

seventeen decision makers had lower level absolute risk aversion 

functions which were everywhere non-negative. This casts serious 

doubt upon the applicability of a criterion such as second degree 

stochastic dominance which is valid only for decision makers who are 

risk averse at all system output levels. 

Choices made in the final section of the questionnaire were pre-

dieted remarkably well by the preference measures. Ninety-one out of 

102 possible choices were predicted correctly for a success rate of 

.892. This compares quite favorably with that obtained in the more 

carefully controlled experiment with student subjects. To test the 

discriminatory power of the preference measures, that derived for each 

decision maker was used to order a set of thirty-three distributions, 

none of which was dominated by any other by the criterion of first 

degree stochastic dominance. The resultant efficient sets ranged in 
\ ~ ' 

size from one to twenty-three, with the average size being 10.5. Clearly 

this represents a sizeable reduction in the size of the efficient set 

over that attained with first degree stochastic dominance. The second 

degree stochastic dominance efficient set for these thirty-three dis-

tributions had only five elements. It must be remembered, however, that 

this criterion is valid only for four of the seventeen farmers whose 

preferences were measured. For these four individuals the size of the 

efficient set averaged only 2.5. 
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Upper and lower bound absolute risk aversion functions for 

three representative decision makers are shown in parts a, b, and c 

of Figure 4.8. The interval measurement for decision maker A declines 

across the relevant range of net income levels. That for decision 

maker B rises and then falls, while that for decision maker C is con-

stant and then rises at the highest income level. Decision maker C is 

one of the four individuals in the sample who is everywhere risk averse. 

The distributions of net income levels associated with each of 

the two strategies defined in Section 3.3 of Chapter III were ordered 

for each of these three decision makers using the criterion of stochastic 

dominance with respect to a function. It will be recalled that Strategy 1 

calls for no land rental and for the planting of all acreage in soybeans. 

Strategy 2 calls for the rental of 240 acres and for a more balanced 

crop mix. Strategy 1 is preferred to Strategy 2 by decision maker A. 

Neither distribution dominates the other given the preferences of 

decision makers B and C. 

In themselves these results are not particularly interesting. They 

do demonstrate, however, that the interval measurements of decision 

maker preferences can lead to different efficient sets for different 

decision makers. They also show that remarkably dissimilar distributions 

may be included in an efficient set. The two strategies considered here 

bear little resemblance to each other. One could be called extremely 

cautious and the other moderately risky. For decision maker A it is 

clear that the cautious approach is preferred. For the other two 

decision makers the preferred choice is not so clear-cut. If these two 

strategies were but two of many being considered and if a single-valued 
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utility function were being used to identify a preferred choice, one 

would have been eliminated from consideration. As the experimental 

results reported in the preceding section indicate, however, there is 

a relatively high probability that the preferred strategy would have 

been the one eliminated. 

~}' 



CHAPTER V 

COMPUTATIONAL PROCEDURES FOR THE IDENTIFICATION 
OF PREFERRED CHOICES 

5. 1 Introduction 

Techniques developed in the preceding chapters for the determination 

and representation of subjective probability distributions and for the 

measurement of decision maker preferences provide the information 

required to order any two specified action choices. In most decision 

situations, however, a large if not infinite range of choices is open to 

the decision maker. As a result, some systematic technique for the 

identification and evaluation of a large number of possible strategies 

is needed in many applied decision analyses. Such a technique should 

be flexible enough to be applicable in a wide range of decision situa-

tions without requiring that important simplifying assumptions be made 

concerning preferences, probabilities, and the nature of the problem 

itself. It should serve as an aid in solving p~actical problems, 

without forcing the decision maker to alter hi~,conceptualization of 

the problem at hand. 

In this chapter a computational procedure designed to meet these 

needs is formulated, and its implementation is discussed. This proce-

dure integrates concepts and operational techniques related to problem 

formulation, the determination of subjective probability distributions, 

and the measurement of decision maker preferences developed in the pre-

ceding chapters. It is a decision aid which is both powerful and 

highly flexible. 

130 
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In subsequent sections of this chapter, existing computational 

procedures for the identification of preferred choices are first 

reviewed, and their strengths and weaknesses are identified. The pro­

cedure developed for this study is then introduced and described in 

detail. Finally, the procedure is applied to the sample problem dis­

cussed in the preceding three chapters. 

5.2 A Review of Existing Computational Procedures 

Mathematical programming models are commonly used in the analysis 

of complex decision problems when the assumption of perfect knowledge 

can reasonably be made. They are analytically elegant, computationally 

efficient, and easily adapted for use in a wide range of decision situa­

tions. A number of difficulties are encountered, however, when mathe­

matical programming models are employed in the analysis of decisions 

made under uncertainty--difficulties related to problem formulation, to 

the detennination of the probability distributions for system output 

variables associated with alternative strategies, and to the representa­

tion of decision maker preferences. Despite such difficulties, mathe­

matical programming techniques are the basis for the most commonly 

used computational procedures for the identific9tion of preferred 

choices under uncertainty. 

Quadratic programming (Markowitz, 1959; Freund, 1956) is 

perhaps the most familiar and the most widely accepted mathematical 

programming technique for the analysis of decisions made under uncer­

tainty. Conceptually it is an attractive tool because it is so closely 

linked with mean-variance analysis, which has been the basis for a wide 
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range of theoretical developments, and because when used in a para-

metric prograrrnning mode it can, under certain conditions, be used to 

identify an efficient set of strategies which includes the preferred 

choice of any risk averse decision maker. 1 With respect to practical 

considerations, it is an attractive technique because the formulation 

of quadratic programming problems is only slightly more complex than 

that of a standard linear programming problem and because quadratic 

programming packages are available in most computer systems. The use-

fulness of quadratic programming in an applied decision analysis is 

severely limited, however, by a number of other factors. 

With regard to problem formulation, standard quadratic programming 

models require that input-output relationships be linear and additive 

and that all controllable system input levels be perfectly divisible. 

In many practical decision situations these assumptions simply do not 

correspond closely with reality. Equally serious are the limitations 

imposed by the standard quadratic programming model on the definition 

of a management strategy. Decisions are analyzed as though they were 

inflexible, though, as was noted in Chapter II, one of the most important 

characteristics of choices under uncertainty is tpat they are often 
,: · 

adaptive in nature. Finally, though computer codes which implement 

quadratic programming algorithms are readily available, many limit 

the size of the problem which can be considered. 

With regard to the determination of probability distributions, 

quadratic prograrrnning requires that they be determined analytically, 

1As was noted in Section 4.3 of Chapter IV, the criterion of 
mean-variance efficiency is a special case of second degree stochastic 
dominance. The mean-variance efficient set is identified by parametric 
quadratic programming. 
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which may greatly limit the types of stochastic factors which can be 

considered in an analysis and may also limit the complexity of the model 

used to represent a particular stochastic process. Furthermore, within 

a quadratic programming framework, the distributions of exogenous sys­

tem inputs and of system output variables are described only by means, 

variances, and covariances. Implicitly, then, all distributions are 

assumed to be normal. When this assumption does not hold, quadratic 

programming may eliminate from consideration the preferred choices of 

some decision makers (Tsiang, 1972; Robison and King, 1978). 

Finally, with respect to the representation of decision maker 

preferences, quadratic programming requires that the decision maker's 

utility function be of the quadratic or negative exponential form if 

a single preferred choice is to be identified. When parametric quadratic 

programming is used to identify a mean-variance efficient set, on the 

other hand, the efficient set holds only for risk averse decision 

makers. It is possible that a decision maker's preferences cannot be 

adequately represented under any of these assumptions. 

In response to some of the shortcomings, several linear programming 

alternatives to quadratic programming have been proposed. These include 
) : ' 

the game theoretic (Mcinerney, 1969; Hazell, 1970; Low, 1974) and focus-

loss (Boussard and Petit, 1967) approaches and the MOTAD model developed 

by Hazell (1971). All these models can be solved using standard linear 

programming algorithms, and none requires that stochastic returns be 

normally distributed. They impose fewer limitations on the size of 

problems which can be considered and all are more amenable to the 

relaxation of restrictions on linear constraints and production pro-

cesses and on divisibilities of choice variables through the use of 
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separable programming and mixed integer programming techniques. Each 

does have serious shortcomings, however. Covariance between returns 

for different activities is ignored in both the MOTAD and focus-loss 

models. This can lead to a serious misrepresentation of the distribution 

of outcomes associated with any particular action choice. More impor-

tant, however, the links between the decision criteria used in these 

approaches and the expected utility hypothesis are much weaker than is 

the case with quadratic programming. The safety-first behavioral 

assumption implied by the focus-loss approach and employed in many 

applications of the game theoretic model is especially difficult to 

reconcile with the axioms underlying the expected utility hypothesis. 

The Risk Efficient Monte Carlo Programming (REMP) model developed 

by Anderson (1975, 1976) is in nearly all respects a more attractive 

alternative to quadratic programming as a decision aid in practical 

situations. The REMP model employs Monte Carlo programming techniques 

(Donaldson and Webster, 1968) to construct a large number of feasible 

management strategies in a random fashion. The distribution of total 

net returns associated with each strategy under consideration is deter-

mined analytically under the assumption that distributions of net 
) l . 

returns for each activity and distributions of total net returns for 

each strategy are members of the beta family. Covariance between 

returns for each activity is considered explicitly. Under this proce-

dure, a cumulative distribution function is constructed for total net 

returns associated with each strategy and the criterion of second 

degree stochastic dominance is used to identify an efficient set of 

choices. The REMP model allows considerable flexibility in the 
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representation of probability distributions, since the beta distribution 

can take a variety of forms. The model also places few restrictions on 

decision maker preferences. The criterion of second degree stochastic 

dominance requires only that the decision maker be risk averse at all 

levels of system output. With regard to problem formulation, the REMP 

model also has several distinct advantages. Most notably, the use of 

Monte Carlo programming allows, at least partially, the relaxation of 

restrictive assumptions of linearity, additivity, and perfect divisibility 

required by most mathematical programming models. Despite these advan-

tages, the usefulness of the REMP model is greatly limited by the fact 

that second degree stochastic dominance is not a very discriminatory 

criterion. In many instances the size of the efficient set identified 

with the REMP model is so large that the task of selecting a single 

preferred strategy may be prohibitively difficult. 

None of these alternatives to linear programming resolves the 

problems associated with the incorporation of explicit consideration 

of flexibility into the decision analysis. Recursive programming 

techniques (Day, 1963; Heidhues, 1966) do permit the consideration of 

such factors within a linear or quadratic programming framework. The 
\} . 
) 

behavioral constraints, feedback rules, and repeated optimization which 

characterize this approach are used to model the process of planning, 

decision making, and action. The constraints and rules of thumb which 

drive the model through this process--the desired output of a decision 

analysis--must be determined exogenously, however. The value of the 

recursive programming as an aid to decision makers, then, is limited. 

Stochastic programming (Cocks, 1968; Rae, 1971) is conceptually a more 
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attractive approach to the resolution of this problem. Adaptive 

decision strategies are determined endogenously under this procedure, 

which can be used with a standard linear or quadratic programming 

algorithm. If the problem under consideration is even moderately com­

plex, however, the size of the input-output matrix quickly expands to 

an unmanageable level, so the usefulness of this approach as an applied 

decision analysis is also limited. Linear decision models, as developed 

by Holt, Modigliani, Muth, and Simon (1966), represent a third alterna-

tive. Under this approach, which has been further refined by Zellner 

(1971), Chow (1973), and McRae (1975), dynamic programming techniques 

are used to determine analytical solutions for a special class of 

optimal control problems. Having assumed quadratic cost (utility) 

functions and linear relations between state and control variables, 

linear decision rules are derived which can be used to determine optimal 

levels for control variables on the basis of forecasts of key factors. 

The parameters of these rules remain invariant for as long as the system 

design parameters are unchanged. Models of this sort are subject to the 

same limitations imposed on preferences and probability distribution 

under quadratic programming. Furthermore, the 1 complexity of such 
\) 

models and the high cost performing the initi'al analysis needed to 

determine optimal decision rules for a particular process limit applica-

bility of this approach to situations where similar decision are made 

repeatedly. 

The models described above also fail to completely resolve the 

problem that complex stochastic processes can often not be adequately 

represented in a quadratic programming framework. Of particular 
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importance is the fact that the impact of uncertainty concerning fixed 

resource availability levels cannot be satisfactorily analyzed in the 

models discussed above. Such factors can be important in some situa-

tions. In the decision problem discussed in the preceding three chap-

ters, for example, the number of days available for fieldwork during 

any planting or harvest period is highly uncertain and has a major impact 

on crop yields and net income levels. Consideration of this type of 

uncertainty is commonly incorporated into programming models using 

chance constrained programming techniques (Charnes and Cooper, 1959). 

Though relatively simple to implement, however, this approach does not 

permit explicit consideration of the cost associated with violating a 

constraint and so does not actually facilitate the explicit determination 

of the impact of stochastic fixed resource levels on the distribution 

of system output levels realized under any particular management strategy. 

Finally, none of these models, as specified, permits the representa-

tion of preferences by an empirically determined interval measurement 

of absolute risk aversion in the ordering of choices by the criterion 

of stochastic dominance with respect to a function, the advantages of 

which were demonstrated in Chapter IV. It shoul~ be noted, however, 
') 

that stochastic dominance with respect to a function can be rather 

easily incorporated into the REMP model, as will be demonstrated in the 

next section. 

5.3 A Generalized Procedure for the Identification 
of Preferred Choices Under Uncertainty 

While each of the decision models discussed above is attractive 

in light of at least one theoretical or practical consideration and 
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while each may be appropriate for use in some decision situations, 

none can be said to be generally applicable in a wide range of prac­

tical contexts. Furthermore, many rather common types of decision 

problems cannot be adequately analyzed with any of the procedures 

discussed above. A more general approach is needed--one which permits 

greater flexibility with respect to problem formulation, the determina-

tion of probability distributions, and the representation of decision 

maker preferences without sacrificing the power of decision theory 

based on the expected utility hypothesis. Such an approach is presented 

in this section. 

The generalized procedure for the identification of preferred 

choices described here is in many respects an extension of Anderson's 

(1975, 1976) REMP model. Feasible strategies are generated using a 

modified form of the Monte Carlo programming model developed by Donaldson 

and Webster (1968), which also serves as a basis for Anderson's model. 

Under the more generalized procedure, however, a strategy may be 

defined by specific controllable system input levels, by a set of 

adaptive decision rules, or by some combination of the two. Distri-

butions of system output levels associated with particular strategies 
))' 

are not determined analytically. Rather, they are determined by 

simulating system performance in a number of sample states of nature, 

using techniques described in Chapter III. This facilitates the con-

sideration of the impact of a wide range of stochastic exogenous system 

inputs and permits greater flexibility in the representation of complex 

stochastic processes. Finally, strategies are evaluated using interval 

measurements of decision maker preferences and the evaluative criterion 

of stochastic dominance with respect to a function. 
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Like the REMP model this procedure is an iterative one. A large 

number of strategies are generated and evaluated sequentially. The 

determination of a truly optimal choice is not ensured. If a sufficiently 

large number of plans is examined, however, it is reasonable that the 

efficient set will contain a nearly optimal choice for a decision maker. 

Because of its similarity to the REMP model, this generalized 

procedure for the identification of preferred choices under uncertainty 

can be called the generalized risk efficient Monte Carlo programming 

model (GREMP). Interrelationships among the three major processes 

within the model--strategy generation, system output distribution 

determination, and evaluation--are illustrated by the flow chart in 

Figure 5.1. Each of these processes will be discussed in greater 

detail in the remainder of this section. 

5.3.l Generation of a Feasible Management Strategy 

At the outset of each iteration of the GREMP model a management 

strategy is constructed. As defined in Chapter II, a management strategy 

is a set of controllable system input levels, a set of feedback control 

rules for determining controllable system input levels over the duration 

of the planning horizon, or some combination of tne two. The nature of 
~, 

the problem under consideration determines the types of choices which 

must be made, and the nature of the decision situation determines the 

range of choices open to the decision maker. 

Regardless of how decisions are defined, the presence of constraints 

makes some management strategies impossible. Limits on available 

resources may restrict the set of admissible values for some controllable 

system inputs. Similarly, some controllable system inputs may be 
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indivisible and so must take integer values. In addition, logic or 

common sense may dictate that a particular parameter of a feedback 

control rule should be positive or that one parameter should always 

be greater than another. Constraints may also be of a form which 

renders two activities mutually exclusive--e.g., the choice of a par­

ticular functional form for a feedback control rule precludes the use 

of an alternative form. Given the definition of a management strategy 

in a particular decision situation and the constraints on the range of 

available choices, some method of identifying feasible strategies for 

consideration in the decision analysis is needed. When the number of 

alternatives is small, each can be explicitly specified and evaluated. 

When the number of alternatives is large, Monte Carlo programming tech-

niques can be a valuable tool for the identification of feasible 

strategies. 

Monte Carlo programming is a search procedure which constructs sample 

management strategies at random from the set of feasible strategies. 

In determining the values for controllable system inputs and/or feedback 

control rule parameters, techniques similar to those introduced in the 

discussion of the simulation of stochastic proces?es are used. Monte 

Carlo programming is a remarkably flexible tool )~hich can be relatively 

easily and inexpensively implemented and so is well suited for use in an 

applied decision analysis. 

Monte Carlo programming techniques are explained in detail by 

Donaldson and Webster (1968). A technical discussion of their applica-

tion is also presented in Appendix C of this study along with a listing 

of the computer program used to implement the GREMP model. In the context 

of current discussion an example is, perhaps, the most effective medium 
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for the explanation of the process by which Monte Carlo programming is 

used to construct feasible strategies. The management strategy specified 

in relation to the decision problem introduced in Chapter II will be 

the basis for this example. It will be recalled that this strategy is 

defined by three controllable system input levels and by one simple 

feedback control rule which has a single parameter. The three controllable 

system input variables are: 

vl = number of acres rented 

v2 number of acres planted in corn 

V3 = number of acres planted in soybeans 

The feedback control rule is: "Regardless of specified crop 

acreage levels, soybeans will be planted on all unplanted acreage after 

v4 (a parameter indicating a specific date)." 

Four indivisible 80 acre tracts of land are available for rental. 

Therefore, the only admissible values for v1 are 0, 80, 160, 240, and 

320. Two types of constraints are imposed on crop acreage levels. 

First, the farmer states that if he grows a crop at all, he wishes to 

plant at least fifty acres of that crop, i.e. 

vi = 0 or vi ~ 50 i = 2' 3 5. 1 
,;· 

Second, total crop acreage is restricted to that which is owned by 

the farmer, 240 acres, plus that which is rented, v1. The farmer 

wishes to plant all available acreage, if possible. Therefore: 

v2 + v3 = 240 + Vl 5.2 

With regard to the control rule parameter v4, three possible values will 

be considered: May 18, May 26, and June 3. As was noted in Chapter II, 

these are the ending dates of the last three possible corn planting 
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periods. Let v4 = 1 if May 18 is chosen, 2 if May 26 is chosen, and 3 

if June 3 is chosen. 

The construction of a management strategy is a sequential process, 

and in some cases it may be necessary to set a value for one choice 

variable before levels of others can be established. In the example 

being discussed here, for example, a value of v1 must be determined 

before crop acreage levels can be specified. Therefore, after control 

variables have been identified and constraints on them have been 

specified, the control variables must be classified according to the 

sequence in which they should be considered. In our example, land 

rental can be classified as a resource acquisition activity, and v1 is 

the first variable for which a value is determined. Crop acreage levels, 

v2 and v3, refer to resource using activities and are specified next. 

Finally, the value of the control rule of parameter, v4, is set. 1 

In constructing a management strategy, the value of each controllable 

system input or feedback control rule parameter is treated as a random 

variable. In our example, v1 and v4 are clearly discrete random 

variables since each has only a few possible values. Unless it is 

desirable to assign greater probability weight to some particular value, 

both can be treated as discrete uniform random va~iables. In the case 

of land rental, then, there is probability of 1/5 that no land will be 

rented, 1/5 that 80 acres will be rented, 1/5 that 160 acres will be 

rented, 1/5 that 240 acres will be rented, and 1/5 that 320 acres will 

1The order in which control variable levels are specified depends, 
in general, on the characteristics of the problem under consideration and 
on computational convenience. All that is actually required in this 
example is that a value of v1 be set before v2 and v3 are considered. 
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be rented. Similarly, a probability of 1/3 can be assigned to each of 

the three possible values of the control rule parameter. 

Acreage levels for each crop, v2 and v3, can be treated as con­

tinuous or discrete random variables. Again a uniform distribution, 

be it discrete or continuous, should be used unless there are a priori 

reasons for assigning higher probabilities of selection to certain 

values or ranges of values. In this case acreage levels will be treated 

as discrete variables with possible values being integer multiples of 

ten lying on the interval between 50 acres and total available acreage, 

240 + v1. The probability of any particular admissible value being 

selected is given by the expression: 

l p = ~-=-r~=--~-=o~~ 
.l0(240-v1-50)+l 5.3 

The denominator on the right hand side of 5.3 is a general expression 

for the number of possible values of v2 or v
3 

given a particular value 

of v1 . 

