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   Abstract  -- This study reports experimental market
power and efficiency outcomes for a computational
wholesale electricity market operating in the short run
under systematically varied concentration and
capacity conditions.  The pricing of electricity is
determined by means of a clearinghouse double
auction with discriminatory midpoint pricing. Buyers
and sellers use a modified Roth-Erev individual
reinforcement learning algorithm to determine their
price and quantity offers in each auction round.  It is
shown that high market efficiency is generally
attained, and that market microstructure is strongly
predictive for the relative market power of buyers and
sellers independently of the values set for the
reinforcement learning parameters.  Results are
briefly compared against results from an earlier study
in which buyers and sellers instead engage in social
mimicry learning via genetic algorithms.
     Index Terms – Wholesale electricity market,
restructuring, repeated double auction, market power,
efficiency, concentration, capacity, individual
reinforcement learning, genetic algorithm social
learning, agent-based computational economics.

I. INTRODUCTION

Any electric power industry must carry out three basic
functions, regardless of its structure [1], [2].  First, it must
produce electricity from existing capacity.  Second, it
must distribute this electricity to final consumers.  Third,
it must engage in longer-run planning and investment for
the production of new capacity.
     Until recently, most electricity has been supplied by
vertically integrated statutory monopolies operating either
as public utilities or as regulated investor-owned utilities
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[3,Ch. 6]. The regulatory compact has generally decreed
that utilities should provide enough generation capacity to
ensure an adequate supply of electricity for all users in
return for receiving a fair rate of return on their capacity.
     In recent years, however, this regulatory compact has
been widely eroded due to the growing irrationality of the
rate structure and the public perception that current
industry practices fail to provide the proper incentives to
ensure market efficiency. In consequence, calls have
increasingly been made to restructure the electric power
industry into a more competitive industry in which prices
would better reflect true marginal costs.  At the same
time, concerns have been expressed that restructuring
efforts might actually result in efficiency losses.
Moreover, equity concerns have arisen regarding possible
increased opportunities for some market participants to
exercise market power, i.e., to secure a higher share of
profits for themselves than would be possible under
competitive market conditions [4].
     To date, restructuring proposals for the electric power
industry have focused primarily on the wholesale
electricity market.  In this market, electricity is produced
by generating companies (“generators”) from existing
capacity and sold either to other generators or to some
form of energy service provider.  The energy service
providers subsequently resell the electricity to household,
industry, or commercial users in a retail market.
     Short-run production efficiency in a wholesale
electricity market requires that current demand be met
using the least-costly mix of existing capacity. Any
market mechanism proposed for the short-run efficient
determination of trades in a wholesale electricity market
must therefore address four tasks [1, pp. 11-12].  First, the
buyers and sellers who would benefit from trade must be
identified.  Second, these buyers and sellers must be
matched so as to maximize total gains to trade.  Third, a
specific price and quantity level must be determined for
each matched buyer-seller pair.  Fourth, trades between
matched buyers and sellers must be carried out within the
constraints of the electric power transmission grid.
      One market mechanism currently under intense
consideration for wholesale electricity markets in many
parts of the world is a clearinghouse double auction [5]-
[7].  In such an auction, wholesale buyers and sellers of
electricity participate repeatedly in auction rounds.  At the
beginning of each auction round the buyers and sellers
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submit price and quantity offers simultaneously to a
clearinghouse.  At the end of each auction round the
clearinghouse matches the price and quantity offers
received during the round in accordance with publicly
known protocols, subject to transmission grid constraints,
and reports these matches back to the buyers and sellers.
The prices set by the clearinghouse are either
discriminatory (set individually for each matched buyer-
seller pair) or uniform (set equal across all matched
buyer-seller pairs). The practical advantage of such an
auction mechanism is that its trading and settlement rules
do not require the clearinghouse to know in advance the
number of participants, their private costs, or their
privately held beliefs and preferences.
     Ideally, the performance of any proposed auction
mechanism should be understood prior to its actual
implementation.  The difficulty for wholesale electricity
markets is that these markets generally comprise small
numbers of buyers and sellers with differentiated costs
and capacities who interact repeatedly over time. The
buyers and sellers may thus have an incentive to “game”
an auction mechanism, i.e., to behave opportunistically
within the limits set by the auction protocol in an attempt
to increase their individual gains to trade.  In particular,
buyers and sellers may have an incentive to submit price
offers that misrepresent their true willingness to pay or
their true marginal costs and to submit quantity offers that
misrepresent their true capacities.
     For example, it is well known that “implicit collusion”
problems can arise in uniform-price auctions for multiple
units of a homogeneous good such as electricity [8], [9].
In uniform-price auctions, the marginally matched buyer
and seller determine the price for every unit, and auction
participants may be able to collude tacitly to move this
price in their favor.  Klemperer notes [9, p. 4] that it was
partly to avoid such problems that electricity regulators in
the U.K. recently proposed a set of New Electricity
Trading Arrangements (NETA) for the U.K.   Under these
arrangements, an exchange market followed by a
discriminatory-price auction would replace the existing
uniform-price auction.
     Implicit collusion is more difficult in discriminatory-
price auctions.  Nevertheless, auction participants may
still have an incentive to engage in opportunistic behavior
with regard to their price and quantity offers.  Moreover,
as found by Bower and Bunn [10] in the context of a one-
sided  auction for electricity generators, a discriminatory
auction may permit large generators with many
generating plants to have informational advantages over
smaller generators.
     Consequently, while it is highly desirable to predict in
advance the market power and efficiency implications of
proposed new auction protocols for wholesale electricity
markets, the complexity of these markets makes it
difficult to do so using standard analytical tools or