Actual construction of a management strategy begins with the 

generation of a sample observation from the distribution of v
1

. In 

this instance let the value of that observation be 240, which implies 

that 240 acres of land are to be rented under th~s strategy. Next, 

values of v2 and v3, the crop acreage levels, must be determined. 

Again using a discrete uniform process generator, one of these two 

variables is selected for consideration, Let v2, the number of acres 

planted in corn, be the variable selected. A sample observation from 

the distribution of this variable is then generated. In this case let 

its value be 220 acres. Clearly the constraint on total acreage is not 

violated by this value, since v3 is considered to be equal to zero until 



145 

it is assigned another value. This is, then, a feasible value for v
2

. 

The constraint on remaining available acreage is next updated to state 

that: 

v3 = 240 + v1-v
2 

5.4 

240 + 240 - 220 = 260 

and a value for v3 is, in turn, established. It should be noted that 

had the value of v2 been greater than 430, a value of v3 less than 50 

would have been implied, Because values less than 50 are not permitted 

for v2 or v3, v3 would have been set to zero and corn acreage would 

have been expanded to 480. It should also be noted that the process of 

control variable level determination is somewhat more complex when more 

than two resource-using variables enter into a single constraint. The 

procedures used in such cases are explained in Donaldson and Webster 

(1969) and in Appendix C, and the computer program developed for the 

implementation of the GREMP model is fully applicable to problems of 

this sort. 

Once values for the three controllable systems input variables have 

been specified, all that remains in constructind a feasible management 
) ) ,, 

strategy is the determination of a value for the control rule parameter, 

v4. A sample observation from this variable's distribution is selected-­

in this instance let its value be 2, which implies a date of May 26--

and the strategy is complete. It is: 

vl = 240 acres of land rented 

V2 = 220 acres of corn to be planted 

V3 = 260 acres of soybeans to be planted 

V4 = May 26, the date after which all unplanted acreage is shifted 

to soybean production regardless of specified values of v2 and V3· 
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This simple example demonstrates some of the features which make 

Monte Carlo programming such a flexible procedure. Choice variables can 

be continuous or discrete, and they need not be assigned values which 

correspond to strictly quantifiable entities. In addition, both upper 

and lower limits can be established for a choice variable once activated 

without necessarily forcing it into the management strategy at a non-

zero level. Other features of Monte Carlo programming are outlined in 

Appendix C. 

5.3.2 Determination of the Distribution of 
System Output Levels 

Once a strategy has been constructed, the associated distribution 

of system output levels must be determined. This is done sequentially 

as each strategy is generated using the Monte Carlo simulation tech-

niques described in Section 3.3 of Chapter III. System performance under 

a given strategy is simulated for a large number of sample states of 

nature, each defined by a sample vector from the joint probability 

distribution of relevant stochastic system input variables. In this 

way sample system output levels are determined, which can be used to 

construct a cumulative distribution function for:the underlying distri-

bution. 

In the current example, net cash income is the system output 

variable which serves as the basis for the evaluation of alternative 

strategies. It will be recalled that crop prices, crop yields, and 

time available for fieldwork were judged to be the stochastic exogenous 

system inputs which have an important impact on system performance. 

Subjective probability distributions for all of these factors were 
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specified in Section 3.4 of Chapter III. Using techniques described in 

Appendix A, twenty sample vectors of levels for each of these stochas-

tic system inputs were generated and read into the computer program 

which implements the GREMP model. A computer simulation model which 

determines the net cash income level realized under a specific manage-

ment strategy in any given state of nature was also described in Section 3.4 

of Chapter III. This model is incorporated into the larger GREMP model 

as a subroutine which is called after the generation of each alternative 

strategy. Using the stochastic system input data from the main program 

and the control variable levels for the new strategy, it calculates net 

cash income for each of the twenty states of nature. The twenty sample 

income levels associated with the management strategy defined in the 

preceding subsection are given in Figure 5.2. 

5.3.3 The Evaluation of Alternative Strategies 

Alternative management strategies are evaluated within the GREMP 

model by applying the criterion of stochastic dominance with respect to 

a function, with an interval measurement of decision maker preferences 

defining the relevant levels and upper bound absolute risk aversion 

functions. Evaluations are made sequentially as sfrategies are generated. 

If a particular strategy is not dominated by any current member of the 

efficient set, it, too, becomes a member of the efficient. In such 

instances the control variable values which define the new strategy and 

the associated set of sample system output levels are stored. If the 

new strategy is dominated by any member of the current efficient set, on 

the other hand, it is eliminated from further consideration. Similarly, 

1 
' 
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Figure 5.2 Sample Observations from the Distribution 
of Outcomes Associated with Strategy One 
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members of the efficient set which are dominated by the new strategy 

are removed from the efficient set. Because the criterion of stochastic 

dominance with respect to a function is fully transitive, this proce-

dure ensures that no member of the efficient set for the set of strate-

gies already examined will be eliminated and that only information on 

actual members of the current efficient set will be saved. 

Returning to the example being discussed, let the decision maker 

be the first of the three decision makers for whom actual interval 

measurements were described in Section 4.8 of Chapter IV. Both the 

lower and upper bounds of his risk aversion interval, it will be recalled, 

decrease monotonically over the range of income levels for which pre-

ferences were measured. Let the first strategy generated by the GREMP 

model be that defined above in Section 5.3.l. Being the first strategy 

considered, it automatically becomes a member of the efficient set. 

Let the second strategy generated be: 

v1 = 0 acres rented 

v2 = 50 acres of corn to be planted 

v3 = 190 acres of soybeans to be planted 

v4 =May 26, the date after which all un\;anted acreage is to 

be planted in soybeans 

The set of net income levels associated with this strategy is given in 

Figure 5.3. Given this decision maker's preferences, this distribution 

dominates the distribution of income levels associated with the first 

strategy. After two iterations, then, the efficient set is comprised 

only of the second management strategy. 

Let the third strategy generated by the GREMP model be defined by 

the following control variable levels: 
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Figure 5.3 Sample Observations from the Distribution 
of Outcomes Associated with Strategy Two 



151 

vl = 160 acres of land rented 

V2 = 120 acres of corn to be planted 

V3 = 280 acres of soybeans to be planted 

v4 = May 26, the date after which all unplanted acreage is to 

be planted in soybeans 

The distribution of net cash income levels associated with this strategy 

is given in Figure 5.4. When compared to the distribution of income 

levels associated with the second strategy--the only member of the 

current efficient set--this distribution neither dominates nor is 

dominated. After three iterations, then, the efficient set is comprised 

of the second and third strategies. 

The process continues in this manner until a prespecified number 

of iterations have been completed. As noted earlier, there is no 

guarantee that a true optimum will be identified. If a sufficient 

number of strategies are evaluated, however, it is almost certain that 

a nearly optimal strategy will be included in the efficient set. The 

number of iterations specified depends on the characteristic of the 

problem being analyzed. Donaldson and Webster (1968) suggest that 2000 

strategies be examined. Experience to date with:the relatively small 
) I . 

problems considered in this study, however, indicates that 500 to 1000 

iterations are often quite sufficient. 

5.3.4 General Comments on the GREMP Model 

The flexibility of the generalized procedure for the identification 

of preferred choices described above is its greatest strength. It can 

easily be adapted for use in the analysis of a diverse range of practical 

decision problems without requiring that major simplifying assumptions 
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be made. With regard to problem formulation, the use of a random 

search procedure to generate strategies for consideration permits 

considerable flexibility with respect to both the types of control 

variables which can be specified in the definition of a management 

strategy and the types of constraints which can be imposed on them. 

Choice variables can be discrete or continuous. They can be controllable 

system input levels, feedback control rule parameters, or even indicators 

of the form of a feedback rule. Constraints on control variables can 

be linear or non-linear and can take forms more complex than those per­

mitted in decision models based on mathematical programming. 1 With 

regard to the determination of system output distributions associated 

with alternative strategies, the use of Monte Carlo simulation tech-

niques greatly facilitates the realistic representation of the stochastic 

processes by which the outcomes of particular choices are determined. 

In the simple example discussed above, price, yield, and time available 

for fieldwork are all considered explicitly as random factors which 

affect the outcome of any choice. Few restrictions are placed on the 

form of exogenous system input distributions, and the relationships 

among these factors, controllable system inputs,:and system outputs can 
,1 · 

be quite complex in nature. With regard to th~ representation of 

decision maker preferences, the use of stochastic dominance with respect 

to a function also contributes greatly to the flexibility of the approach 

without sacrificing the logical power of decision theory based on the 

1A discussion of some of the types of constraints in control 
variables which are possible in the GREMP model is given in Appendix C. 
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expected utility hypothesis. The interval preference measurements used 

with this criterion can be as precise or imprecise as is required for 

any particular decision analysis. 

The GREMP model is also relatively efficient computationally. In 

the analysis of one test problem with thirty-five choice variables and 

twelve linear constraints, for example, 1000 alternative strategies are 

generated and evaluated using less than seventy seconds of CPU time in 

a CDC6500. Furthermore, the core size of the computer program which 

imolements the GREMP model is relatively small, and the degree of compu-

tational accuracy required for interval calculations is not unusually 

great. This suggests that it may be possible to design computer soft­

ware which will permit the use of the GREMP model on a moderately sized 

personal computer. 

Several criticisms of the GREMP model can be made. As was noted 

earlier, there is no guarantee that the model will identify a true 

optimum, since alternative strategies are generated in a random manner. 

Furthermore, the efficient set of choices may be quite large if the 

decision maker's preferences are not measured precisely enough. Neither 

of these criticisms is particularly serious, how~ver. With regard to 

the first, in many instances it can be argued that a good solution to 

a well-formulated problem is preferable to an optimal solution to a 

problem which bears little resemblance to that actually facing the 

decision maker. The flexibility of the GREMP model, then, compensates 

for this weakness. With regard to the size of the efficient set, it can 

always be reduced by making more precise interval measurements of pre-

ferences, but it should be remembered that such reduction may lead to the 

exclusion of the decision maker's preferred choice from the efficient set. 
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A more valid criticism of the procedure is that it provides no 

direct information on how the composition of the efficient set might 

change if probability assessments were altered or if alternative values 

were assigned to certain key system design parameters. Such informa-

tion can be obtained only by specifying the changes and repeating the 

procedure. For complex problems a sensitivity analysis conducted in 

this manner can be a costly and time-consuming process. 

The GREMP model can also be criticized because it requires that 

the evaluation of alternative strategies be based on the distribution 

of a single system output variable, usually some measure of income or 

wealth output variable. In reality, most decision makers are concerned 

with more than one performance criterion. They have multiple objectives, 

and they consider trade-offs among these objectives when making choices. 

Decision theorists have focused considerable attention in recent years 

on the construction of preference measures which depend on more than one 

performance criterion and on the incorporation of such preference mea-

sures into a decision analysis. Unfortunately, however, the criterion 

of stochastic dominance with respect to a function has not been extended 

to the multivariate case, and there is no indication that such an exten-
\ . 

)· 

sion will be made in the near future. Despite the acknowledged existence 

of multiple goals which affect choices, it can be argued that in many 

instances the consideration of only the most important objective may 

be adequate. The added accuracy attained from a more complete analysis 

may not justify the added cost of such an undertaking. When it is 

judged that more than one performance variable must be considered in a 

decision analysis, however, the GREMP model can be used if modified 
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slightly. All that is necessary is that a single-valued multiple cri-

terion utility function be incorporated into the model to replace the 

evaluative component based on stochastic dominance with respect to a 

function. 

Finally, two criticisms of a practical nature can be made of the 

model. First, it should be noted that, although the program which com­

plements the GREMP model can be easily adapted for use in the analysis 

of a wide range of problems, the user is required to supply several 

problem-specific subroutines and so must have some programming skills. 

Though expertise in computer programming is certainly not required, this 

may preclude the use of the model in some instances. Second, it can be 

noted that in the analysis of complex decision problems with a large 

number of control variables, a large number of strategies must be 

examined before a nearly optimal one is identified. Computational costs 

can be considerable, then, for large problems. It should be noted, how-

ever, that with careful problem formulation and with the use of feedback 

control rules the size of the feasible set of strategies can be greatly 

reduced. 

5.4 An Application 

In this section the GREMP model is applied to the analysis of the 

sample problem discussed in the three preceding chapters. Efficient 

sets of choices are identified from a set of 500 feasible strategies 

for each of the three decision makers whose preference measures were 

given in Section 4.8 of Chapter IV. Since this sample problem was the 

basis for the discussion of the GREMP model in the preceding section, 

the reader should be familiar with its essential features. Therefore, 

the results of this application will be presented without further discussion. 
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The efficient set of choices for decision maker A is comprised of 

the eight strategies defined in Table 5.1. 1 Levels of land rented 

range from 0 to 160, with four of the eight strategies calling for land 

rental levels of 80 acres. Soybeans are the predominant crop in each 

plan, which is understandable given the cost-price relationships for 

the two crops. At low corn acreage levels, the feedback control rule 

parameter has little effect, so the switching date is of little impor-

tance in these strategies. Mean income levels realized under the 

efficient strategies range from slightly less than $3000 to slightly 

above $10,000. Minimum income levels vary little from one strategy to 

another. Maximum income levels, however, are significantly affected by 

land rental levels. It is also interesting to note that the efficient 

set need not be a mean-variance efficient set. For example, strategy 2 

dominates strategy 4 by the mean-variance criterion, but both are in the 

decision maker's efficient set determined by stochastic dominance with 

respect to a function, 

The efficient set of decision maker B is comprised of the nine 

strategies defined in Table 5.2. In this case, land rental levels 

tend to be higher than those called for by the' strategies in decision 
' ' )' 

maker A's efficient set. At higher acreage levels, the mix between 

corn and soybeans becomes more even, though most of the available acreage 

is planted to soybeans in each strategy. Mean net income levels tend 

to be higher within this set of strategies, but the dispersion of 

possible net income levels is also greater. Given the differences in the 

1
system output levels are not enumerated for each state of nature. 

Rather, the mean, standard deviation, minimum value and maximum value 
are given for each distribution. 



Table 5.1 Efficient Strategies for Decision Maker A 

Control Variable Levels Properties of Net Cash Income Distribution 
Efficient I Acres Acres Acres Switching Standard Minimum Maximum Strategy Rented Corn Soybeans Date Mean Deviation Value Value 

0 0 240 June 3 3816 8357 -1187 5 20368 

2 160 120 280 May 26 10152 12517 -12468 30877 

3 80 60 260 May 18 7138 l 0328 -12102 25972 

4 160 110 290 May 26 9936 12526 -12605 31170 

5 80 50 270 May 18 7168 l 0437 -12220 26419 (J1 

00 

6 80 80 240 June 3 6994 10142 -11865 24305 

7 0 50 190 May 26 2949 7691 -11482 15963 

8 80 7rJ-: 250 June 3 7079 10239 -11983 25165 



Table 5.2 Efficient Strategies for Decision Maker B 

Control Variable Levels Properties of Net Cash Income Distribution 
Efficient I Acres Acres Acres Switching Standard Minimum Maximum Strategy Rented Corn Soybeans Date Mean Deviation Va 1 ue . Value 

160 160 240 May 26 9840 12199 -12987 27685 

2 240 200 280 May 26 l 0808 15481 -17272 33952 

3 160 120 280 May 26 10152 12517 -12168 30877 

4 160 140 260 May 18 10167 12466 -12231 30331 

5 240 190 290 May 26 10798 15483 - 17272 33952 CJ1 
\.0 

6 160 130 270 May 18 l 0193 12472 -12350 30366 

7 160 140 260 June 3 l 0088 12395 -12231 29610 

8 160 130 270 May 26 l 0167 12458 -12350 30366 
,; 

9 160 150 - 250 June 3 9949 12367 -12604 28764 
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preference measurements for decision makers A and B, the dissimilarity 

between these two efficient sets is understandable. The interval measure-

ment of absolute risk aversion for decision maker A indicated a high 

level of risk aversion at negative net income levels--i.e. he has an 

apparently strong aversion to losses. Decision maker B, on the other 

hand, has much lower levels of absolute risk aversion at low income 

levels, and his efficient set contains strategies which, while providing 

opportunities for the realization of high income levels, also can result 

in substantial losses. 

The efficient set of decision maker C is comprised of the strategies 

defined in Table 5.3. Of interest in this case is the fact that each of 

these eleven strategies is a member of the efficient set of either 

decision maker A or B. In a sense, then, it can be said that this 

decision maker's preference measurement lies between those of the other 

two decision makers. 

Several general comments can be made about these results. First, 

they provide clear evidence of the discriminatory power of the preference 

measures based on the interval approach. The largest of three efficient 

sets contains only two percent of the total number of strategies examined. 
)) 

Second, the results demonstrate once again that preferences do have an 

important impact on the choices made by an individual. Finally, it 

should be observed that a search of only 100 feasible strategies identi-

fied many of the strategies included in these three efficient sets. 

This indicates that in some cases the evaluation of an extremely large 

number of strategies may not be necessary. 



Table 5.3 Efficient Strategies for Decision Maker C 

Control Variable Levels Properties of Net Cash Income Distribution 
Efficient I Acres Acres Acres Switching Standard Minimum Maximum Strategy Mean Rented Corn Soybeans Date Deviation Value Value 

80 60 260 May 18 7138 10328 -12102 25792 

2 160 140 260 May 18 10167 12466 -12231 30331 

3 160 120 280 May 26 10152 12517 -12468 30877 

4 160 110 290 May 26 9936 12526 -12605 31170 

5 80 50 270 May 18 7168 10437 -12220 26419 °' --' 

6 80 80 240 June 3 6994 10142 -11865 24305 

7 0 0 240 June 3 3816 8357 -11875 20368 

8 80 70 250 June 3 7079 10239 -11983 25165 
,/ 

9 160 130 270 May 18 10193 12472 -12350 30366 

10 160 140 260 June 3 10088 12395 -12231 29610 

11 160 130 270 May 26 10166 12458 -12350 30366 
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CHAPTER VI 

COMBINED PRODUCTION AND MARKETiilG DECISIONS BY 
CASH GRAIN FARMERS: AN EXTENDED APPLICATION 

6.1 Introduction 

The formulation of an integrated set of operational techniques for 

the analysis of decisions made under uncertainty was the focus of the 

preceding chapters of this study. A simple example related to land 

rental and crop production decisions made by cash grain farmers has 

been used to illustrate these techniques. In this chapter the useful-

ness of the methodological tools developed above is demonstrated further 

by exoanding the earlier example to include the consideration of alter-

native marketing strategies in conjunction with the selection of a 

cropping plan. Two modes of marketing will be evaluated: the sale of 

all production at harvest in the cash market and forward contracting. 1 

The objectives here are to examine how these two modes of marketing 

can best be combined in the formulation of a marketing strategy which 
~) 

is appropriate for a particular decision maker, to determine the degree 

of interdependence between crop production and marketing strategies, 

and to examine the impact of changes in preferences on combined produc-

tion and marketing strategies. 

1To simplify the discussion, other marketing alternatives such as 
hedging in the futures market and participation in government price 
stabilization programs will not be considered, nor will the use of crop 
storage as a marketing tool be examined. These alternatives could be 
incorporated into the analysis presented below, however. 
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Cash grain farmers make major resource allocation decisions under 

i 
I 
i 

conditions characterized by uncertainty with respect to both prices and 

output levels. With the increased dependence of the feed grain sector 

on foreign markets in recent years, the irnoact of price uncertainty on 

cash grain producers has been particularly strong. Many have come to 

realize that marketing as well as production decisions have a major 

impact on the level of income they realize. The common practice of 

selling all production at harvest in the cash market often results in 

the receipt of prices which are low relative to those which could be 

realized under alternative modes of marketing. Furthermore, a strategy 

comprised only of cash sales at harvest does nothing to diminish the 

degree of price uncertainty faced by the producer over the period prior 

to and during planting--the period when major allocative decisions must 

be made. As a result, many producers find it desirable to consider for-

ward pricing some or all of their planned production. By contracting 

to deliver a certain quantity of grain on a future date at a specified 

price, the producer sells all or some portion of his crop in advance. 

In doing so, he establishes with certainty a price for at least part of 

his total production, thereby greatly reducing the degree of price 

uncertainty he faces. 

The reduction in price uncertainty achieved through forward con-

tracting can be of considerable value in some situations. Advance know-

ledge of the price to be received simplifies the planning process. 

Furthermore, if the contract price is high enough, a producer who forward 

contracts may almost ensure that he will realize an adequate level of 

income. There are also costs associated with contracting, however. 
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The other party in the contract, the buyer of the grain, often has 

access to better information than that available to the producer and it 

is unlikely that he will offer a price higher than that he himself 

expects to receive. Of equal importance is the fact that the seller, 

though he protects himself against the effect of an unexpected downturn 

in price, also foregoes the opportunity to benefit from unexpected price 

increases. Finally, grain must be delivered according to the terms of 

the contract even if production falls short of the amount which is 

forward priced. If yields are unusually low or if poor weather condi-

tions prevent the planting of some acreage altogether, the producer 

faces the prospect of being forced to purchase grain on the cash market 

to meet the terms of his contract. Given the advantages and disadvan-

tages of forward contracting, then, the producer must determine how 

much, if any, of his anticipated production he wishes to contract. 

Clearly preferences, financial position, price expectations and produc-

tion plans affect this decision. 

The determination of optimal forward contracting levels for agri-

cultural producers facing yield and price uncertainty has been examined 

in a mean-variance framework by McKinnan (1967). : He shows that under 
\}' 

relatively simple conditions the optimal level cif forward contracting 

depends on five fundamental parameters: the standard deviations of 

crop yield and product price at harvest, the expected crop yield, the 

forward contract price (which is also the expected price at harvest), 

and the correlation coefficient between crop yield and harvest price. 

McKinnan 1 s work has been extended by Ward and Fletcher (1971) and by 

Heifner (1972), and Barry and Willmann (1976) provide an interesting 
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empirical application of contracting theory based on mean-variance 

analysis. The applicability of the results of each of these studies 

is limited by the somewhat restrictive assumptions associated with the 

use of the mean-variance criterion--assumptions of normally distributed 

net returns and risk averse behavior. The requirement that net returns 

be normally distributed may be particularly unrealistic. More critical, 

however, is the failure in each study to consider a factor which is of 

primary importance in an applied context. All treat forward contracting 

decisions as though they can be made at only one point in time. In 

reality producers have forward pricing opportunities open to them over 

an extended period of time. In such a context the decision of when to 

contract may be as important as the decision of how much to contract. 

Producers continually evaluate forward pricing opportunities, and it is 

not unusual for an individual to enter into contracts at several differen 

times. Once a contract is made, however, it must be honored. Choices 

made in the present, then, affect ooportunities in the future. Therefore, 

it is important to consider forward contracting decisions in a more 

dynamic analytical framework. 

The techniques developed in this study allow the relaxation of the 
\) 

restrictions on probabilities and preferencei imposed by the use of 

mean-variance analysis. More imoortant, however, they permit the evalua-

tion of both production and forward contracting decisions in a more 

dynamic framework in which the roles of learning and adaptive behavior 

are treated more explicitly than in previous studies. In the analysis 

below, attention will again be focused on decisions made by a cash 

grain farmer producing corn and soybeans. As in the example discussed 
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in earlier chapters, flexibility is introduced into the production 

planning process through the incorporation of a simple stopping rule 

for corn planting. Marketing strategies for both corn and soybeans are 

defined by more complex feedback control rules which are applied 

repeatedly over a seven month period extending from mid-January to 

mid-August. Particular attention will be given to the examination of 

both the interdependence between production and marketing strategies and 

the impact of changes in decision maker preferences on the choice of a 

combined production-marketing strategy. 

6.2 Problem Formulation 

The basic decision situation in this extended example is the same 

as that described in Section 2.5 of Chapter II. The operator of a 

relatively small southeastern Michigan cash grain farm needs to realize 

a substantial level of income from his farming operation in order to 

meet his debt repayment commitments of $35,000 annually and to cover 

family living expenses. He wishes to choose a management strategy 

which, given his risk preferences and the range of opportunities open 

to him, will best satisfy this need. The time is January 1979, and, 

because land rental decisions must be made, the farmer must formulate 

at least a tentative management strategy now. 

The system of concern in this example is comprised of a set of 

production and marketing processes which constitute a farming operation. 

The performance of this system is measured by a single system output 

variable: annual net income for family living expenses and firm expan-

sion after all debt repayment commitments have been met. The level of 

income realized is affected by the structure of the system and by exo-

genous and controllable system inputs. 
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The structure of the production and cash marketing processes 

embodied in this system was described in Section 2.5 and remains 

unchanged in this example. It will be recalled that standard crop 

budgets for corn and soybeans v1ere presented and that relevant planting 

and harvest periods were specified for each crop, as were rules of thumb 

which determine the priority of each crop during planting and harvesting. 

Important state variables related to the production process included 

production expenses incurred to date, acreage of each crop planted or 

harvested to date, and bushels of each crop harvested to date. All 

production was sold in the cash market at harvest in the original 

example. The harvest price of each crop was multiplied by the number 

of bushels harvested to determine the value of marketing receipts for 

each crop, the key state variable used to describe the marketing process. 

The incorporation of forward contracting into the analysis requires 

that several structural features associated with this mode of marketing 

be specified and that several new state variables be defined. Struc-

turally, it must be recognized that contracts, once made, are binding, 

and that if production falls short of the amount contracted, enough 

grain must be purchased in the cash market at harvest to cover the 
\) . 

deficiency. It must also be noted that, unlike a hedge in the futures 

market, a hedge based on a forward contract cannot be lifted. The new 

state variables which must be defined include the number of bushels of 

each crop contracted to date and the current level of receipts forth-
1 coming at harvest from quantities of each crop contracted. 

1several additional state variables will be defined during the 
discussion of the feedback control rules which determine the marketing 
strategies for corn and soybeans. 
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Exogenous system inputs in the original example included the 

following stochastic environmental factors: the price at harvest of 

each crop, the number of days available for fieldwork in any particular 

planting or harvest period, and the yield of each crop for each allow-

able planting-harvest combination. Consideration of forward contracting 

requires the specification of an additional set of stochastic factors: 

the harvest delivery forward contract prices for corn and soybeans 

over the period when contracting decisions are to be made. Clearly this 

set of prices will affect the desirability of forward contracting and 

the level of income realized under any management strategy which calls 

for the forward contracting of either crop, and clearly these prices 

cannot be known with certainty in mid-January when a management strategy 

must be formulated. 

Only four control variables were considered in the example discussed 

in previous chapters. They were: 

vl = acres of land rented 

Vz = acres of corn to be planted 

V3 = acres of soybeans to be planted 

V4 = the date after which a 11 unplanted acreage is to be 
\• ,, 

planted in soybeans 

The consideration of forward contracting decisions requires the specifi-

cation of several new control variables, which will determine the number 

of bushels of each crop contracted at any particular time. Contracting 

levels, per se, will not be selected directly. Rather, a feedback 

control rule which determines the desired contracting level at any point 

in time will be specified for each crop. The form of this rule is the 
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same for both corn and soybeans and is similar to that discussed in 

Section 2.3.l of Chapter II. It is: 

where 

DBCt = desired bushels contracted at time t 

ECt = current expected size of harvest 

6. 1 

ZAt = the percentage difference between the current contract 

orice, CPt, and the current expected harvest price, 

EPt; i.e. ZAt = (CPt-EPt)/EPt 

ZBt = the current daily rate of change in the contract price; 

i.e. ZBt = dCPt/dt 

zct = the difference between the desired percentage of the 

expected crop contracted and the actual percentage 

contracted. The desired percentage contracted is defined 

by the expression APt/DAPt+v
2

, where APt and DAPt are 

current actual and desired acreage planted and v is a 
z 

parameter to be selected. The actual percentage con-

tracted is defined by the expression BCt/ECt' where BCt is 

the number of bushels contracted t,o· date and ECt is the 
) ' 

expected size of the harvest. It follows that ZCt = APt/DAPt 

+v
2
-BCt/ECt. 

In addition to v , v , v , and v are parameters to be selected. z w x y 

The inclusion of each term in this contracting rule can be justified 

by appealing to commonly recognized rules of thumb regarding forward 

contracting. The first term ZAt, reflects an assessment of the funda­

mental position of the market. If ZAt is positive, the current contract 
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price is above the current expected harvest price. As ZAt becomes 

larger, the attractiveness of current pricing opportunities increases 

and the decision maker is expected to want to contract more. Similarly, 

if ZAt is negative, the current pricing opportunity is not an attractive 

one and the desired level of contracting will be less. The parameter 

which weights this factor, v , is expected to be positive. w 

The second term, ZBt' reflects, in a very simple way, a technical 

assessment of market conditions. If ZBt is positive, the contract price 

is increasing, and most technical analysts would recommend that contracting 

be delayed. If ZBt is negative, and if fundamental analysis indicates 

that the current pricing opportunity is a favorable one, on the other 

hand, many technical analysts would recommend that forward contracts be 

entered into. Following this reasoning, the parameter which weights 

this factor, v , is expected to be negative. 
x 

The third term, ZCt' reflects the degree to which current contracting 

levels coincide with desired contracting levels, In this case desired 

levels are a linear function of the percentage of desired acreage 

actually planted. The parameter v shifts the intercept of that function z 

and is expected to be negative, reflecting th~~act that many decision 

makers hesitate to contract before planting begins unless pricing 

opportunities are particularly favorable. When ZCt is positive, the 

decision maker is expected to desire to contract more unless other 

factors indicate the current pricing opportunity is not a good one. 

When ZCt is negative, the desire to contract is diminished. Therefore, 

the parameter which weights the importance of this factor in the con-

tracting rule, vy' is expected to be positive. 
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As stated above, a control rule of this form is specified for 

each crop. Since four parameters must be selected for each rule, a 

total of eight new control variables are required in this example. 

Control variables v5, v6, v7, and v8 correspond to vw' vx' vy' and vz 

for the corn contracting rule, and v9, v10 , v11 , and v12 correspond to 

the same parameters for the soybean contracting rule. Introduction of 

the contracting rules into the analysis also requires the specification 

of several new state variables. In addition to those mentioned earlier, 

state variables indicating the daily rate of change in the contract 

price, the expected size of the harvest, and the expected price at 

harvest must be monitored for each crop. The daily rate of change in 

the contract price is defined by the expression: 

6.2 

where CPt and CPt-l are successive observations of the contract price 

and dt is the number of days between price observations. The expected 

size of harvest for a particular crop is defined by the expression: 

6.3 

where DAPt is the desired acreage to be planted and BY is a base 

yield. 1 The expected harvest price for a parpicular crop is defined 

by the following simple expectations model: 

6.4 

This is simply a weighted moving average of the three most recent con­

tract price observations. Finally, it should be noted that in the 

1BY is set at 100 bushels per acre for corn and 33 bushels per 
acre for soybeans. 
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application of each rule, the number of bushels to be contracted at any 

time is set at zero if the number of bushels already contracted is equal 

to 150 percent of the expected crop. 

As in the previous example, the planning and decision horizons are 

both said to be a single crop year. It will be recalled that the stopping 

rule for corn planting is checked at the end of the second, third, and 

fourth planting periods. The two contracting rules are consulted a 

total of twelve times--four times prior to the commencement of planting, 

at the end of each of the six planting periods, and twice between 

planting and harvest. The exact dates for each application of the two 

rules are given in Figure 6.1. 

The problem in this example, then, is to identify a management 

strategy defined by a total of twelve control variables which maximizes 

the expected utility of a particular decision maker. Three of these 

choice variables specify controllable system input levels directly. The 

other nine are parameters in feedback control rules which are consulted 

periodically over the entire decision horizon. 

6.3 The Determination of Subjective 
Probability Distributions 

\. ) , 

Subjective probability distributions for crop yields, time avail-

able for fieldwork, and crop prices at harvest were specified in 

Section 3.4 of Chapter III. They remain unchanged in this example. It 

is also necessary to specify subjective distributions for the harvest 

delivery contract price of each crop at each of the eleven dates after 

January 10 listed in Figure 6.1. These prices cannot be known with 

certainty at the time when a strategy must be selected, and their distri-

butions can have an important impact on the distribution of net income 

levels realized under any particular management strategy being considered. 
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January l 0 

February 10 

March 20 

April 20 

May 10 

May 18 

May 26 

June 3 

June 11 

June 19 

July 20 

August 20 

Figure 6. l Dates for the Application of Forward 
Contracting Rules 
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For either crop, elements in the series of contract prices are 

exoected to be correlated with each other and with the cash price at 

harvest. Therefore, individual contract price distributions cannot be 

specified independently. Even if this could be done, it is unlikely 

that a decision maker would have clearly formulated expectations con-

cerning contract price levels at each of eleven dates over a seven 

month period. To simplify the specification of these distributions, 

then, the following procedure which reflects the author's own subjective 

assessments was used. The harvest delivery contract price for each 

crop on January 10, 1979, the date when a strategy is to be selected, is 

known with certainty. That for corn is $2.08, and that for soybeans is 

$6.31. For any particular state of nature, the cash price at harvest 

can also be specified, this price representing a sample observation from 

the underlying subjective price distribution. In addition, contract 

margins charged by elevators are relatively constant and can be set at 

l $. 10 per bushel for corn and $.25 per bushel for soybeans. Given this 

information, it is assumed that the harvest delivery contract price 

offered on any date between January 10 and the contract delivery date 

can be adequately forecasted by linearly interpolating between the 
~)· 

January 10 price and the price at harvest less the contracting margin. 2 

In Figure 6.2, for example, the contract price of corn on January 10 is 

$2.08. The cash price 295 days later November l is $2.32. With a 

1contract margins cover the elevator's operating expenses and 
represent a premium paid to the elevator by the farmer for the reduction 
in price uncertainty. 

2Approximate delivery dates are October 15 for soybeans and 
November l for corn. 
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contract margin of$.10per bushel, then, a hypothetical contract price 

offered on that day would be $2.22. The line between the contract prices 

of $2.08 on January 10 and $2.22 on November l is used to forecast the 

contract price on intermediate dates. On May 10, 120 days after 

January 10, for example, the forecasted contract price is $2.14. 

Forecasts of the contract price of each crop at each of the dates 

specified in Figure 6. l can be made in this manner. By making such 

forecasts for a number of sample harvest price observations, a crude 

multivariate distribution of intermediate forward contract price levels 

can be specified. 

Clearly forecasts based on such a simple model are subject to con-

siderable error. To reflect this fact during the actual specification 

of sample observations from the contract price distributions, the fore-

cast of each intermediate contract price was multiplied by a factor of 

l+e, where e is a normally distributed random variable with mean 0.0 and 

standard deviation .05. To further enhance the realism of the model, 

the multiplicative error terms for successive dates were correlated to 

reflect the fact that observed contract price levels are autocorrelated. 

A plot of values based on this more complex model is also shown in 

Figure 6.2. In this instance, relatively good pricing opportunities 

occur in March and July, and contract prices during the period when 

planting takes place cluster around the price forecast line. It is 

interesting to note that the contract price in this example never exceeds 

the actual cash price at harvest. 

The distribution of net income levels realized under any particular 

management strategy is determined by simulating system performance under 
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1 that strategy in each of a set of sample states of nature. One 

possible management strategy is defined by the following control 

variable levels: v1 = 240 acres rented; v2 = 190 acres corn; v3 = 290 

acres soybeans; v4 = May 26, the date after which all unplanted acreage 

is planted in soybeans= v5 = 12; v6 = l; v7 = .90 and v3 = -.30 for the 

corn contracting rule; and v9 = 17, v10 = -1, v11 = .50, and v12 = -.20 

for the soybean contracting rule. The sample observations which define 

the distribution of net cash income levels associated with this strategy 

are given in Table 6.1 along with the other information pertaining to 

system performance in each of the twenty states of nature considered. 

The cropping plan in this case is identical to that which maximized 

expected net returns in the earlier example which precluded forward 

contracting, and the net income levels realized under the strategy with-

out contracting are also given in Table 6.1. 

Several observations can be made about the differences in net 

income levels realized under these two strategies. First, the average 

net income level is higher under the strategy which precludes contracting. 

This is to be expected, given the contract margins on corn and soybeans 

of $.10 and $.25 respectively. Second, the variability of net income, 
~) ' 

as measured by the standard deviation of the sample observations, is 

reduced by forward contracting, again as would be expected. The reduc-

tion is not a sizeable one, however. It is also interesting to note 

that in state 14 when yields for both corn and soybeans are apparently 

1The computer program which implements the simulation model used 
in this phase of the analysis is subroutine DISGEN in the listing of 
the GREMP model at the end of Appendix C. 
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quite low, contracting costs the producer a considerable amount of 

money and turns an already bad situation into a worse one. The problem 

is particularly serious for corn. Pricing opportunities apparently 

appear to be quite favorable, since more corn is contracted than would 

normally be produced. At harvest, however, the cash price is $.09 

above the average price for which corn was forward contracted, and a 

total of 14,631 bushels must be purchased on the cash market at this 

higher price to meet the terms of the contracts. Finally, it should be 

noted that quantities of corn and soybeans contracted vary considerably 

from one state of nature to another. This reflects the fact that there 

are considerable differences in the attractiveness of the forward con­

tracting opportunities available in each state. Clearly the contracting 

rule is sensitive to these differences. 

6.4 Decision Maker Preferences 

Interval preference measures for the three decision makers dis­

cussed in the illustrations presented in Chapters IV and V will be used 

to order the alternative strategies considered in this example. 

Orderings will also be made for a risk neutral decision maker--a decision 

maker whose absolute risk aversion function i~ always equal to zero--to 

determine whether forward contracting rules can be identified which 

lead to higher expected net income levels than those realized under 

strategies which preclude forward contracting. 

The net income level distributions associated with the two strate­

gies identified in the oreceding section--one with contracting and one 

without--were ordered for each of the four decision makers considered 

in this example. The strategy which precludes forward contracting is 
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preferred to that with contracting by the risk neutral decision maker 

and by decision maker A. The two strategies cannot be ordered for 

decision makers B and C. It is interesting to note that the non-contracting 

strategy is preferred by decision maker A, whose preferences were most 

conservative in the previous example. This may be attributable to the 

aversion of this decision maker to the sizeable losses incurred under 

the contracting strategy in state 14 when crop yields are unusually low 

and contracting levels are high. 

6.5 The Identification of Preferred Choices 

By incorporating the simulation model described in Section 6.2 into 

the Monte Carlo risk programming model described in Chapter V, an 

efficient set of strategies can be identified for each of the four 

decision makers considered in this example. Each strategy specifies a 

flexible production plan and feedback control rules which direct forward 

contracting decisions for both corn and soybeans. 

Constraints placed on the values of crop production and land rental 

control variables were discussed in Section 5.3 of Chapter V. They 

remain unchanged in this example. Only upper and lower bound constraints 

are placed on the parameters of the two contr;3.tting rules. It will be 

recalled from Section 6.2 that each rule has four parameters. Experi­

mentation with the model indicates that the following ranges of admissible 

values are reasonable and do not unduly constrain the set of feasible 

choices: 
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osv :520 w w=5, 9 

-20:>v So x x=6, l 0 

o:::v :51 . 0 y y=7, 11 

-.?Sv/0 z=8, 12 

Parameters vw and vx are restricted to integer values. 

6.5 

Parameters v 
y 

and vz are restricted to values which are integer multiples of 0.1. 

In this example 1000 randomly selected strategies were examined 

and ordered for each decision maker's preferences. This is twice the 

number of strategies considered in the earlier example. The fact that 

each strategy is now defined by twelve control variables rather than 

only four implies that many more feasible strategies exist, however, 

and therefore more strategies should be evaluated. The efficient 

sets identified range in size from a single element for the risk neutral 

decision maker and three elements for decision maker A to thirteen and 

seventeen elements for decision makers 8 and C respectively. It is not 

possible to discuss all the efficient strategies for each decision 

maker, therefore, a representative strategy from the efficient set of 

each decision maker is defined in Table 6.2. 

The representative strategy for the risk neutral decision maker 

is that which maximizes expected net income under contracting. Detailed 

information on system performance under this strategy in each of the 

twenty states of nature considered is given in Table 6.3. The 

expected net return is slightly less than that realized under 

the expected net return maximizing strategy from the earlier example 

which precludes contracting, but in many respects the two strategies 

are remarkably similar. The two cropping plans are nearly identical, 
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Table 6.2 Representative Strategies from the Efficient 
Sets of Four Decision Makers 

Acres Corn Soybean Switching Corn Contract Soybean Contract 
Rented Acreage Acreage Date Rule Parameters Rule Parameters 

Decision 
v1 v2 v3 v4 Vr:. v6 v7 v8 v9 VlO v 11 v12 Maker ::> 

Risk Neutral 240 180 300 May 26 20.0 -16.0 .20 - . 30 17.0 -17. 0 . l 0 - . 20 

A 0 0 240 June 3 ---- ---- ---- ---- 17. 0 - 2.0 .80 0 

B 160 140 260 May 18 19. 0 - 5.0 .60 - . 20 6.0 - 2.0 0 - . 40 

c 80 50 270 May 26 16.0 -19.0 .90 - . 30 16.0 -14.0 .20 - . 60 
CXl 
N 
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and the contracting rules employed in the strategy which permits for-

ward oricing do not result in extensive forward contracting for either 

crop in most states of nature. The paremeter weighting the first term 

of each contracting rule is assigned a relatively high value, which 

implies that contracting is strongly discouraged when the contract price 

is below the expected harvest price and strongly encouraged when it is 

above the expected harvest price. This is precisely the behavior one 

would expect from an individual who seeks to maximize expected net 

returns, The parameter weighting the second term of each contracting 

rule is assigned a strongly negative value. This implies that contract 

price movements also have an important impact on this decision maker's 

choices. Even if the pricing opportunity is a favorable one, he will 

delay his commitment to a forward contract if the contract price is 

rising. Again this conforms to intuitive expectations about the 

behavior of such a decision maker. Finally, the third parameter of 

each contracting rule is relatively small, which implies that this 

decision maker places little emphasis on achieving a desired level of 

contracting under almost any market conditions. 