human-subject laboratory experiments.1  Empirical study
is also difficult since relevant data is scarce.  This
suggests a potentially useful role for computational
experiments.
     This study constructs an agent-based computational
model of a wholesale electricity market that can be used
as a laboratory for systematic experimentation.2  We use
this laboratory to investigate market power and efficiency
outcomes for a short-run wholesale electricity market
with double- auction pricing and with buyers and sellers
who continually update their price offers on the basis of
past profit experiences.  We consider how the relative
market power of the buyers and sellers varies in response
to changes in concentration and capacity when auction
prices are determined by means of a discriminatory
pricing rule. We also consider the implications of this
discriminatory pricing rule for short-run market
efficiency.
      One special concern of this study is the development
of conceptual tools that permit market power effects due
to market structure to be distinguished from market power
effects due to buyer and seller learning.  We focus
particularly on the degree to which the discriminatory
pricing rule induces structural versus behavioral market
power effects.
     Another special concern of this study is the testing of
an empirically based representation for individual
learning.  Our electricity buyers and sellers are assumed
to learn in accordance with a modified version3 of a
reinforcement learning algorithm developed by Roth and

                                               
1 As discussed in [7] and [11]-[13], researchers studying
auctions by means of analytical tools and human-subject
laboratory experiments have focused largely on simpler
auction contexts in which the scope for opportunistic
behavior is limited, e.g., single-round single-unit auctions
in which the participants have extensive common
knowledge.   Rust et al. [14] is an important exception.
2 Other researchers who have undertaken agent-based
computational studies of wholesale electricity markets
with double-auction pricing include [6] and [15]. Various
resources on agent-based computational economics
(ACE) in general, including surveys, an annotated
syllabus of readings, software, and pointers to individual
researchers and research groups, can be found at the ACE
Web site at http://www.econ.iastate.edu/tesfatsi/ace.htm.

3 In preliminary versions of this study (ISU Economic
Report No. 52, August 2000, revised February 2001), it is
stated that the original Roth-Erev algorithm is used.  It
was subsequently determined, however, that the code
implementation actually included a "small" modification
of this learning algorithm.  As will be clarified below, the
resulting modified learning algorithm turns out to have
important advantages over the original Roth-Erev learning
algorithm in the current double-auction setting.
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Erev [16],[17]. The attractiveness of the Roth-Erev
learning algorithm is that its form embodies the most
salient regularities observed in the decision-making
behavior of human subjects across a wide variety of
multiagent experimental games
     Our main experimental finding is that structural biases
are inherent in discriminatory pricing rules and that these
biases are highly predictive for relative market power
outcomes.  Although high market efficiency is generally
attained, the buyers or sellers who are less favored in
terms of market power under the discriminatory pricing
rule are not able to overcome this structural market power
bias through learning.  This is the case even though the
less favored agents have the potential to gain positive
market power through appropriate strategic pricing.  The
symmetric nature of the double auction, which requires
both sides of the market to submit price offers
simultaneously, appears to prevent either buyers or sellers
from successfully learning to gain a relative market power
advantage through strategic price offers.
     Section II presents our computational electricity
market framework, including a detailed description of the
auction mechanism, the learning algorithm used by
traders to determine their price offers, and the calculation
of benchmark competitive market outcomes. In Section
III we explain the experimental design of our study in
terms of both tested hypotheses and tested parameter
values.  Section IV reports our basic experimental
findings, and Section V provides a detailed discussion of
these findings. The concluding Section VI summarizes
our key findings and discusses the relationship of these
findings to work by other authors, in particular the work
by Gode and Sunder [18] on the relative efficiency effects
of market structure versus learned behavior.