Net income levels realized under an identical production strategy 
') ' 

which precludes contracting are also given in Table 6,3. Comparison of 

the two net income distributions indicates that contracting can lead to 

both higher expected net returns and less income variation, though 

actual differences between the two strategies are minimal. It is also 

interesting to note that the corn contracting rule is particularly 

successful in this instance, the average corn contracting price being 

well above the cash price at harvest in three of the four states of 
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nature when more than 1000 bushels are contracted. The soybean con-

tracting rule is somewhat less successful. 

Information on system performance under the preferred strategy of 

decision maker A is given in Table 6.4. This strategy is markedly 

different from that of the risk neutral decision maker. Its production 

component calls for no land rental and for the planting of all available 

acreage in soybeans. This is identical to one of the efficient produc-

tion plans identified for this decision maker in the earlier example. 

Because no corn is to be planted, only the soybean contracting rule 

has any impact on system performance. As the information given in 

Table 6.4 indicates, this rule results in substantial levels of forward 

contracting in most states of nature. The parameter weighting the first 

term of the soybean contracting rule, v9, is relatively large, indicating 

that this decision maker also places considerable emphasis on fundamen-

tal analysis--on differences between the forward contract price and the 

expected cash price at harvest. Unlike the risk neutral decision maker, 

however, decision maker A assigns relatively little weight to technical 

analysis--to the analysis of contract price movements--as is indicated 

by the small absolute magnitude of parameter via· Also in contrast to 
)) . 

the strategy of the risk neutral decision maker, the relatively large 

value of parameter v11 indicates that much stronger emphasis is placed 

on attaining some desired level of contracting under most conditions, 

and the fact that v12 is assigned a value of 0.0 implies that this 

desired level is 100 percent of the expected crop once all acreage has 

been planted. 
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Comparison of the net income levels realized under this strategy 

with those associated with a management strategy which precludes con-

tracting but has an identical production plan is of considerable interest. 

The information given in Table 6.4 indicates that both the probability 

of negative net income levels and the magnitude of losses are reduced 

by the contracting rule. The probability of realizing relatively high 

income levels is also reduced, however, and expected net income is con-

siderably higher under the strategy without contracting. When these two 

strategies are ordered using decision maker A's preference measurement, 

the strategy with contracting dominates that without. 

Information on system performance under the representative strategy 

from the efficient set of decision maker Bis given in Table 6.5. 1 In 

this instance 160 acres are rented, 140 acres are to be planted in corn, 

260 acres are to be planted in soybeans, and May 18 is the date after 

which all unplanted acreage is olanted to soybeans. The two contracting 

rules are quite different in this strategy. That for corn places a 

strong emphasis on differences between the current contracted price and 

the exoected cash harvest price, the value of parameter v5 being 19.0. 

Relatively little emphasis is placed on price ~ovements, as evidenced 

by the small value of v6, and a rather strond)~mphasis is placed on 

contracting a specified percentage of the projected crop. This rule 

results in moderate to high contracting levels in thirteen states and is 

quite successful, with the average contract price being above the cash 

1 The preferred strategy of the risk neutral decision maker is also 
in decision maker B's efficient set. 
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harvest price in ten of the thirteen states in which there is contracting. 

The soybean contracting rule, on the other hand, is characterized by low 

values for each of its four parameters. It results in contracting levels 

below 1000 bushels in all but three states of nature and so has little 

effect on net income levels realized. 

Comparison of the distribution of net income levels realized under 

this strategy with that associated with an identical production plan 

without contracting indicates that contracting results in a slightly 

higher expected net return and in some reduction in income variability 

Given decision maker B's preferences, the strategy with contracting 

dominates that without. 

Information on system performance under the representative strategy 

1 for decision maker C is given in Table 6.6. In this case the produc-

tion plan calls for the rental of 80 acres, for 50 acres of corn, and 

for 270 acres of soybeans. May 25 is the date after which all unplanted 

acreage is planted to soybeans, but the switching rule is inactive due 

to the low level of desired corn acreage. The contracting rules for 

both crops place considerable weight both on differences between the 

current contract price and the expected cash harvest price and on con­
) j. 

tract price movements. The corn contracting rule emphasizes the con-

tracting of a certain percentage of the crop in most states of nature, 

however, while the soybean rule does not. Neither rule results in 

substantial contracting levels in most states of nature, though the 

1The representative strategy of decision maker B is also in 
decision maker C's efficient set. 
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corn rule does lend to contracting more than half the number of bushels 

harvested in three states of nature. The average contract price for 

corn exceeds the cash harvest orice in twelve of the twenty states of 

nature, while that for soybeans exceeds the cash harvest price in only 

two of the six states in which there is contracting. 

The distribution of net income levels realized under this strategy 

is quite similar to that associated with an identical cropping plan and 

no contracting. Expected returns are slightly higher under the strategy 

with contracting, however, and, given decision maker C's preferences, 

it is preferred to that without contracting. 

6.6 Further Discussion of the Results 

Several more general observations can be made regarding these 

results. First, they demonstrate once again that decision maker pre-

ferences have an important impact on the choice of a management strategy. 

Nowhere is this more evident than in the differences between the pre-

ferred strategy of the risk neutral decision maker and the representa-

tive strategy from the efficient set of decision maker A, whose level 

of absolute risk aversion is high over the negative range of net income 

values. Both cropping and marketing strategies are quite different, as 

are the associated net income distributions, The preferred strategy 

of the risk neutral decision maker calls for the rental of 240 acres 

and for a relatively balanced mix of corn and soybean production; it 

calls for the application of contracting rules which lead to an avoidance 

of forward pricing except in instances when pricing opportunities appear 

to be particularly favorable. The representative strategy for decision 

maker A, on the other hand, calls for no land rental and specialization 
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in soybean production and for the application of a contracting rule 

which results in the forward pricing of a substantial portion of the 

expected crop under nearly all market conditions. The expected net 

income level of $10,756.27 under the preferred strategy of the risk 

neutral decision maker is more than $7,400 higher than that associated 

with the representative strategy of decision maker A, but the latter 

is much less likely to face substantial losses under his preferred 

strategy. 

The results also show that the introduction of forward contracting 

has only a minor impact on crop production strategies. Levels of land 

rental, relative acreages allotted to corn and soybeans, and stopping 

dates for corn planting specified in the strategies included in the 

efficient set of each decision maker show few significant changes. The 

most notable change is the inclusion of several cropping plans which 

devote more acreage to corn in the efficient set of decision maker C 

when forward contracting is incorporated into the management strategy. 

A third observation is that, though many of the strategies identified 

appear to have some minor flaw, efforts to construct improved strategies 

through a search of a larger number of strategies or by simply changing 
\) . 

parameter values which seem to cause problemi rarely resulted in the 

identification of strategies with substantially better performance. In 

an effort to identify a better strategy for the risk neutral decision 

maker, for example, 250 additional strategies for which land rental is 

set at 240 acres were evaluated. The strategy defined in Figure 6.3 was 

identified as that which maximizes expected net returns. It has an 

expected net income level of $10,868.57. This is higher than that of 
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Crop Production Plan 

vl = 240 acres rented 

v2 = 190 acres corn 

v3 = 290 acres soybeans 

V4 = May 26, the date after which 
all unplanted acreage is 
planted to soybeans 

Corn Contracting Rule Parameters 

V5 = 20.00 

v6 = -12.00 

V7 = .20 

v 2 
8 = -.40 

Soybean Contracting Rule Parameters 

v9 = 7.00 

v10 = -4.00 

v,, = 0 

v122 = -.30 

Expected Net Return: $10,868.57 

Standard Deviation of Net Retvrn: $15,381 .73 

Lowest Sample Net Return: $-17,108.70 

Highest Sample Net Return: $33,857.36 

Figure 6.3 The Expected Net Return Maximizing Strategy 
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the preferred strategy identified in the original searches of strategies 

with and without contracting, The increase in the level of expected net 

income is not a very significant one, however. 

Finally, it is interesting to note the composition of the efficient 

set for each decision maker when strategies with and without contracting 

are evaluated simultaneously. For the risk neutral decision maker the 

results based on the original search indicate that a strategy without 

contracting--that defined in Table 6.1--is preferred to all others. The 

strategy defined in Figure 6.3, which does involve contracting, has a 

still higher expected net return, however, and so is preferred by this 

d . . k 1 ec1s1on ma er. For decision maker A, it was found that each of the 

eight efficient non-contracting strategies is dominated by at least one 

of the efficient strategies with contracting. For decision maker B 

seven of the nine efficient non-contracting strategies were dominated 

by at least one efficient contracting strategy, and for decision maker C 

all eleven efficient non-contracting strategies are dominated. In 

general, then, strategies with contracting clearly outperform those 

which preclude it under the conditions specified in this example. 

6.7 Implications for Further Research )' ) , 

The problem of identifying combined production and marketing strate­

gies which are well suited for a particular decision maker's situation 

is an important one. The analysis presented above is not intended to 

be a source of definitive solutions to this problem. Rather, it demon-

strates an approach to the analysis of choices of this sort which employs 

1A more intensive search of non-contracting strategies failed to 
identify any with a higher expected net income level. 
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the techniques developed in this study to identify reasonable management 

strategies which perform well under relatively realistic conditions. 

More work needs to be done, however, to make the model described above 

the basis for truly reliable prescriptions. 

With regard to problem formulation, other marketing alternatives 

need to be incorporated into the analysis. The impact on individual 

management strategies of government price stabilization programs which 

put an effective floor on crop prices and provide a form of disaster 

insurance for participants may be particularly important, for example. 

Similarly, the use of the futures market rather than forward contracting 

may be an attractive alternative for larger producers. In addition to 

the inclusion of other marketing alternatives, more careful specification 

of the feedback control rules which direct marketing decisions may also 

make the model a more reliable prescriptive tool. 

Improved assessments of probability distributions for all the 

stochastic factors considered in this example are also needed. Particular 

attention should be given to the specification of more realistic distri-

butions for forward contract price offerings over the course of the 

planning horizon. As was done in the example above, this can, perhaps, 
\• 

)' 

be best achieved by modelling the relationships among current contract 

price, cash price at harvest, and intermediate contract price offerings. 

In addition to improved specifications of subjective probability distri-

butions, it may also be desirable to consider more than twenty sample 

states of nature in a decision situation such as this one in which a 

large number of random factors have an imoact on net income levels. 
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Once modifications of this sort have been made, a more systematic 

exoloration of the effect of decision maker preferences, probability 

assessments, and scale of operation on the nature of preferred forward 

pricing rules would be of particular interest. Can shifts in the para­

meter values of a specific rule be related to differences in factors 

such as these? Are contracting rule parameters relatively insensitive 

to changes in some of these factors? Is the choice of an expectations 

model dependent upon preferences? These are important questions which 

should be considered in future research. The objective of such research 

should not necessarily be to identify invariant behavioral rules which 

can be applied in any situation. The results above indicate that such 

rules are not likely to exist. Rather, the goal should be to better 

understand both the contracting rules themselves and the complex inter-

actions among the variety of factors which affect decision maker choices. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1 A Review of the Methodological Tools 
Developed in this Study 

This study has focused on the development of techniques designed 

for use during four imoortant phases of an applied decision analysis: 

problem formulation, the determination of subjective probability distri-

butions, the measurement of decision maker preferences, and the identifi-

cation of preferred choices. When considered together, the procedures 

described in this study represent an integrated set of operational 

techniques which facilitate the application of powerful theoretical 

tools based on the expected utility hypothesis in an ap~lied setting. 

In the discussion of problem formulation, two important considera-

tions were stressed: the need to structure the problem being analyzed 

by identifying and classifying factors which will have an important 

impact on the outcome of the decision being mad~a and the need to give 

careful attention to the definition of what is)~o be decided. With 

regard to the first of these considerations, the usefulness of systems 

identification (Manetsch and Park, 1977a) as an aid in structuring the 

decision maker's perception of a particular practical problem was 

demonstrated. With regard to the definition of what is to be decided, 

the need to recognize the existence of future opportunities for learning 

in many decision situations and the desirability of flexible management 
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strategies in such instances were emphasized. The incorporation of 

feedback control rules into a management strategy was shown to be one 

way in which considerations of flexibility can be introduced into a 

decision analysis. 

The value of combining direct probability assessments of underlying 

stochastic factors with the modelling of more complex stochastic pro-

cesses was stressed in the discussion of the determination of the dis-

tribution of outcomes associated with any particular choice. Under this 

aoproach, which is suggested by Spetzler and Stael van Holstein (1975), 

direct encoding techniques are used to elicit information on a decision 

maker's expectations about future levels of environmental variables 

which cannot be controlled by the decision maker but have an important 

impact on the outcome realized under any particular strategy. Monte 

Carlo simulation techniques are then used to determine the combined 

effect of these exogenous stochastic factors and a particular management 

strategy in the distribution of system output levels. The use of both 

direct encoding and modelling allows considerable flexibility in the 

specification of subjective probability distributions of underlying 

variables and in the representation of the stoc~astic system under 
\) . 

consideration--flexibility that is often lost when a more strictly 

analytical approach is taken. 

One important criticism of systems modelling and Monte Carlo 

simulation is that correlations between random factors are often 

ignored. This is due largely to the fact that procedures for the 

generation of sample observations from multivariate distributions have 

been developed for only a few special distributions. An important 
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contribution of this study is the development of a generalized multi­

variate process generator, which is described in detail in Appendix A. 

This greatly enhances the value of Monte Carlo simulation as a tool in 

the applied analysis of decisions made under uncertainty. 

The need for preference measurement techniques which are more 

flexible and more reliable than existing procedures is stressed in the 

discussion of the measurement of decision maker preferences. In response 

to this need, a new approach to preference measurement has been developed 

as a part of this study. This new procedure permits the construction 

of interval measurements of a decision maker's absolute risk aversion 

function. Perhaps its most important feature is that it allows direct 

soecification of the degree of precision with which preferences are to 

be measured. In contrast, single valued utility functions are exact 

but often inaccurate preference measures, and commonly used stochastic 

efficiency criteria are based on inexact, inflexible assumptions about 

preferences. 

Interval measurements of absolute risk aversion are used in con-

junction with the criterion of stochastic dominance with respect to a 

function (Meyer, 1977a) to order alternative choices. This recently 

developed stochastic efficiency criterion can be used to evaluate alter-

native choices for classes of decision makers defined by upper and lower 

bound absolute risk aversion functions. As such, it is both more 

flexible and potentially more discriminating than other efficiency 

criteria based on stochastic dominance. 

Results of an empirical test of the interval approach to the 

measurement of decision maker preferences demonstrate its value. They 

show that it leads to a lower probability of eliminating a decision 
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maker's preferred choice from the efficient set of choices than 

that realized with a single-valued utility function and that 

permits the identification of efficient sets smaller than those 

associated with the criteria of first and second degree stochastic 

dominance. The results also show how the precision with which pre-

ferences are measured can be varied under this approach. 

The identification of preferred choices is the primary objective 

of any decision analysis. The final methodological contribution of 

this study is the formulation of a generalized risk efficient Monte 

Carlo programming model (GREMP), which combines random search proce-

dures, Monte Carlo simulation, and evaluation by the criterion of 

stochastic dominance with respect to a function in a single analytical 

framework for the identification of oreferred choices. This model is 

both flexible and computationally efficient, and it is well suited for 

the analysis of a wide range of practical decision problems. The use 

of Monte Carlo programming procedures to generate alternative strategies 

for consideration facilitates the introduction of flexibility into the 

definition of a management strategy, since strategies can be defined by 

feedback control rules as well as by specific values of control variables 
)} . 

over the entire planning horizon. The incorporation of Monte Carlo 

simulation techniques into the model facilitates the more realistic 

representation of the complex processes by which the control variable 

levels determined by a particular management strategy and a set of 

stochastic environmental factors interact to determine the properties 

of the distribution of outcomes associated with any choice. Finally, 

evaluation by the criterion of stochastic dominance with respect to a 
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function permits the ordering of choices in a manner fully consistent 

with the expected utility hypothesis without requiring that restrictive 

assumptions be made about decision maker preferences or the form of 

system output distributions. 

The methodological tools developed in this study are of considerable 

value. It should be noted, however, that they are not intended for use 

in all decision situations. They allow considerable flexibility con-

cerning the degree of detail incorporated into any decision analysis, 

but they are intended primarily for application on a computer and can 

be expensive to use. They do not replace budgeting techniques or 

mathematical programming but supplement these and other existing 

methodological tools. As is true of any aid in the decision process, 

the procedures developed here should be employed only when the benefits 

associated with their use exceed the possible added costs. It should 

also be noted that these procedures are not all that is required to 

successfully resolve a practical decision problem. Rather, they repre-

sent a set of tools which facilitates some aspects of the decision 

process--a process which involves a wide range of activities. 

7.2 Empirical Findings 1 . 
)· 

This study focuses primarily on methodological rather than empirical 

issues. Several empirical findings associated with the illustrative 

applications of the procedures developed in this study are worthy of 

note, however. 

As a test of the interval approach to the measurement of decision 

maker oreferences, preference measurements were made for seventeen farmer 

participants in a marketing extension workshop. As reported in Section 4.8 
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of Chapter IV, the resulting preference measurements provide rather 

strong evidence that many decision makers exhibit both risk loving 

and risk averse behavior. The interval measurements for thirteen of the 

seventeen respondents included negative as well as positive values. The 

results also showed that strictly decreasing absolute risk aversion 

functions are not as common as is often suggested. Though certainly not 

generalizable to a larger oopulation, these findings do call to question 

the wide acceptance of the proposition that absolute risk aversion 

functions tend to be positive valued and strictly decreasing, and so 

suggest that further research in this area may be warranted. 

The procedures developed in this study are applied in the analysis 

of two related examples concerned with choices made in the operation of 

a cash grain farm. The first example focuses on land rental and produc-

tion olanning decisions when prices, yields, and time available for 

fieldwork are uncertain. In the second example, these same decisions 

are considered in conjunction with the choice of a flexible marketing 

strategy involving cash sales at harvest and forward contracting. The 

results of both applications demonstrate the flexibility of the proce­

dures developed in this study. They also indicate that decision maker 
) ) ' 

preferences have an important impact on both the selection of a cropping 

plan and on the choice of an aopropriate marketing strategy. Finally, 

they show that the degree of interdependence between production and 

marketing strategies is not particularly great, which suggests that it 

may be possible to analyze these two components of a management 

strategy separately in some situations, 
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7.3 Implications for Future Research 

The techniques developed in this study can be of use in the analysis 

of a diverse range of practical decision problems. Clearly more work 

can be done, for example, on the analysis of alternative production and 

marketing strategies for agricultural firms. Of particular value would 

be attempts to develop flexible marketing strategies which are suitable 

for a broad range of decision makers and decision situations. Another 

potentially important application of these techniques is in the analysis 

of alternative pest management strategies. Such strategies are, in 

effect, feedback control rules designed to direct actions in complex 

decision situations characterized by a considerable degree of uncertainty, 

and the GREMP model, with its combination of random search and simulation, 

is well suited for the identification and evaluation rules of this type. 

The methodological tools developed in this study can also be of 

use in the analysis of major investment-disinvestment decisions, both 

private and public. They permit the explicit consideration of flexibility 
~ 

in the analysis of such choices--a factor which, as Masse (19~) notes, 

is of critical importance when major resource commitments are to be 

made in an uncertain environment. At a still higher level of aggrega­
' . 

tion, these tools can also be employed in the a~alysis of policy decisions 

having outcomes which are strongly influenced by stochastic factors in 

the environment in which they are implemented. 

The techniques developed in this study greatly facilitate the 

application of decision theory based on the expected utility hypothesis 

in the analysis of practical decision problems. They have considerable 

potential value, but they can be made more effective if they are refined 
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still further. There is a need, for example, for further testing of 

the procedures used to implement the interval approach to the measure­

ment of decision maker preferences. Experiments should be conducted to 

identify measurement scales which allow preferences to be adequately 

represented in a wide range of decision situations, and alternative 

modes of questioning should be evaluated. Will a measurement grid 

which works well in the analysis of choices having outcomes which are 

concentrated around a certain value be adequate when preferences are to 

be measured over a much broader range of outcomes? Over how wide a 

range of systems output levels can absolute risk aversion be assumed 

to be constant? Does the range depend on the level of system output? 

In the neighborhood of how many system output levels should preferences 

be measured? Upon how many choices should each measurement be based? 

These are but five of the many questions which need to be answered. 

More research is also needed on the representation of preference 

relationships which depend on more than one system output variable and 

on the development of multivariate stochastic dominance criteria. Though 

some work has been done in the latter area by Levy (1973), Levy and 

Paroush (1974a, b) and Kihlstrom and Mirman (1974), further research 

is needed. Particularly valuable would be an extension of stochastic 

dominance with respect to a function to the multivariate case. 

Additional refinements are also needed in the GREf'1P model. It may 

be possible, for example, to increase the efficiency of this procedure 

by incorporating learning rules which lend at least partial direction 

to the random search. Such rules could be applied at the end of each 

100 iterations of the model and might have the effect of reducing the 
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range of values for control variables over which the search is to be 

made in subsequent iterations. A second type of rule might cause the 

search to be stopped if no new strategies have entered the efficient set 

for a certain number of iterations. 

Finally, it must be noted that methodological advances alone will 

not eliminate all the difficulties encountered in the applied analysis 

of decisions made under uncertainty. The two applications of the 

techniques developed in this study point to the importance of and the 

need for an improved information base in most decision situations. This 

need is particularly strong with regard to decisions made by agricultural 

producers who face so many different types of uncertainty. Efforts must 

be made to supply producers with probabilistic price forecasts and to 

teach them to use such information effectively. Frequently, all the 

information needed to make forecasts in probabilistic terms is readily 

available to the agencies or individuals who predict future price levels, 

but in most cases price forecasts simply state a most likely value, or 

at best, an interval within which the price is expected to fall. 

Similarly, more complete information is also needed about how yields 

are affected by timeliness and by stochastic factors in the environment. 

More consideration needs to be given to such factors in the design of 

agronomic experiments. 

The information base for the analysis of decisions made under 

uncertainty could also be improved by research designed to identify 

systematic relationships between levels of absolute risk aversion and 

selected decision maker characteristics. Such information could be of 

use to policy analysts who wish to consider the impacts of uncertainty 
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on the choices made by representative firms. It could also be of use 

in situations when the importance of a choice to be made does not 

warrant the expenditure of sources required to construct an interval 

measurement of the decision maker's preferences. 

In conclusion, then, the methodological tools developed in this 

study can, in their present form, be employed in the analysis of a wide 

range of practical decision problems. They represent an important 

improvement in the set of techniques available for the applied analysis 

of decisions made under uncertainty. Further efforts are needed, however, 

to make these tools both easier to use and more effective. 
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APPENDIX A 

A GENERALIZED MULTIVARIATE PROCESS GENERATOR 

A.l Introduction 

The analysis of decisions made under uncertainty requires that infor-

mation on the probability distributions of system output variables be 

determined for each alternative strategy being considered. In most 

cases the properties of such distributions depend on the controllable 

system input levels which define any particular strategy and on the 

probability distributions of stochastic environmental factors which 

cannot be controlled by the decision maker. When there is only one 

stochastic environmental factor or when the relationship between con-

trollable and exogenous system inputs and system outputs is relatively 

simple, the properties of system output distributions can be derived 

analytically. 1 When several stochastic factors having probability 

distributions from different families must be considered or when input-

output relationships are not of a convenient fDrm, however, analytical 

techniques cannot be used to determine the properties of system output 

distributions. In such instances, Monte Carlo sampling procedures and 

numerical simulation techniques are frequently used to obtain the 

necessary information. Sample states of nature are defined by selecting 

1see Anderson and Doran (1978) for an excellent review of the con­
ditions under which information on such probability distributions can 
be determined analytically. 
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values for each exogenous system input in a pseudorandom fashion. 

Numerical simulation techniques are then used to determine the system 

output levels associated with a particular strategy for each state of 

nature. The resulting values constitute a random sample from the pro-

bability distribution of system outputs. They can be used to calculate 

sample moments of the underlying distribution, or they can be used to 

construct an approximate representation of the cumulative distribution 

function of the system output variable. 

A process generator is a procedure, usually programned for imple-

mentation on a computer, which generates pseudorandom sample observa­

tions from a specified probability distribution. 1 As such, process 

generators are a basic building block in the procedure described above. 

Process generators have been developed for a wide range of standard 

univariate probability distributions including the discrete and con-

tinuous uniform, exponential, gamma, beta, chi-square, normal, lognormal, 

geometric, binomial, hypergeometric, and Poisson (Naylor, et al., 1966; 

Schmidt and Taylor, 1970; Newmann and Odell, 1971). In determining the 

properties of a distribution of systems outputs, the use of univariate 

process generators is appropriate if all underly,·ing stochastic factors 
) ) ' 

can be assumed to be independently distributed. When this assumption 

cannot be made, a multivariate process generator is required. 

Process generators have been developed for several multivariate 

distributions, most notably the multivariate normal and the Wishart 

1The term 11 pseudorandom 11 refers to the fact that, although values 
generated by a process generator have all the properties of a random 
sample, they are actually generated in a deterministic fashion. 
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distributions (Naylor, et al., 1966; Newmann and Odell, 1971). In many 

cases, however, the properties of the joint distribution of a particular 

set of stochastic environmental factors may not be adequately approxi-

mated by either of these distributions. There is a need, then, for 

multivariate process generators which are more flexible than those 

currently available. 

A major contribution of this study is the development of a workable 

procedure for the generation of random variates from multivariate pro-

bability distributions with non-normal marginal distributions. The 

formulation and implementation of this procedure is the primary focus 

of this appendix. Before introducing the generalized multivariate 

process generator, however, basic concepts related to the generation of 

random variates are first reviewed, and several commonly used univariate 

process generators are presented. The generation of random variates 

from the multivariate normal distribution is then discussed, since this 

procedure is used in the more general process generator developed in 

this study. Finally, the algorithm for the generation of random 

variates from multivariate distributions with specified marginal dis-

tributions and correlation matrix is presented:along with an explana­

tion and listing of the computer program used'~o implement it. 1 An 

empirical example is also presented to demonstrate the efficacy of 

this procedure. 

1Though developed independently, this procedure is similar in 
many respects to methods described in an unpublished paper by Coleman 
and Saipe (1976), which describes several procedures for the generation 
of sample observations from bivariate distributions. 
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A.2 Basic Procedures for the Generation 
of Random Variates 

Several approaches have been developed for the generation of 

random variates. They include the inverse transformation method, the 

rejection method, and the composition method, all of which are described 

in Naylor et al. (1966). Because it is the most commonly used and 

because it serves as the basis for the algorithm to be discussed below, 

only the inverse transformation method will be reviewed here. 

The cumulative distribution function, F(x), of the continuous 

random variable, x, is defined over the interval (0,1). Associated 

with each value of x, then, is a valuer lying on the interval (0,1) 

such that 

r = F(x) A. 1 

Similarly, if the inverse of F(x) can be determined, the following 

relationship will hold: 

-1 x = F (r) A.2 

In this case any particular value of r uniquely determines a value of 

x if F- 1(r) is a continuous, monotonically increasing function. By 

generating a set of uniformly distributed random variables lying on 

the interval (0, l) and calculating the corres~?.hding values of x deter­

mined by equation A.2, a set of sample observations from the probability 

distribution of x is generated. This is the inverse transformation 

method for generating random variates. 

Following Manetsch and Park (1977b) the validity of the inverse 

transformation method can be demonstrated in the following manner. Let 

r = F(x) A.3 



211 

where r is a uniformly distributed random variable defined on the 

interval (0,1). By the definition of a cumulative distribution function 

A.4 

where x0 is a specific value of x and r 0 is the corresponding value 

of r. Since r is uniformly distributed 

G(r0) = P{r~r0 } = r
0 

A.5 

Since F(x0) and r0 are equal, Equation A.5 implies that 

A.6 

and since F(x) is assumed to be a monotonically increasing function in 

x, it also follows that 

P{F- 1 (r)~x 0 } = F(x
0

) = P{x2x
0

J A.7 

Therefore, the distribution of the random variable generated by the 

inverse transformation method is identified to that of the random 

variable x. 

Application of the inverse transformation method is shown graphically 

in Figure A. 1. A cumulative distribution function F(x) is drawn on the 

left, and its inverse is drawn on the right. In the particular example 

shown the randomly selected value of R is .5, and the associated value 

of x is 6.3. I . 
)· 

The inverse transformation method is the basis for commonly used 

procedures for generating random variates from several standard probability 

1For uniformly distributed random variables 

g(r0) = r 0 o~r0 $l 
0 elsewhere 

and 
ro ro 

= f o g(y)dy = la ydy = ro 
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distributions. Most notably, it is the basis for process generators 

for exponential, gamma and beta random variables. Procedures for the 

generation of variates from each of these distributions are presented 

1 below with the computer programs which implement them. 

A.2. 1 An Exponential Process Generator 

The density function of an exponential random variable is given 

by the expression: 

f (x) = ae-ax O~x A.8 
0 otherwise?-

This function can be integrated to obtain the cumulative distribution 

function, F(x) 

F(x) A.9 

The inverse of F(x) is given by the expression 

-1 1 F (r) = x = - - ln (1-r). 
a 

A. 10 

If r is a uniformly distributed random variable on the interval (0,1) 

this expression reduces to 

x = - l 1n (r). 
a 

A. 11 

By generating values of r at random and calculating the associated 

values of x using Equation A. 11, sample observations from an exponential 
) ) . 

distribution with parameter a can be generated. 

A computer program which implements this procedure is listed in 

Figure A.2. Three parameter values must be supplied by the user: ND, 

BL, and XMEAN. ND is the number of variates to be generated, BL is 

1 These programs can easily be made into subroutines and incorporated 
into larger programs. 

2The mean and variance of this distribution are l/a and 1/a2 

respectively. 
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1 the lowest value the random variable can take, and XMEAN is the expected 

value of the distribution. 

A.2.2 A Gamma Process Generator 

The density function of a gamma distribution is 

f (x) = 
k (k-1) -ax 

a x e 

( k-1) ! 

0 

O~x 

otherwise? 

A. 12 

An analytic expression for the cumulative distribution function of this 

distribution does not exist. It can be shown, however, that the sum of 

k exponentially distributed random variables, each having an expected 

value of l/a, is a gamma random variable with a density function identical 

to that given in Equation A.12 (Schmidt and Taylor, 1970, p. 265). 

Random variates from gamma distributions for which the parameter k is an 

integer, then, can be generated by summing k variates drawn from an 

appropriate exponential distribution. 

A computer program which generates gamma random variates by this 

method is given in Figure A.3. In this case four parameter values must 

be supplied by the user: ND, BL, XMEAN, and K. ND, BL, and XMEAN are, 

again, the number of sample observations to b~ generated, the lower 
\)' 
I 

bound of the distribution, and the expected value of the distribution. 

1rn the deviation above, BL was assumed to be zero, but this need 
not be the case. 

2The mean and variance of this distribution are k/a and k/a2 

respectively. 
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K is the second parameter of the gamma distribution. 1 The parameter K 

cannot always be treated as an integer. Though not reviewed here, a 

procedure for generating variates from gamma distribution with non-

integer parameters is described elsewhere by Phillips and Beightler 

( 1972). 

A.2.3 A Beta Process Generator 

The density function of the beta distribution is 

f(x) r(a+s)xa-1 ~l-x)s-1 Osxsl A 13 
r(a)r s) · 

0 elsewhere? 

Again, an analytic expression for the cumulative distribution function 

cannot be derived. As Naylor et al. (1966) note, however, the random 

variable defined by the expression 

A. 14 

where x1 and x2 are both gamma random variables with identical values 

of a and values of k such that k
1 

= a and k2 = s, has a beta distribu­

tion with parameters a and s. If a and s are integers, then, beta 

random variates can be generated using an extension of the procedures 

) ) ' 1
The parameter k can be determined by solving the following 

expression 

k 
2 (µ-BL) 

2 
a 

whereµ and a2 are the mean and variance of the distribution being 
modelled and BL is the lower bound of that distribution. The program 
computes the value of the parameter a automatically. 

2
The mean and variance of this distribution are 

µ = a/(a+s) 
and 

2 aS 
0 

= (a+S+l) (a+s)Z 



218 

developed above. Two gamma variates from appropriate distributions are 

1 generated and a beta variate is defined according to Equation A. 14. 

A computer program for generating beta variates is given in 

Figure A.4. The user must supply values for five parameters: ND, BL, 

BU, Kl, and K2. ND is the number of variates to be generated. BL and 

BU are the upper and lower bound values which the random variable can 

take. Though set at zero and one in the derivation above, they can be 

set at any values. Kl and K2 are the two shape parameters of the beta 

distribution. Their values are determined by solving the following 

two equations 

3 2 2 K2 = y -2y +(l+o)y-o 
02 

A. 15 

and Kl = y~~ A.16 

where y and 02 are the mean and variance of the distribution once it 

has been normalized so that all values be on the interval (0,1 ). 2 

A.2.4 A Generalized Univariate Process Generator 

Each of the process generators above is based on a simple applica-

tion of the inverse transformation method to the exponential distribu­

tion. For many distributions, however, the iriverse of the cumulative 
))' 

1when a beta distribution has non-integer parameters, the gamma 
variates required in Equation A. 14 can be generated using the procedure 
developed by Phillips and Beightler (1972). 

2More formally, 

y = (µ-BL)/BU-BL) 

and 
0
2 

= y
2/(BU-BL) 2 

where µ and y2 are the mean and variance of the actual distribution to 
be modelled. 
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distribution function cannot be derived analytically, and simple 

analytical links to other distributions for which such inverses can be 

calculated may not exist. Most notably, this is true for the normal 

distribution. In the case of many empirical probability distributions, 

the exact functional form of the cumulative distribution function may 

not even be known. Nevertheless, the inverse transformation method 

can still be used in such instances. Values of the cumulative distri-

bution function F(x) at specified levels of the random variable x can 

be used to construct a rough approximation of the entire function by 

linearly interpolating between known points. 1 In Figure A.5, for 

example, six points on a cumulative distribution function are specified: 

the upper and lower bounds, and three intermediate points which divide 

the cumulative into quartiles. Given such a diagramatic representation, 

the value of the random variable x associated with any randomly selected 

probability level is easily determined. As shown in Figure A.5, for 

example, the value of x corresponding to a probability level of .2 

is 44. 

A table look-uo function (Llewellyn, 1965) is the equivalent of 

such a diagram on a digital computer. The tabJe look-up function 
)) ' 

TABEX, a listing of which is given in Figure A.6, has access to an 

array of X values, ARG, and an array of corresponding probability 

levels, VAL, each array having K elements. Given an argument value, 

1Points in the cumulative distribution function can be determined 
analytically, by numerical integration of a known probability density 
function, or they can simply be sample observations from an empirical 
distribution. As Schlaeffer (1959) notes sample observation arranged 
in order are reasonable estimates of the fractiles of the underlying 
distribution. 
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Source: Llewellyn (1965, p. 4-22). 

Figure A.6 A Table Look-up Function Subprogram 
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DUMMY, this function subprogram computes a value of the function defined 

by ARG and VAL. If x is a random variable and if R is a variable lying 

on the interval (0,1) which corresponds to a value of F(x), then the 

FORTRAN statement 

R = TABEX(VAL, ARG, X, K) A. 17 

calculates the probability level on the cumulative distribution function 

corresponding to any specified value of X. One of the interesting pro-

perties of this particular table look-up function is that by simply 

switching the positions of VAL and ARG in the calling statement, values 

of the inverse function can be calculated. The FORTRAN statement 

X = TABEX (ARG, VAL, R, K) A. 18 

for example, calculates the value of X which corresponds to any 

specified probability level, R. 

A computer program which uses the inverse transformation method 

to generate variates from a probability distribution defined by a 

specified set of points on the cumulative distribution function is 

given in Figure A.7. The user must supply values of ND, the number of 

variates to be generated, and K, the number of points on the cumulative 

distribution function to be specified explicitly. Paired values of the 

random variable and the cumulative distributio~
1 

function are then read 

into arrays ARG and VAL. These values must be arranged by the user in 

ascending order. 

The procedures developed in this section are of interest in them-

selves, since they are all useful tools for Monte Carlo sampling. More 

important in relation to the primary purpose of this appendix, however, 

they are used extensively in the generalized procedure for the genera-

tion of variates from multivariate distribution. 
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Figure A.7 A Generalized Univariate Process Generator 



f ' 

225 

A.3 The Generation of Variates from the 
Multivariate Normal Distribution 

As stated above, the multivariate normal distribution is one of 

the few multivariate probability distributions from which a workable 

process generator has been developed. Each element of the vector of 

random variables, x, of which a multivariate distribution is comprised 

is normally distributed with specified mean and variance. The multi-

variate distribution is fully described by the vector of expected 

values for each of its marginals, µ, and by a positive definite, 

symmetrical variance-covariance matrix, ~' which is defined by the 

following expression, 

~ = E[(x-µ) · (x-µ)] A.19 

If the elements of x are not correlated, the off-diagonal elements of 

this matrix will equal zero and each variate in x can be generated 

independently using procedures such as those outlined in the preceding 

section. When correlations are present, however, this approach is not 

satisfactory. 

Naylor, et al, (1966) describe a procedure for the generation of 

variates from the multivariate normal distribution which is based on a 

theorem proved by T. \~. Anderson (1959). That t!heorem states that if 

z is a vector of independent standard normal variates, there exists a 
.. 

unique lower triangular matrix, C, such that 

x = Cz+µ A.20 

It follows directly that the variance-covariance matrix of (x-µ)--which 

is also the variance-covariance matrix of x, sinceµ is a vector of 

constants--is defined by the expression CC'. Therefore, 

~ = cc I A. 21 
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, The 11 square root method" can be used to derive a set of recursive for-

mulas for computing the elements of C from those of n. 

Once the elements of C have been calculated, a vector of independent 

standard normal variates, z, can be generated, and the vector x can be 

found using Equation A.20. To generate a large number of sample vectors 

from a given multivariate distribution, the elements of C need to be 

calculated only once. The final two steps described above are then 

repeated for the generation of each vector of variates. 

A computer program which implements this procedure is listed in 

Figure A.8. The user of this orogram must specify ND and MN, the num-

ber of sample vectors to be generated and the number of elements in 

each vector. He must also specify the mean and variance of each of the 

MN marginal distributions. Finally, the off-diagonal elements of the 

correlation matrix which are non-zero must be specified. 1 The variable 

IND is set to a non-zero value when the last correlation coefficient is 

read. This program can be used to model multivariate normal distribu-

tions with up to fifty elements. More information about its structure 

is provided on comment cards included in the listing. 

A.4 A Generalized Multivariate Process Generi\tOr 

In this section a generalized procedure for the generation of 

samole vectors from multivariate probability distributions is described. 

1For any pair of random variables x and y, then correlation coefficient 
pxy is defined by the expression 

where o xy 

=~ 
0 0 x y 

is the covariance between x and y and o x 
deviation of the two random variables. 

and o are the standard 
y 
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PROGRAM Ml.'~!l"i'1 ( =~JPlJT. OVT :_;T, Tt.PESc INPUT. TAPE,C,c-OUTPUTl 
CDr1MCJ:; /TJI U<i\l/ C<c10, 0/,COP<S0,50J,PAR<50,50),V(50l,MN 
DIM~tL.TC".~l X ':'.l), >~l~~f\t~,~) J, Z\~~0) 

C RCf\V ~J\J'~~L-'< .'!_[_ V.'_C:lO -~ TO UC: GUJERATED ArJD NUMDER 
C OF ELErlGH:C .: fl 1.JEC fCJ0 

REf .. D(~,l 1) rni,r-1."~ 
c READ Ml:r.N r,r vr,11U.N(:E Cf' !CM:H MARGINAL DISTRlllUTION 

~·'J "') ] ~ l' .... ./ 
5 h'C-/\i)(<j, ~~,! 'i.l'IF,\N(J).\J(J) 

C CONSTRUCT ccr r~c, 1\r 101'1 Ml",iPIX 
C Flf<ST SET r- 1_• l !_f:t•UITS EG'JAL -~::i ZEflO 

DO l 0 1 \. I"' i 
ro 10 J-- ,, ..-.. 1 
C OR < J, J) -- C> 'J 
I H I F (l -' l C OH ( I. J) ~I 0 

10 CG~rrI~.J\.'." 
c NEXl FlE:AD i•c.•_ r .. 1,_-zr:RrJ ELa:.:-·ITS IN LU.J::-R TRIArlG'-'Lf.P. POPTION 
c or- MAi~~IY (~ . .::_r lf,lJ [ 1,)~J/c..!_ TO f-\ f'IOtl-ZE.RLJ VALIJE \.IHCr~ THE LAST 
C ELEMErJT 1 S ~ U ;.;r:_ P[/.11 

I 5 1° Er,[)! '.i. l 02) ; . J. C 1JR ( r. J > • l ND 
c TllIS ST,\n:;·~F,JT "C-:s tlON-ZEPO VALL'C:S IN THE UPPER TR!At<GULAR 
C PORTION OF TH~ ~ATHJX 

CCf-l(J, I )--C.Clf!( I.,)) 
ff(JND F:G ()) C:J TO 15 

C CONSTRUCT L_r,:L"R TRir,tlCULAR MATRIX C. 
C>\LL COU-

C BEG IN TO CE',';ER.I\ TE SMIPLE VECTOr-<S 
DO 35 l=J, r;;, 

C GENFRATE MN l~F:~~ENDENTLY DISTRJDUTED STANDARD NORMAL VARIATES. 
DO 20 ,J= 1 , ,':N 
Rl=RA"~(-1 l 
R2"Rl\~~r l) 

c THIS TECH~Jir,_,c:- FC:<' TfE Gi':t:!::R.-'.TI'.JN IJF NORMf,L VARIATES rs FROM 
C NANETSCH A~~D PA~1~r l~'~S> 

20 ZtJ>=<-2 0~1\~~~t~l))*~ ~·-COS<6 28Jl~R2> 
C GENERA1E vAP1A1>~ FRUM DESIRED MULTIVARIATE NORMAL DISTRIBUTION. 

25 
30 
35 

100 
101 
10;> 
200 

DO 30 .J-1, m-.r 
X(J)=XM[J,"<(J) 
DO 25 K=!, '~~' 
X<J>~XlJi 1-C<~'· K>•Z<Kl 
CONTIUUE 
WR I TE i/,. ::C•Cd < X LJ l, J=), MN> 
FORM.GTl.'tC) 
FOF?M~'\T '. :=;-.-- ! 0 ~) 
FGRf-1,t-.1 (~'!:~. FlO. 2, !'5) 
FORMAT< lOFU ~'> 
Er-;D 

SUDRClUT me: CCcF 
c THIS Sl:DfiOUTI:.-:: ccr.STRUCTS 11--:c:: LOWER TRIANGULAR MATRIX c 
C IT WAS Wr~ITf:rt rv R tJE~L ~[~[~SON 

COMMON ILL ~"~hl I CC 50, 50>, CIJR 150, 50), PAR ( 50, 50), '-/( 50), MN 
DO I 0 I c !. r:o< 
DO 10 J- 1,r:rJ 

10 C< I, ,Jl=O 
DO 20 I~ 1 . r::-.r 

20 PAR< I. 1 > ~CIJll CI. 1 l 
IF<MN_ L1 ~> GO TO 70 
DO 60 J=;'. MN 
JM!=J-1 
SUM=O_ 
DO '.30 ><.~1. ,JM! 

30 SUM~sur:+f'i\fl ( J, K). ~2 
PAR(J,J>~SUHT<l -SUM) 
IF<J. EG MN\ CO TO 70 
JPl=J+l 
DO 50 I ~,IP l, M:•I 
Pf.R<I-Jl~C> 
IF<PAf1(.J, ,JI E·J 0 l GO TO ':·J 
SUM~O_ 
DO 40 K~l.JMl , 

40 SUM:SUM•?~n<!.~)•PA~(J,Kl )' 
PAR<I. ,J'-~<COR<I, Jl--SUMl/Pr,RCJ, J) 

50 CONT !t-ll'E 
60 CONT!Nl:C: 
70 DO 80 I~t.MN 

DO 80 J~l. I 
80 C( I. J>~PAf<( I. Jl<>SGRT<V< r) J 

RETURN 
END 

A Progra~ for Generating Multivariate 
Normal Random Variates 
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This procedure can be used to generate random variates from multivariate 

distributions having up to fifty marginal distributions. Marginal dis-

tributions can be of any form, and they need not all belong to the same 

family of distributions. All that is required is that enough informa-

tion be available to construct the cumulative distribution function of 

each marginal and to specify the correlation coefficient between each 

pair of random variables in the distribution. 1 The only condition on the 

matrix of correlation coefficients is that it be positive definite and 

symmetrical, as required for internal consistency. 

The generalized multivariate process generator described below is 

based on the premise that correlations between the elements of a marginal 

distribution are, to a large extent, preserved as the elements undergo 

successive inverse transformations. The degree to which correlations 

are actually preserved under such transformations is difficult to 

determine analytically in all but the simplest of cases. Levels of 

correlation are not expected to be maintained exactly. It is expected, 

however, that high levels of correlation between elements of the initial 

distribution will lead to high levels of correlation between corresponding 

elements of the transformed distribution. All experience to date, some 
))' 

of which is reported below, strongly supports this basic premise. 

The procedure for generating sample observations from a generalized 

multivariate probability distribution is relatively simple. Once the 

1As Coleman and Saipe (1976) observe, the higher order product 
moments of a multivariate probability distribution may have an impor­
tant impact on its character. These moments are difficult to estimate 
reliably and are rarely considered explicitly in the description of 
multivariate processes. They cannot be considered in the process 
developed here. 
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cumulative distribution function of each marginal and a correlation 

matrix have been specified for the multivariate distribution to be 

modelled, a simple vector, z is generated from a multivariate normal 

distribution having a correlation matrix identical to that specified. 

For the sake of convenience all the marginals of the multivariate nor-

mal distribution are standard normal. Each element of the vector z is 

then transformed to a uniformly distributed random variable defined on 

the interval (0,1 ). This is done by simply finding the value on the 

cumulative distribution of a standard normal random variable associated 

with each element of z. 1 The resultant vector, u, is a sample vector 

from a multivariate distribution, all marginals of which are uniform 

distributions defined in the interval (0,1 ). The correlation matrix 

of that distribution is not known exactly, but it is expected that it 

can be reasonably well approximated by the correlation matrix originally 

specified. Finally, each element of the vector u is transformed by the 

inverse transformation method to a sample observation from the corre-

spending marginal distribution of the multivariate distribution being 

modelled. The resultant vector, x, can be viewed as a sample observa-

tion from a multivariate distribution having mar.ginals identical to 
)) ' 

that being modelled and a correlation matrix which, though not necessarily 

identical to that originally specified, is expected to be a reasonably 

good approximation of that matrix. For most purposes this procedure 

should provide an adequate representation of the distribution being 

modelled. The sample properties for an example are discussed below. 

1The fact that the transformed variable is uniformly distributed 
follows directly from the proof of the validity of the inverse trans­
formation method given in Section A.2. 
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A computer program which implements this procedure is listed in 

Figure A.9. Several types of inputs must be supplied by the user of 

MVGEN. ND and MN are the number of sample vectors to be generated and 

the number of elements in each vector. MN cannot exceed fifty. K is 

the number of data points to be specified for the construction of the 

cumulative distribution function of each marginal distribution. It can 

take a value as high as 100. K paired values of the random variable 

and cumulative distribution function of each marginal ~ust be supplied 

by the user. These values, which must be arranged in ascending order, 

are read into the two dimensional arrays ARG and VAL. Finally, non-

zero off diagonal elements of the correlation matrix must be supplied 

by the user. These can be read in any order. The variable IND is set 

to a non-zero value when the last correlation coefficient is read. 

The structure of the program closely follows the outline of the 

procedure described above. After all necessary variables are initialized, 

sample vectors are generated sequentially by first generating a sample 

vector from a multivariate normal distribution and then transforming 

the elements of that vector first to variates of a uniform distribution 

and finally to variates from each marginal of the multivatiate distri­
))· 

bution being modelled. More information about particular aspects of 

the program is given in corrrnent cards. 

Program MVGEN is designed to permit the user to specify marginal 

distribution of any form. When all the marginals of a particular multi-

variate distribution can be adequately described by one or more standard 

probability distributions, it may be more convenient and more efficient 

computationally to modify MVGEN so that only the parameters of each 
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PflOGF·~AM M'J(.r:n< Hll'U • OUTPUT. rr, 
CU:'ir~(_Jl'J /U!C' 1~V1/ C< (J,'.":,QJ,'.:.;r~· 
(CJMr1GrJ /Cl (•(t--:"l/ h:} .: ')(), 1·'.J-':; 
llif·IF/'1'....:lUN r1 './( .-.() l, U :~.(Jl, t: ('.)OJ, 
f) I l':l. ~~': T y ( ',:) ) 

~ INPUT, TAP~~·OUTPUT) 
, '.: () ) , P Al1 : '.;(). '10 ) , MN 
<'.JO, 1001 
LN I 4 l ) , AR GN ( 41 ) 

c T11r :·:' '(f T~.J i)11T,\ rl1 rr·cwr-irr:- 1\':'"_,';"'[!~l'J 1.1:.LUF:C-:} ~Cl 1J?.RIADLES 
c us:-o TO r~;: T11::; 1\ rr1r.:.c L'V?'(,, 1F ~r:-r'~~_c:!?:1ff'\Tt!JM OF ""THE 
c IN~!'. flt;:- (._1: ;-1:~ (I, .'\1 !'ir~ Df'--;fn [~:·•;TIOr'J FUNCTION OF A 
C SlP..rL,1~t--:lJ , 1~-·.·:'!,-\L t\1\;·.,.,(J;1 './Mf-<IAJL~~ 

1)/\ r A l\'.'J I ·l l I 
:Jt,f>\ (f'~N/ -.J 5.--1 'l6, -1 tA , -! 4:n. -1 ~:8J. -I l~·O, -1 037, - 925. 

1 - 0•1 \, .. 7«'. .. - t.i·~ '19fi. - ' - '1'54, - ::386. - 312. - 253, - 189, 
?- 12~L_,, ·· ()"~,'.__,, 0 (), (}'1.'Ji 1;tJ, f, 2:J'J, :J12, :J86, 454, 524, 598, 
J /,7r,. 7~:1'_1 c_,.~.1. ()' , J. l'~~. 1. ,~C?-1, 1 .J:-)·;i, 1 6·1'.J, l. lf60. 3 5/ 

C R[-f\D lf-"- i·;'J~A.:CP ri,- - ~ -:--:o:= TO DC C:~il~P,;TED, t4D. AND 
c THf-_ r~1_..i: 1'.~'-''. c,. : r'~ 14 1-1 .·:-~:rein. 1 ... :N 

Pt t1P \ c), i ·-:. .. , i~ i 
c R[-t\fl r;,,_ .. .~'':ITS TO [lt:: clTJt;E_D ON THE CUMULATIVE 
c 01s1r:irrur:-~,-: E..:\::H tvip,ru;r.~AL, .\ 

R r , .. r' ( ~, 1 ,:. 1 ,1 i.: 
C READ l'i/1 r M ~- 0 ~ r !TS f "OP E1\CH l":ArH; ~ ,\./. \:_ 

DO 5 I _- 1 . ~·~1 
[li) 5 Jc.!.~. 

~ R(-'.A[' < ci, 1 ::.:' J ,">.Rr.: (I, I), vr~L <I, .J) 
C SET ALL CH- iJ l 1'•;i:;llAL E'l.EME'Nl S CF THE CORRELATION MATRIX TO ZERO. 

DCi 10 I--1 f";N 
DO 10 J-~ J. r-'•'< 
CGH< J, .JJ~o 0 
If«! t:·:l J! CCR<J.J)~l 0 

10 COl'IT!fr• C 
c READ ALL :1ccr1-zr f'/O C:Of'f'ELAT!Drl C:IJEFrICil':NTS SET IND EQUAL 
c TO I\ t:•YJ-i.-"Cl ·/..\l_' . .'E )-1:i.O:N lHE LAO.T CORRELATION CCEFF!Cien IS 
C TO HE t<L·\U 

1 !:> Fl'!\[' I ~' I ("'.'1) I"!' c llR ( J, J), I NO 
CCP(J, 1: :-oq(i ,JJ 
IF ( l~,i!J l:-'J J i,•J ·rrJ L ') 

C CONc,iPU'o r_:·c· T'<!'l!r(;ULAR M>\lH!X C 
C<1U. CGL:-
V<UH 11 1 0 
DO 20 l-:2,KN 
,) oj-\ 

20 \/MLf'~(J):-.::'./1\LN(J)+ 0::15 
C BE'Gln Hl ':'C:.'l~:r;,;<E Ri\Nr1C«I VARIATES 

C·IJ '. ~ :,,, c:, Nfl 
C CALL tl:::p·.,-_ '!'ll«~H "'C:TUP'IS A 1!ECTOR OF INDEPENDENTLY DISTRIBUTED 
C 51 AN[•A;-T ;_ - · -\: '' :\rll1C:"1 VAR I,\ T l':'.'i 

c CON'.J~~~J 1:c :C~'':,'E:~~O:i FRml A MULTIVARIATE NORMAL DISTRIBUT!Or• 
[)11 -_:U I- l, M1'\J 
PV (I; -p 0 
C.D ;:1::, . ~· ~, r-:N 

25 R'!(ll"!l'J(J)+C<J.Jl<E<J) 
30 (ljiJTir'<J 1 <~ 

c TTMNScOR~! n;c 'l<:CT[!R OF nuL Tl VAR l ATE NORMl\l_ RAr<DCM •;;,RI ABLES 
c INTO ,; ~Ec:n~ or U~lFGRMLY D!STRIGUTED RANDOM VARIADLES. 

DO ~!'.' I~!. ~iN 
35 Ui I .'=T:-~ ;-_f..' .iAt_t,L f\~;,~;-,1, RVC I) ~-\N) 

C TRANS' 0~''1 f E 1 ;j[ FCR. !LY !' l :CTR: DU7ED Rt,tJ'.'IJM Vt1R l AIJLES INTO 
c RANTJC':" ,_·,-..r.:;,\[!L:·s ,-'imf THE SPECIFIED BETA DISTRIBUTIONS 

40 
50 

100 
101 
102 
103 
200 

D•J 40 l .cl, ~.N 
Y ( I ) ....:: ; •\ '..J t- ':I I < I , U < r ) , 1-< J 
W< I Tfc ! .~, :''.JO) < Y ! M), M~ 1, MN) 
rc::'.:v~Tr~~t~J 
1-- \_ 1 f' ~"~/\ T ( I ~· 1 

Fui=-,'i"1l\ T f .2f- ~ 0 :! ) 
FOFcr1ATC2f~, Flo 2, 
FCl\~t"'I T ( 1 or-·3 2) 
END 

I 5) 

SUDROUTl~!E NOR 1/ECiMN. El 
DJ~;EN;o;JQN E( 1) 
D::J 5 I~!. !";N 
R 1 =R .~NF < - J ) 
R2~RMIF (-I) 

5 E(Il=C-2. O•ALCG<Rl)l*• 5•COS<6)h~3l•R2> 
Rf TURN 
END 

FUrJCT! ON T lll<EX ( Vi'.L, ARG, DUfiMY, K) 
C THIS FUNCTION SU3PROGRAM IS FROM LLEWELLYN(\965) 

-- _D!MC:r,S!ON 1.11\I_( l ), r,RG< 1) 
DD I 0~2. K 
JF(DUMMY CT ARG(J)) GD TO 1 

? 1i~~~~~\~~~8iJ:~~~Jvl~~~~i~L(Jl-VAL(J-l))/ 
REH 1'lN 
CONTINUE 
J~K 

<'0 TO 2 
END 

A Generalized Multivariate Process Generator 
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Figure A.9 (cont'd.) 
FUNCTION TABrXICI.DUHMY.KI 
COH."10N I 01 OU\~' I f,RG C :JO. : 00 l, Vf\L C 50, 100) 
DO 1 J<c. K 
IF ( DUHr1'{ ( r 'J(,L ( I "J) ) er, TO 1 

2 T;.r:Exl••(D\l.'ICIY- 'vM_( !. J-j I:' (.t\RGI :. JI-ARC( I. J-1) )/ 
1 ( l/f,L <I, J l -'/AL (I, J-1 J ) •l\RG (I, J-1 I 

REH'Rr< 
CONTINUE 
J•I', 
GO TO 2 
END 

SUDROUTIIJE COiT 
c THIS s1;.;e-:r11nrr;c c:_~1'13rf1UCTS THE LOWE.R TRIANGULAR MATRIX C. 
c IT WAS ~JR I TT:-r~ r. v R r;;· Al PE TEW3Cl•'~ 

CClMilON 1 Cl oc:•,11 cc so. 50), cor~( so. 50), PARC50. 501. MN 
DO 1 0 I-• l , ~.N 
DO l 0 J -- 1 , Mr< 

10 CCLJl~O 
DO 20 I::::1,Mn 

20 PARI I. l ).•COi~( !. l) 
IFCMN. LT ?l GO TO 70 
DO 60 J=?,MN 
JM!=,J-1 
SUM=O 
DO 30 K=!, JM! 

30 "'llM=SUM+PAR < ,J, \.<. > n :> 
PARCJ,JI -SJRTC! -SIJMI 
!F'(J LG rlNl GO TO 70 
JPl~,J+l 
DO "50 I =._!p !. Mr~ 
P .. ":..n ( ! . J) =O 
iFC 0 AR<J,Jl CG 0 >GO TO 50 
SUl-1=0 
DO 40 K=!. JM! 

40 s~;n~--suM+Pr,n <I, K' *''AR< J, K) 
PARC I. Jl~ccORC [, Ji-SUMl/PAR(J, JI 

~>O C[l~lT I ~-JU~ 
60 CCNTINUc 
70 DO 80 I=l.MN 

DO GO ·-'= 1, I 
80 C (I .,Jl '"PAI<(!. JI 

RE.TURN 
END 

)' 
) 
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marginal distribution need to be specified rather than specific points 

in the cumulative distribution function. In this study, for example, 

it was often necessary to generate sample vectors from a multivariate 

beta distribution. Accordingly, a special multivariate beta process 

generator was developed. A listing of program MVBETA, which implements 

this procedure, is given in Figure A.10. 

Program MVBETA is identical to MVGEN in most respects. It differs 

only in that parameter values for each marginal beta distribution--BL, 

BU, Kl, and K2--are supplied by the user instead of actual points on 

the cumulative distribution function. 1 The pro9ram then uses numerical 

integration techniques to construct the cumulative distribution function 

of each marginal. The other inputs to MVBETA are the same as those 

required for MVGEN. 

A.5 An Empirical Test of the Generalized 
Multivariate Process Generator 

The procedure described in the preceding section is based on the 

premise that correlations between random variables are, to a large 

extent, preserved as the variables undergo similar transformations. A 

simple experiment was designed and conducted to:test the validity of this 
) ) . 

premise. Program MVBETA was used to generate 1000 sample vectors from 

a multivariate beta distribution with marginal distribution parameters 

and correlation matrix equal to those defined in Tables A.l and A.2. 

It should be noted that each marginal distribution is skewed. The 

first three are negatively skewed, while the fourth is positively 

1These parameters are defined as in the preceding discussion of the 
univariate beta process generator. 
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Table A. 1 Parameters of Marginal Beta Distributionsa 

Distribution Kl K2 BL BU ]J a 

2 1 22.0 31. 0 28.0 2. 12 

2 3 2 70.0 110. 0 91. 0 8.00 
; 3 3 2 4.50 9.00 7.20 .90 

I 4 1 4 1. 75 3.20 2.04 .24 

aDistributions 1 and 2 can be considered to be national average 

I yields for soybean and corn respectively, while distributions 3 and 4 
can be considered to be national average prices for the two respective 
crops. 

Table A.2 Specified Correlation Matrix 

Distribution 

Distribution 2 3 4 

.75 -.30 -.20 

2 .75 1 -.20 -.30 

3 -.30 -.20 .45 

4 -.20 -.30 .45 

) ) 
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skewed. Program MVNOR was then used to generate 1000 sample vectors 

from a multivariate normal distribution having marginal distributions 

with means and variances identical to those specified for the marginal 

beta distributions in Table A.l and a correlation matrix identical to that 

of the multivariate beta distribution. The sample correlation matrix 

for each set of observations was then calculated and compared to that 

which was specified. The procedure for generating sample observations 

from the multivariate normal distribution was derived analytically, and, 

in the limit, the sample correlation matrix for data generated with 

MVNOR should converge to the correlation matrix actually specified. 

Therefore, the sample properties of the observations generated with 

MVNOR provide a standard against which the performance of MVBETA can 

be judged. 

The sample correlation matrix for the data generated with MVNOR 

is shown in Table A.3. For the most part, it conforms closely to that 

specified. The mean absolute deviation for off diagonal elements is 

only .016. The sample correlation matrix for the data generated with 

MVBETA is shown in Table A.4. It, too, conforms closely to that 

specified, and the mean absolute deviation for off diagonal elements of 

.018 is only slightly larger than that for the rl~ta generated with MVNOR. 

These results indicate that, at least in this particular case, 

correlations between random variables are preserved to a large extent 

as the variables undergo the series of transformations required to make 

their marginal distributions take a specified form. Clearly additional 

tests should be performed, but all experience to date with the generalized 

multivariate process generator has suggested the results presented here. 
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Table A.3 Sample Correlation Matrix for 
Multivariate Mormal Data 

Distribution 

Distribution 2 3 4 

.765 -.320 -. 195 

2 .765 1 - . 180 -.295 

3 -.320 - . l 80 .417 

4 - . 195 -.295 . 417 

Table A.4 Sample Correlation Matrix for 
Multivariate Beta Data 

Distribution 

Distribution 2 3 4 

.753 -.313 - . 192 

2 .753 1 - . 174 - . 291 

3 - . 313 - . 174 .404 

4 - . 192 - . 291 .404 
\• 

\ .' 
I 
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Given the degree of imprecision with which correlation coefficients 

are generally specified, the inaccuracies associated with the use of 

this aporoach can hardly be considered to be significant. 

A.6 Conclusions 

The multivariate process generator presented here is a reliable, 

easily implemented procedure which greatly enhances the value of Monte 

Carlo simulation techniques in the analysis of decisions made under 

uncertainty. It facilitates the representation of stochastic processes 

which cannot accurately be described by a multivariate normal distribu-

tion and, when used in conjunction with other simulation techniques, 

permits the incorporation of a greater degree of realism into the analysis 

of complex problems. As such, its contribution to the set of techniques 

developed in this study is an important one. 

I . 
)· 



APPENDIX B 

IMPLEMENTATION OF THE INTERVAL APPROACH TO THE 
MEASUREMENT OF DECISION MAKER PREFERENCES 

B. l Introduction 

Implementation of the interval approach to the measurement of 

decision maker preferences was discussed in Section 4.6 of Chapter IV. 

In this appendix a more technical explanation of its implementation is 

presented, with particular attention being given to the description of 

several computer programs which greatly facilitate the process. More 

specifically, six steps in the implementation of this preference 

measurement technique are identified and discussed: the specification 

of a measurement scale, the generation of sample distributions, the 

identification of a boundary interval for each pair of distributions, 

the construction of the questionnaire, administration of the question-

naire, and the use of interval preference measurements to order alter-

native choices. 

8.2 Specification of a Measurement Scale 

Implementation of the interval approach begins with the specifica-

tion of a measurement scale--a set of reference levels of absolute risk 

aversion which serve as the basis for preference measurements. Because 

this scale determines the degree of precision with which preference 

measurements can be made, careful attention should be given to its 

specification. Two related questions which must be considered at 

240 
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this point are: how many reference levels to include in the measurement 

scale and where to locate these levels on the scale. 

The number of reference levels on the measurement scale depends to 

a large extent on the number of choices the decision maker will be asked 

to make in measuring absolute risk aversion in the neighborhood of any 

particular system output level. There is a direct relationship betwee~ 

the number of questions to be asked and the minimum number of reference 

levels on the measurement scale. If the decision maker is required to 

make only one choice, only one boundary interval need be specified, and 

only two reference levels are required to define that interval. If a 

second choice is to be required, two additional boundary intervals must 

be specified, since the interval which is the focus of the second ques­

tion will depend on the decision maker's response to the first. Four 

reference levels are required to define the total of three boundary inter-

vals called for in this case. Similarly, seven district boundary inter-

vals defined by eight reference levels are required for the construction 

of a three question sequence, since a separate boundary interval is the 

focus of the choice made at each mode of the hierarchy of questions 

defined in Figure B.l. It follows by similar reasoning that if N Choices 
)I. 

are to be made in measuring absolute risk aversion in the neighborhood 

of a particular system output level, the measurement scale should be 

comprised of at least 2N reference levels. 

Once the number of reference levels to be specified has been deter-

mined, their location in risk aversion space must be established. Refer-

ence levels on the measurement scale need not be placed at regular 

intervals. As was noted in Chapter IV, it is usually advisable to con­

centrate reference levels in that region of absolute risk ~version 
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space where the decision maker's actual level is expected to fall or 

in the regions where relatively small changes in absolute risk aversion 

have the greatest impact on preference orderings. Experience to date 

indicates that most of the detail on the measurement scale should be 

concentrated in the risk aversion interval between -.0001 and .0010. 

Actual measurements for a variety of decision makers have tended to 

fall most frequently within this interval. and tests on several empirical 

decision problems have indicated that choices are most strongly affected 

by changes in absolute risk aversion within this range. A suggested set 

of sixteen reference levels is given in Figure B.2. These define fifteen 

boundary intervals upon which choices in a four question sequence could 

be focused. A measurement scale for a three question sequence could be 

constructed by using every other reference level, and that for a two 

question sequence could be constructed by using every fourth reference 

1eve1 . 

B.3 The Generation of Sample Distributions 

Once a measurement scale has been specified, the sample probability 

distributions which are the basis for the choices used to reveal the 

decision maker's preferences must be generated. ,1Program NORGEN, which 
) 

is listed in Figure B.3. is used to construct these distributions, each 

of which is actually a set of sample observations drawn from a normal 

distribution with specified mean and standard deviation. 1 These sample 

1 
A normal distribution is used because it is convenient. Any other 

underlying distribution can also be the basis for the generation of 
sample distributions. 
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Figure B.2 A Suggested Absolute Risk 
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observations are considered to be possible system output levels, and 

each is said to have an equal probability of occurrence. 

The user of NORGEN must specify values for five parameters: NE, 

ND, YMEAN, STD, and IROUND. NE is the number of sample distributions to 

be generated, and ND is the number of sample observations defining each 

distribution. Recommended values for NE and ND are 40 and 6 respectively. 

The generation of forty sample distributions almost guarantees that at 

least one pair of distributions will have its boundary interval at any 

specified level. The use of six-element distributions is justified by 

the ease of explaining the probability associated with each element and 

by the fact that this number of elements is sufficient to allow for 

considerable complexity in each distribution. YMEAN and STD are the 

mean and standard deviation of the underlying normal distribution from 

which the sample elements of each distribution are drawn. In practice, 

YMEAN is usually set equal to 0.0, which implies that the expected 

value of the mean of each sample distribution is also 0.0. That expected 

value can be shifted to any level, y*, however, by simply adding y* to 

each element of a distribution. The appropriate value for STD depends 

on the characteristics of the decision situ~\ion being analyzed. If 

STD is assigned too high a value, the dispersion of the sample distri-

butions will be great and the assumption of constant absolute risk 

aversion over the range of system output levels on which they are defined 

may be difficult to justify. If STD is assigned too low a value, on the 

other hand, the points defining each distribution will be so highly 

concentrated around a single system output level that choices between 

distribution will be difficult to make. Experience to date indicates 

..J _________________ __ 
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that a value of STD between one and five percent of the entire relevant 

range of system output levels is appropriate. Finally, it is often 

desirable to round the system output levels defining each sample 

observation to the nearest 10, 50, or 100 units. This can be accom-

plished by specifying a value for !ROUND. If !ROUND is set equal to 

50, which is the recommended value, all system output levels are rounded 

down to the nearest 50 units. A sample output from program NORGEN is 

given in Figure 8.4. 

8.4 Identification of Boundary Intervals 

After a measurement scale has been specified and sample distribu-

tions have been generated, the boundary interval for each pair of dis-

tributions must be identified. The boundary interval for two distributions, 

(A 1, A2), is an interval in risk aversion space such that decision makers 

whose absolute risk aversion functions lie everywhere below Al unanimously 

prefer one distribution, while those whose absolute risk aversion functions 

lie everywhere above A2 unanimously prefer the other. Clearly a boundary 

interval is not unique. If (Al, A2) is a boundary interval for two 

distributions, for example, and if A3 < Al an~:A4 > A2, then (A 3, A4) is 
) 

also a boundary interval for these two distributions. In measuring pre-

ferences, however, it is desirable to specify boundary intervals which 

are as narrow as possible. 

The absolute risk aversion reference levels which define the 

measurement scale constitute the set of potential endpoints for boundary 

intervals. If a measurement scale is comprised of four reference levels, 

-.0010, 0, .0005, and .0010, a total of six boundary intervals can be 

constructed: (-.0010, 0), (0, .0005), (.0005, .0010), (-.0010, .0005), 
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Figure B.4 Sample Output from Program NORGEN 
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(0, .0010), and (-.0010, .0010). Because relatively narrow boundary 

intervals are sought, however, only the first three--those defined by 

adjacent reference levels--are of interest. For any pair of sample 

distributions it is necessary to determine which, if any, of these 

three intervals can be said to be a boundary interval. Given the defini-

tion of a boundary interval, this requires the identification of the 

highest reference level, A1, such that all decision makers less risk 

averse than Al prefer one distribution and the lo~est reference level, 

A2, such that all decision makers more risk averse than A2 prefer the 

other distribution. 

Program INTID, which is listed in Figure B.5, is used to accomplish 

this task. Given a set of absolute risk aversion reference levels and 

a set of sample distributions, it identifies the narrowest boundary 

interval for each pair of distributions. It does this by applying 

stochastic dominance criteria developed by Meyer (1977b) in 11 Second 

Degree Stochastic Dominance with Respect to a Function. 11 Subroutine 

SDLB of INTID orders distributions for classes of decision makers whose 

absolute risk aversion functions are bounded only from below by applying 

the following criterion: cumulative distributibn function F(y) is 
))' 

unanimously preferred to cumulative distribution function G(y) by all 

decision makers more risk averse than k(y) if and only if: 

fy [G(x)-F(x)]dk(x)~O ~Y 1 
-oo 

B. 1 

This subroutine, then, is used to identify the upper bound of the 

boundary interval. Subroutine SDUB, on the other hand, orders distributions 

1This criterion is based on Meyer's (1977b, p. 479) Definition 4. 
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Figure B.5 A Listing of Program INTID 
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for classes of decision makers defined only by an upper bound in absolute 

risk aversion using the criterion: cumulative distribution function 

G (y) is preferred to cumulative distribution function F(y) by all 

decision makers less risk averse than k(y) if and on1y if: 

/

00 

[G(x)-F(x)]dk(x)~O y !:Jy l B.2 

This subroutine is used to identify the lower bound of the boundary 

interval. 

In determining the boundary interval for a particular pair of 

distributions, program INTID tests each interval on the measurement 

scale until a boundary interval defined by two adjacent reference levels 

is identified. Given the reference levels--.0010, 0, .0005, and .0010, 

for exarr.ple, the interval (-.0010, 0) is considered first. If sub-

routine SDUB indicates unanimous preference for one distribution at 

absolute risk aversion levels below 0.0010 and subroutine SDLB indicates 

unanimous preference for the other at absolute risk aversion levels 

above 0, (0.0010, 0) is a boundary interval. If this criterion is not 

met, the interval (0, .0005) is evaluated in the same manner. The 

program steps up the measurement scale in this way until a boundary 

interval is identified or until all possible iritervals have been 
) 

examined. 

Several parameter values must be specified by the user of INTID. 

NE and ND are defined exactly as in program NORGEN; they indicate the 

number of distributions to be considered and the number of elements 

defining each distribution. Maximum values of NE and ND are 40 and 10 

1
This criterion is based on Meyer's (1977b, p. 482) Theorem 5. 
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respectively. NG is the number of reference levels on the measurement 

grid. Its maximum value is 64, the number of reference levels required 

for the specification of a six question sequence. Two other types of 

inputs must be supplied by the user of INTID. First, the output of 

program NORGEN--the NE distributions, each having ND elements--must be 

read into INTID.
1 

These data are stored in two arrays: NAME, an array 

of distribution names, and R, an array of sample points. Second, the 

reference levels defining the measurement scale must be specified and 

read into array RA. A sample output from program INTID identifying 

boundary intervals for the distributions given in Figure 8.4 based on 

the measurement scale defined in Figure 8.6 is given in Figure B.7. 

B.5 Construction of the Questionnaire 

At least one pair of distributions for which the boundary interval 

lies between any two adjacent reference levels on the measurement scale 

should be identified by program INTID. Once this has been done, a 

hierarchy of questions can be established, with each question focusing 

on a different boundary interval. The hierarchy of questions associated 

with the measurement scale defined in Figure B.7 is given in Figure B.8. 

In general the first question of such a ~rierarchy should focus on 

the boundary interval at the center of the measurement scale. That in 

Figure 8.8, for example, focuses on the boundary interval (.0001, .0002), 

which is defined by the fourth and fifth reference levels of the eight-

level measurement scale. The two questions at the second level focus 

1
Programs NORGEN and INTID are written so that the output of NORGEN 

can be catalogued as a permanent file and read into INTID from that file. 
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aThe branch to the left helow a boundary interval is associated with the distribution unanimously 
preferred by decision makers less risk averse than the lower bound of the interval. 

bThe branch to the right below d boundary interval is associated with the distribution unanimously 
preferred by decision makers more risk averse than the upper bound of the interval. 

c The bracketed intervals indicate the interval of absolute risk aversion consistent with the 
responses which lead to that brdnch on the hierarchy after the final choice is made. 

Figure B.8 A Three-Stage Hierarchy of Questions 
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on the intervals at the center of the two segments of the measurement 

scale created by the first question, and the four questions at the 

third level focus on the boundary intervals at the center of the four 

segments created by the second set of questions. 

Once the hierarchy of questions has been specified, the number of 

system output levels at which direct measurements of absolute risk 

aversion are to be made should be determined. Experience to date has 

shown that direct measurements in the neighborhood of three to four 

system output levels provide an adequate basis for the construction 

of an absolute risk aversion function over even a broad range of system 

output values. If, for example, annual income is the system output 

variable for which preference information is to be elicited and the 

relevant income range is from 0 to $20,000, direct measurements of 

absolute risk aversion could be made in the neighborhood of $3,000; 

$10,000 and $17,000. 

In order to specify the choices used to elicit information on pre-

ferences in the neighborhood of a given system output level, the sample 

distributions generated by NORGEN must be shifted to that level by 

adding a constant to each element. The boundary:intervals between dis­
), 

tributions do not change when the expected value of their respective 

means is shifted away from zero. This is true because the reference 

levels on the measurement scale, A, represent constant levels of absolute 

risk aversion, such as would be associated with a utility function of 

the form 

u(y) =-e-AY B.3 

When the mean of any distribution is shifted by adding a constant value 

to each of its elements, the associated expected utility is altered only 
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by a positive multiplicative factor for decision makers with this form 

of utility function. 1 If two distributions are shifted by the same 

amount, then, their relative ranking by decision makers more or less 

risk averse than any specified value remains unchanged. 

A set of sample questions designed to elicit information on pre-

ferences for income in the neighborhood of $10,000 is given in Figure B.9. 

They are specified in the manner described in Chapter IV. It should be 

noted that the choices actually presented to a decision maker are 

dependent upon his responses to prior questions in the hierarchy. 

B.6 Administration and Interpretation 
of the Questionnaire 

Before the questionnaire is administered, the decision maker should 

have a clear understanding of its objective, which is to obtain an 

accurate representation of his preferences. The system output for which 

preferences are to be measured should already have been clearly defined 

and should be recognized by the decision maker to be the primary indica-

tor of system performance he will consider when making a choice in the 

situation being analyzed. 

Administration of the questionnaire is straightforward. The 
))' 

decision maker is presented with several series of choices such as those 

1Let the mean of the distribution of a random variable y shift 
from zero to y*--i.e., let the random variable w equal y + y*. 

00 -AW E[u(w)] = J - e dw 
00 

= Joo -e-A(y+y*) dy 
-oo 

= e-Ay*foo -e-AY dy 
-oo 

= a E [u(y)] 

where a is a positive constant. 
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specified in Figure B.8. Each series measures preferences in the 

neighborhood of a particular system output level. Completion of a 

questionnaire comprised of four three-question series takes approxi­

mately twenty minutes. Experience to date has shown that decision makers 

find this preference elicitation procedure more interesting and more 

informative than the interview process required to elicit a single­

valued utility function. 

Interpretation of the results is also quite straightforward. Using 

the series of questions in Figure B.9 as an example, consider the case 

in which the decision maker prefers DIST 5 in question (1 ), DIST 7 in 

question (4) and DIST 17 in question (5). Referring to Figure B.8, 

preference for DIST 5 over DIST 20 indicates that the decision maker 

is not less risk averse than .0001; i.e., that 

r (y) > • 0001 B.4 

Similarly, preference for DIST 7 over DIST 4 indicates that his level 

of absolute risk aversion is such that 

r(y) < . 0010 B.5 

Finally, from his preference for DIST 17 over DIST 3 it can be inferred 
) that ) 

r(y) < .0006 B.6 

As noted in the lower line of Figure B.8, then, these three responses 

indicate that the decision maker's level of absolute risk aversion lies 

on the interval [.0001, .0006] in the neighborhood of y = $10,000. 



t 

' , 
I 

l 
t 
' 

l 
1 

263 

B.7 The Use of Interval Measurements of 
Preferences to Order Choices 

The interval approach to the measurement of decision maker pre-

ferences was devised for use with the evaluative criterion of stochastic 

dominance with respect to a function. It determines upper and lower 

bounds on a decision maker's absolute risk aversion function, the basic 

information on preferences required for the application of their cri-

terion. In order to actually implement stochastic dominance with respect 

to a function in the ordering of choices, however, utility functions 

having absolute risk aversion functions which correspond to these upper 

and lower bounds must be constructed. The link between absolute risk 

aversion functions and utility functions is straightforward, but analytical 

relationships between the two can be found only in certain special cases. 1 

Because no particular functional form is specified for the upper and 

lower absolute risk aversion functions constructed under the interval 

approach, the determination of the associated utility functions by 

analytical means is a difficult if not impossible task. 

Program UFUNC, which is listed in Figure B.10, resolves this pro-

blem. It employs numerical integration techniqu~s to generate values 

for the utility functions associated with the upper and lower bound 

absolute risk aversion functions at regular intervals over the relevant 

range of system output levels. In effect, these values define the two 

1As Pratt (1964) notes, 

-fr u = Je 

where u is a utility function and r is an absolute risk aversion function. 
The two constants of integration are arbitrary, corresponding to the 
arbitrary scale and origin of the utility function. 
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PArGPAN UfUNC{INFUT,nuTFUT,TAPE~=INPUT,TAPE4) 
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99 f')RJ"H(I';) 
C READ FRFFE~ENCE DATA. 
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Figure B.10 A Listing of Program UFUNC 
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utility functions, since values not calculated directly can be 

determined by linear interpolation, as in Figure B.11. Such an 

approximate representation of a function is called a table look-up 

function (Llewellyn, 1965). 1 

Several inputs must be specified by the user of UFUNC. First, the 

range of system output levels over which the utility function is to be 

constructed is defined by specifying the minimum and maximum values, 

YMIN and YMAX. Values of the utility function over this range are 

calculated by solving the following two differential equations recur­

sively with Euler integration: 2 

di [ ~~1;J " [:r(y) ~] [ ~i1;J B. 7 

The solution technique requires that initial values of u(y) and u' (y) 

be specified at some level of y. Within the program, u(O) and u' (0) are 

automatically set at 0 and 1.0 respectively, so this condition is met. 

It is also necessary to specify a value of DY, the output increment. 

The smaller the value of DY, the more accurate the numerical approximation 

of the utility function value will be. In cases where system output has 

been specified in dollars, values ranging up to 5.0 have proved to be 
3 )) . 

adequate. If the range of systems outputs is large, more values of the 

1see Appendix A for a brief discussion of table look-up functions. 

2Manetsch and Park (1977b) provide an excellent discussion of 
numerical integration in general and Euler integration in particular. 

3stability conditions under Euler integration require in this case 
that a value of DY be selected so that the absolute value of the following 
expression be less than 1.0 where R* is the minimum value of the decision 
maker's absolute risk aversion function: 

(2-(DY} (R*)) (DY) 2(R*) 2 - 8(DY) (R) 
2 

If the minimum value of r(y) for a decision maker is set at -.01, an 
extremely low level, the stability conditions are met if DY= 5.0. 
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utility function will be calculated than are needed for the table look-

up representation. A final parameter to be specified, then, is YINT. 

It defines the size of the interval between system output levels for 

which values of the utility function are to be specified in the table 

look-up function. In application to date, YINT has been set equal to 

50 or 100. The minimum value for YINT is determined by the following 

expression 

YINT > YMAX-YMIN 
399 8.7 

The user of UFUNC must also supply information on the decision maker's 

absolute risk aversion function. The interval approach to the measure-

ment of preferences determines upper and lower bounds on a decision 

maker's absolute risk aversion function in the neighborhood of several 

system output levels. In the example shown in Figure 8.12, direct 

interval measurements were made in the neighborhood of y = 3000, 

y = 10,000, and y = 20,000. The upper and lower bound functions are 

considered to be constant over the range of y values for which each 

measurement applies. 1 Values for the two absolute risk aversion 

functions at system output levels other than those where direct mea­

surements have been made are determined by line~r interpolation 

between known absolute risk aversion values or by linear 

1This is a result of the assumption that the decision makers absolute 
risk aversion function is constant in the neighborhood of any particular 
system output level (see Section 4.5 of Chapter IV). The range of system 
output levels over which a given measurement holds is dependent upon the 
dispersion of the sample distributions used to elicit the preference 
information. In the example in Figure 8. 12, distributions generated by 
NORGEN with STD set equal to 500 were used. As expected, nearly all 
points in the sample distribution fall within two standard deviations 
of the specified mean, y*. Therefore, the interval measurements are 
said to be valid for system output levels in the range y* ± 1000. 
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extrapolation for system output levels outside the range over which 

direct measurements are made. The points marked with an X in Figure B.12 

convey all the information on the upper and lower bound absolute risk 

aversion functions that is required by UFUNC. They occur at six system 

output levels. Therefore, parameter KINT is program UFUNC, which indi-

cates the number of points for which specific information is required, 

is set equal to 6. A series of six data cards is then read by the pro-

gram, each card setting values for three variables: ARG, which is the 

level of y; VALL, which is equal to the lower value of r(y); and VALU, 

which is equal to the upper value of r(y). The values for the example 

in Figure B. 12 are given in Table B.l. The utility functions generated 

by UFUNC for their example are graphed in Figure B.13. 

Once values of the utility functions associated with the upper 

and lower bound absolute risk aversion functions have been calculated, 

they serve as inputs to program NSTDO, which orders distributions of 

system outputs according to the criterion of stochastic dominance with 

respect to a function. Program NSTDO is listed in Figure B.14. 1 The 

logical foundation of this procedure is explained in Section 4.4 of 

Chapter IV and, more extensively, in Meyer (\977a). 

Several parameter values must be specified by the user of NSTDO. 

ND and NE again define the number of sample observations defining each 

system output distribution and the number of distributions to be con-

sidered. Their maximum values are 40 and 50 respectively. Data defining 

1This is a slightly modified version of the program written by Meyer 
for the application of stochastic dominance with respect to a function 
described in "Further Applications of Stochastic Dominance to Mutual 
Fund Performance. 11 

-
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Table B.l An Example of Preference Data Input 
for Program UFUNC 

VALL 

- . 0001 

- . 0001 

0 

0 

- . 0001 

- . 0001 

VALU 

. 0001 

. 0001 

.0003 

.0003 

. 0001 

. 0001 
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Figure B. 14 A Listing of Program NSTDOa 

aThis is a modified version of a program written by Jack Meyer. 
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the NE distributions are read next by the program. This information is 

stored in arrays NAME and R. Finally, data on the decision maker 1 s 

preferences must be read into the program. Values of SMALL, DIFF, and 

KDIM--the smallest system output value for which utility values are to 

be assigned, the difference between system output levels for which 

utility values are to be assigned, and the number of system outputs for 

which utility values are to be assigned--are read first. Then data on 

the utility functions associated with the decision maker 1 s upper and 

lower bound absolute risk aversion functions are read into arrays ARG, 

VALL, and VALU, which are defined as above in program UFUNC. 1 

A simple output from program NSTDO is shown in Figure B.15. This 

is an ordering of four distributions for the decision maker whose inter-

val preference measurement is graphed in Figure B. 12. The symbol 

indicates that the first distribution named is preferred to the second; 

-1 indicates that the second distribution is preferred to the first; 

and 0 indicates that the two distributions cannot be ordered by the cri-

terion of stochastic dominance with respect to a function for the class 

of decision makers whose absolute risk aversion functions lie within 
\• 

)' 

the specified bounds. 

The combined power of interval measurements of decision maker pre-

ferences and the criterion of stochastic dominance with respect to a 

function is demonstrated by the results presented in Sections 4.7 and 4.8 

of Chapter IV. Clearly these are two related analytical tools which can 

be of considerable value in the analysis of decision made under uncertainty. 

l The program reads these data from a permanent file which is the 
catalogued output of program UFUNC. 
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In this appendix the relatively straightforward procedures used to 

implement these techniques in a practical setting have been described. 

I . 
)' 

I 



APPENDIX C 

IMPLEMENTATION OF THE GREMP MODEL 

C. l Introduction 

In this appendix the computer program used to implement the GREMP 

model is described, and some of the special features of the model are 

discussed. The objective is to acquaint the potential user with the 

more technical aspects of this procedure and to suggest ways in which 

the model can be adapted for use in the analysis of particular decision 

problems. 

The basic structure of the computer program which implements the 

GREMP model is shown in the flow chart in Figure C.l. The program begins 

with an initialization phase, during which parameter values are specified 

and required data are read in. The program then goes through a specified 

number of iterations during which strategies are generated at random, 
)) 

the outcomes of each strategy are simulated for a number of states of 

nature, and the efficient set is updated. Once the desired number of 

alternative strategies has been generated and evaluated, information on 

the elements in the efficient set is printed, and the program terminates. 

As was noted in Chapter V, this procedure is not designed to identify 

a truly optimal choice. Rather, it simply generates a large number of 

strategies, and, on the basis of evaluative information supplied by the 

user, it identifies an efficient set of choices from those considered. 

The particular value of the GREMP model is that it can be used to analyze 

problems for which an optimal solution cannot be determined analytically. 
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Figure C.l General Flow Chart of Program GREMP 
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The discussion in subsequent sections is organized in a manner 

similar to the computer program itself. Data requirements and suggested 

program parameter values are first examined. Next, the procedure by 

which strategies are generated is described. The simulation of the 

outcomes associated with each strategy generated and the evaluation of 

strategies by the criterion of stochastic dominance with respect to a 

function are then briefly discussed, with references being made to the 

more extensive descriptions of these procedures given in Chapters III 

and IV and in Appendices A and B. A complete listing of the program is 

included at the end of the Appendix. 

C.2 The Initialization Phase 

During the initialization phase of the program, run parameter 

values are established, some or all of the constraints on control 

variable levels are specified, and data defining alternative states of 

nature and the decision maker's preferences are read in. 

The run parameters define certain general characteristics of any 

particular application of the model. They include: ND, ITNS, NV, NC, 

NVC, MAXNO and NCONS. As in other programs developed in this study, 

ND is the number of sample observations)defining the distribution of 

outcomes associated with each strategy being considered. As such, it 

is also the number of states of nature to be defined. In the applications 

of the GREMP model discussed in Chapters V and VI, a value of 20 was 

specified for ND. In many practical instances a larger value of ND 

would be desirable. The maximum value in this version of the program 

is 20, but this can be augmented by simply changing the appropriate 
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d
. . 1 array imens1ons. ITNS is the number of iterations the model will 

perform--i.e. the number of sample strategies which will be generated 

and evaluated. The value of ITNS depends entirely on the characteristics 

of the problem beinQ analyzed. ITNS was set at 500 and 1000 in the 

two applications of the GREMP model discussed in this study. It may be 

desirable to specify larger values of ITNS when problems with a large 

number of choice variables are to be analyzed or when the identification 

of a more nearly optimal strategy is desired. If the simulation model 

used to generate sample observations from the distribution of outcomes 

associated with each strategy is quite complex, however, the cost of 

each iteration may be so high that a much lower value of ITNS must 

be specified. 

NV is the number of control variables used to define a management 

strategy in the problem being considered. The set of control variables 

can be divided into as many as ten categories, with NC being the number 

of categories. In the applications discussed in Chapters V and VI, for 

example, it was convenient to divide the control variables into three 

categories: resource acquiring activity levels, resource using activity 

levels, and control rule oarameters. 2 Once ihe number of categories has 
) ) . 

been specified, the number of control variables in each category must be 

1Each stochastic system input variable must be dimensional to ND; 
e.g. in the listing at the end of this chapter, the second argument in 
each array in common blocks 2 and 3 is set to ND. In addition, T and 
Rare dimensioned to T(ND) and R(21,ND), and C and CP are dimensioned to 
C(2*ND+l) and CP(2*NO+l ). 

2see Eisgruber and Lee (1971) for an interesting discussion of why 
choice variables need to be classified in such a manner when strategies 
are to be constructed in a sequential manner. 
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read into the appropriate element of the array NVC--i.e. NVC(l) is 

set equal to the number of control variables in category one; NVC(2) 

is set equal to the number in category two; etc. Since the classifica-

tion of variables is intended to be mutually exclusive and exhaustive, 

the following equation must hold: 

NC 
NV = L: 

i = 1 
NVC. 

1 
c. 1 

In some instances it may be infeasible for all NV of the control 

variables to be set at non-zero levels in the specification of a 

strategy. When this is the case, it may be desirable to impose a 

limit on the number of control variables considered in defining each 

strategy. MAXNO is used to impose such a restriction; its value must 

be less than or equal to NV. 1 

Finally, NCONS is the number of linear constraints to be imposed 

on the control variables which define a management strategy. In 

general, all these constraints must be of a "less than or equal to" 

form. 2 Up to 25 linear constraints can be imposed in the current 

version of the model. This number can easily be expanded, however. 

Once the run parameter values have been)~~ecified, the program 

reads information on two sets of constraints. Members of the first set 

limit the range of allowable values for the NV control variables by 

establishing a minimum value, VMIN, a maximum value, VMAX, and the 

magnitude of the interval between values, VINT. If, for a particular 

1 See Donaldson and Webster (1968) for a more complete discussion 
of how such restrictions can be used. 

2see Dent and Thompson (1968) for a discussion of the difficulties 
caused by constraints of other forms and for an explanation of how these 
difficulties can be overcome. 
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control variable, VMIN = 0, VMAX = 100, and VINT = 25, then possible 

values for that variable are 0, 25, 50, 75, and 100. If VINT is set 

equal to an integer, all values of the control variable will be integer. 

If, on the other hand, VINT is set equal to a very small value, the 

set of allowable values approaches that of a continuous variable 

between VMIN and VMAX. 

Linear constraints such as those used in the specification of a 

linear programming model comprise the second set of constraints. The 

program reads input-output coefficients and resource availability levels 

for each of the NCONS constraints of this type. All input-output 

coefficients are first initialized to equal zero. Non-zero values are 

then read into the two dimensional array A by specifying the constraint 

number, I, the control variable number, J, and the desired value of 

l A(I,J). The variable LAST is simply a flag which, when set to a non-

zero value, indicates that the last non-zero input-output coefficient 

has been read. Next, the NCONS resource availability levels are read 

into the array F, and the specification of linear constraints is completed. 

The initialization phase continues with the program reading data 

which define levels for each stochastic exogenous system input 

variable in each of the ND states of nature used in the determination 

of system output distributions. 2 The number of exogenous system input 

1control variables are ordered in the following manner. The 
first NVC(l) control variables are the elements in category one, the 
next NVC(2) control variables are the elements in category two, etc. 

2 These data are generated externally to the program using tech-
niques described in Appendix A. 
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variables depends on the characteristics of the system being considered 

in a particular decision analysis. In general, then, the user will 

supply his own READ statements here. The version of the program listed 

at the end of this appendix is that used in the analysis of the problem 

discussed in Chapter VI. Therefore, data on contract prices, cash 

prices, crop yields, and days available for fieldwork are read. 1 

Finally, information on decision maker preferences required for 

the application of stochastic dominance with respect to a function is 

read by the program. More specifically, the data points generated by 

program UFUNC, which define the utility functions associated with the 

decision maker's upper and lower bound absolute risk aversion functions, 
2 are read. First, however, values of YMIN, DY, and KDIM--parameters 

of the table look-up functions used to represent those utility functions--

are read. YMIN is the minimum value of the system output variable for 

which a utility value is calculated, DY is the interval between system 

output levels for which utility values are calculated, and KDIM is the 

total number of data points. Once these values are established, KDIM 

values of ARG, VALL, and VALU--a system output level, a lower bound 
) ) . 

utility value, and an upper bound utility value--are read into the 

. t 3 appropr1a e arrays. 

1All these data are read from separate permanent files. This is 
often more convenient than using data cards. 

2see Appendix B for a listing and description of this program. 

3These values are read from a permanent file which is the catalogued 
output of UFUNC. 
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C.3 Strategy Generation 

All user supplied inputs are read into the program during the 

initialization phase. At the beginning of the first iteration and of 

all subsequent iterations, all control variables are set to zero, all 

constraints are reset to their original values, and several variables 

used to monitor the strategy generation process are set to zero. The 

generation of a feasible strategy then begins. 

The segment of the main program which constructs each strategy is 

listed in Figure C.2. The sequence of operations is such that all the 

elements of one control variable category are assigned values before 

those in the next category are considered. After updating values of 

ILO and IHI, the lowest and highest variable numbers of the elements 

in the variable category being considered, the program calls subroutine 

SELECT. 1 This subroutine is a discrete uniform process generator which 

randomly selects a variable, V(J), from the set of variables in the 

category under consideration. If that variable has been considered in 

the construction of the current strategy, the value of IND(J) will be 

non-zero and subroutine SELECT will be called again. If it has not 

been considered, the value of NEX(I), the number of variables within 
~}· 

the category already examined, is augmented by one and IND(J), the 

indicator for the variable is set equal to NEX(I). Subroutine LEVSET 

is then called. Like SELECT, it is a discrete uniform process generator. 

1When none of the control variables in a particular category imposes 
constraints on any of the others, it is possible to bypass calls of sub­
routines SELECT and CHECK. In the version of the program listed at the 
end of this appendix, this is done for variable category 3, the set of 
control rule parameters. 
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Figure C.2 Statements in GREMP Which Generate 
Feasible Strategies 
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Given values of VMIN, VMAX, and VINT for variable J, it sets a level for 

that control variable. 1 

Once a value for a particular control variable has been set, the 

feasibility of that value must be checked. This is done by calling 

subroutine CHECK. If all the constraints imposed in the management 

strategy are linear and of a "less than or equal to" form, and if all 

values of the array A in column J are of the same sign, CHECK is as 

listed in Figure C.3. The feasibility of the specified level V(J) is 

checked against each of the NCONS constraint levels. If a constraint is 

violated, the value of V(J) is adjusted to a level which is feasible. 

Once all constraints have been met, each constraint level is updated 

to reflect the resource requirements associated with the level of V(J) 

and control is returned to the main program. 

In many instances, there may be a need to impose non-linear con-

straints on some of the control variables. One common non-linear 

constraint takes the form: 

V(J)*V(K) = 0, C.2 

which implies tha V(J) and V(K) cannot both have non-zero values. Such 

a constraint can easily be incorporated }nto subroutine CHECK by adding 

statements such as the following: 

IF(V(K).NE.0.0) V(J) = 0.0 

IF(V(J).EQ.O.O) GO to 20 

V(K) = 0.0 

NEX(2) = NEX(2)+1 

IND(k) = NEX(2) 

C.3 

1As was noted in the preceding section, if VINT is set to a very small 
value, the variable V becomes, for all practical purposes, a continuous 
variable. So LEVSET can approximate a continuous uniform process generator. 
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SULRO:CT re nli_U\LJ, NCONS, NIN) 
CCJ'ii'.'Jf- L'i (ICl"-1/ V<2!)), VMIN<25), VMAX<25>. VINT(25) 
CCJr1!"1C31-: Di ClCJ.\2/ A<25, 25), F<25), IND<25) 
IF<V(J) E&. 0 01 GO TO 20 
r.L.1 l\J I-=1,N.::rnc 
I i - ( ' \ 1 . .J ! L: ::; 0 . 0 i C 0 T 0 1 0 
IF< F ( I 1 :;:-- A ( I. . .J) >; \! ( J > ) ) GO TO 10 
L.F:'v'o-1\/''v'lNI (,I) 
".i r • I\ - i ~ Ur'-. I (I f i,J) .J' 'v' I NT ( .J) 
I! < .. c: : ! . : \.': ! :! ,.: •, , ; \ l V ( .J) . .,,.0 0 
I,-!'·'' _1 > G i. i/i-:~«>: ( .J)) \,I ( J) :c::'-)!'11'\X ( J) 

10 : i'-· ·_ 
J; , \ , ~' ! . t: U 0 Cl) CD TO 2C) 

r -: : ·- r 1 , ~; ·:' c: : .-: 
1 5 r ' J 1 •• r 1. l , ·.· \ , i > ~- f\ ( I , .J ) 
20 Ii'- ruu.: 

L!.l;. 

Figure C.3 A Simple Version of Subroutine CHECK 
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If V(K) already has a non-zero value, V(J) is set equal to zero and 

control is returned to the main program. If V(J) is not equal to zero, 

V(K) is set equal to zero. The number of variables in its category--in 

this case variable category two--is augmented by one and the indicator 

for this variable, V(K), is set equal to NEX(2). These final two state­

ments ensure that V(K) will not be considered again later in the strategy 

generation process. Other tyoes of non-linear constraints can be treated 

in a similar manner. Examples of constraints which closely parallel that 

given in Equation C.2 include: 

and 

V(J)*V(K)2F(I) 

V(J)/V(K)~F(I) 

if V(J)2F(I), then V(K) = 0 

C.4 

C.5 

C.6 

Subroutine CHECK can also be adapted to make the strategy genera­

tion process more efficient in some instances. For example, if the 

only constraint on two variables V(J) and V(K) is 

V(J)+V(K) = F(I), C.7 

then a value of V(K) can be established automatically once a value of 

V(J) has been specified and vice versa. Still another useful alteration 

of subroutine CHECK in some situations inv~lves the addition of statements 

which alter levels of VMIN or VMAX for all or some variables in a 

category to reflect the impact of the level selected for another 

variable. This was done in the applications presented in this study 

when maximum allowable acreages for corn and soybeans were adjusted 

upward to reflect additions in available acreage due to land rental. 

The strategy generation process continues until all the variables 

in each category have been considered or until the maximum number of 
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variables have entered the control strategy at a non-zero level. At 

this point, however, it is possible that the strategy constructed does 

not use the available resources to the fullest extent. Therefore, it 

may be desirable to expand the strategy out until one or more additional 

constraints become binding. This is done by subroutine EXPAND. 

Donaldson and Webster (1968) provide a good discussion both of the 

rationale for expanding strategies and of the means by which this can 

be done. It is difficult, however, to specify a general form for 

subroutine EXPAND. In most instances its form is problem-specific and 

so this subroutine must be supplied by the user. In the listing pre-

sented at the end of this appendix, EXPAND is used to increase acreage 

levels of corn or soybeans, depending on which was specified first, so 

that all available acreage is used. 

C.4 The Simulation of Strategy Outcomes 

When the strategy generation phase of each iteration has been com-

pleted, subroutine DISGEN is called. This user-supplied subroutine 

simulates system performance under the newly specified strategy for 

each of the ND states of nature. Subroutine DISGEN can be as simple or 

as complex as the problem under analysis requi~es. It can be as simple 

as the example listed in Figure C.4, in which the level of system 

output realized is a simple linear function of five control variables 

and of the stochastic price, yield, and cost levels associated with 

each. Alternatively, DISGEN can be as complex or still more complex 

than that in the version of the program listed at the end of this 

chapter. 
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sunv~:. 1 ilt~~: DlSGEN 
CfJt11i1U:~ /Pi CICY\l/ P<5,20),Y(5,20),C(5,20) 
C Li!"l ' '. _,' j 1 ~: I CJ C: !--\ 2 / V ( 5 ) 
CUi /L:. flCY,J/ NU, NP, R(2L 20> 
DO '.1 ... != 1 , NP 
R < 1\11-·, ,.J -1 - ·O (> 
~;(! ~~ T -" J ; ~ .. 

5 R < r F· , _' ) := r~ < N r' , J ) + < P ( I , J > ~ Y < r , J ) - c < I , J > > * v < I > 
REl UH~ 
END 

Figure C.4 A Simple Version of Subroutine DISGEN 
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A brief comment should be made about the variables passed to and 

from DISGEN. First, it should be noted that R, the array of system 

output levels passed back to the main program, has two dimensions. The 

first argument of R is always set equal to NP in subroutine DISGEN. 

This parameter identifies the system output distribution during the 

evaluative phase of each iteration. NP is passed to the subroutine 

and should be passed back unchanged. Values of all control variables-­

the array V--and all exogenous system input levels are also passed to 

and from the subroutine unchanged. 

Finally, it should also be noted that there is no reason why the 

distribution for more than one system output variable cannot be deter­

mined with each call of DISGEN. The evaluative criterion used in the 

GREMP model, stochastic dominance with respect to a function, can, 

however, only evaluate alternative strategies by considering the distri­

butions of a single system output variable. 

C.5 Updating the Efficient Set 

During the final phase of each iteration the efficient set is 

updated by comparing the system output distribution of the newly 

generated strategy to the distribution of each 1 ~trategy in the efficient 

set. This is done by subroutine NSTDO, which is simply a modified 

version of the program written by Meyer to implement the criterion of 

stochastic dominance with respect to a function. This program and the 

required inputs to it were described in the final section of Appendix B. 

Those same inputs must be passed to subroutine NSTDO from the main pro­

gram. They include values for ND, the number of sample observations 

defining each system output distribution and values in the array R, the 
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array of simple system output levels for each plan in the current 

efficient set and for the newly generated plan. Information in decision 

maker preferences is passed from the main program directly to function 

subprograms Ul, U2, Uil, and UI2, which are called by subroutine NSTDO. 

As described in Section 5.3.3 of Chapter V the evaluative process 

involves the pair-wise comparison of the distribution of system output 

levels associated with the newly generated strategy with that associated 

with each strategy in the efficient set. Such comparisons are made until 

the new strategy is dominated or until all possible comparisons have 

been made. If the new strategy is dominated, control is returned 

immediately to the main program. If it dominates strategies in the 

efficient set, those which are dominated are eliminated and the arrays 

describing the efficient set--R, AMEAN, STD, and VLEV--are rearranged. 

The program limits the size of the efficient set to twenty strategies. 

This is done because it reduces storage requirements and because 

efficient sets having more than twenty elements are difficult to work 

with. When the size of the efficient set reaches the maximum allowable 

level, newly generated strategies are still compared to each element in 

the efficient set, but they enter the efficient set only if they dominate 

one or more of its existing elements. 

C.6 Output of the GREMP Model 

Information on selected run parameter values, on the linear con-

straints specified, and in the range of allowable values for each control 

variable is printed before the first iteration is begun. This information 

can be of value for diagnostic purposes. When the final iteration has 

been completed, information on each element in the efficient set is 
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printed. First, the mean and standard deviation of the system output 

distribution associated with a particular strategy are printed, then the 

control variable levels defining the strategy are printed, and, finally, 

the set of sample observations defining the system output distribution 

is printed. It should be noted that performance indicators other than 

those upon which the evaluation of alternatives is based could also be 

printed if this were desired. 
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