II. ELECTRICITY MARKET FRAMEWORK

A. Overview

Our computational electricity market incorporates
several features anticipated to be key aspects of short-run
wholesale electricity markets operating under
restructuring.  Small numbers of buyers and sellers
submit price offers repeatedly to a clearinghouse double
auction in an attempt to maximize their profits. The
buyers and sellers have multi-unit capacities and
differentiated revenues and costs, private information that
other traders cannot observe directly.   Moreover, each
buyer and seller continuously updates its price offers on
the basis of its past profit experiences in a manner that
permits the exploitation of profit opportunities arising
from the pricing behavior of other traders.
      More precisely, our computational electricity market
models the short-run wholesale trading of electricity by
traders attached to an electric power transmission grid.
The transmission grid is a fully connected graph with

traders as the nodes and transmission lines as the edges.
Each trader is assigned a maximum amount of electricity
(capacity) that it can buy or sell in each auction round as
well as a certain available transmission capability (ATC)
with respect to each other trader. Traders with electricity
to buy are referred to as buyers, and traders with
electricity to sell are referred to as sellers.
     The following parameter values are specified for each
buyer: capacity in MWh; (constant) marginal revenue per
MWh purchased and resold in a secondary retail market;
and fixed costs.  Also, the following parameter values are
specified for each seller: capacity in MWh; (constant)
marginal cost per MWh generated; and fixed costs.  These
parameter values are private to each trader.

The buyers and sellers trade electricity repeatedly in
a discriminatory-price double auction run by an
independent clearinghouse, henceforth referred to as a
discriminatory auction. The goal of each buyer and seller
is to maximize its own profits.

The discriminatory auction is performed in rounds. In
each round the buyers and sellers simultaneously submit
bids (offers to buy) and asks (offers to sell) to the
clearinghouse.  Each bid and ask consists of a single
price-quantity pair.  The linearity assumed for the traders’
revenue and cost functions, together with the
discriminatory auction protocol, ensures that the profit-
maximizing quantity offered by each trader is simply its
capacity quantity.  As detailed more fully in Section II.B,
the clearinghouse matches these bids and asks, using as its
criterion the maximization of total profit, and
communicates these matches back to the buyers and
sellers.

At the end of the auction round, the matched buyers
and sellers carry out their assigned trades and record their
profit outcomes. They then use these profit outcomes to
determine their price offers for the next auction round.

B. Auction Round Implementation

A single auction round proceeds as follows. First,
each trader selects a feasible price offer in accordance
with the trader's current "choice probabilities" -- the
determination of these choice probabilities is explained in
Section II.E.  Each trader submits this price offer to the
clearinghouse along with a quantity offer equal to the
trader’s capacity.4  The clearinghouse then separately
sorts the buyers and sellers by their price offers in
descending and ascending order, respectively.5

                                               
4 Recall from Section II.A that the profit-maximizing
quantity offer for each trader in each auction round is
simply its capacity quantity.
5 Before each (bubble) sort, the ordering of the traders is
randomized to avoid unintended incumbency effects in
cases where some buyers or sellers make identical price
offers.
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The buyer with the highest bid price is first matched
with the seller with the lowest ask price.  The unit price
for the contract is set at the midpoint of the bid-ask
spread.  If there is nonzero available transmission
capability (ATC) between the buyer and the seller, then
the buyer is matched with the seller for an amount of
electricity calculated as the minimum of three amounts:
the ATC; the capacity of the buyer; and the capacity of
the seller. Thus, if the ATC is 5 MWh, the buyer’s
capacity is 10 MWh, and the seller’s capacity is 20 MWh,
then the contract is made for 5 MWh because this is the
maximum quantity that the power grid can support. The
carryover amount to buy or sell is then calculated, and the
next pair is matched in similar fashion.
     Table I gives an example of a matching outcome for a
market comprising three buyers and three sellers in which
the ATC between any paired buyer and seller is assumed
to be 10 MWh.

TABLE I
BUYER-SELLER MATCHING ILLUSTRATION

Sellers              Buyers
$4 / 20 MWh;     $9 / 10 MWh
$5 / 10 MWh;     $8 / 10 MWh
$6 / 10 MWh;     $7 / 10 MWh

Matches: (1-1) for 10 MWh at Unit Price $7/MWh;
               (1-2) for 10 MWh at Unit Price $6/MWh;
               (2-3) for 10 MWh at Unit Price $6/MWh;

                           Seller 3 Not Matched.

     At the end of the auction round, each trader
implements its auction-assigned trades and obtains a
profit outcome.  Each trader then uses this profit outcome
to calculate updated choice probabilities for selecting
among its feasible price offers in the next auction round.
This updating is accomplished by means of a modified
version of a reinforcement learning algorithm developed
by Roth and Erev [16], [17].  The latter algorithm will be
motivated and illustrated prior to introducing the modified
version.

C. Motivation for the Roth-Erev Algorithm

     In a series of studies, Roth and Erev [16], [17] have
sought to understand how people learn individually to
behave in games with multiple strategically-interacting
players. To this end, they have developed a three-
parameter reinforcement learning algorithm, hereafter
referred to as the RE algorithm.
     The basic intuition underlying any reinforcement
learning algorithm is that the tendency to implement an
action should be strengthened (reinforced) if it produces
favorable results and weakened if it produces unfavorable
results [19]. Roth and Erev take this law of effect

principle, widely accepted in the psychological learning
literature, as the basic starting point in their search for a
robust model of individual learning. In addition, they
argue for an additional learning principle, also adhered to
widely in the psychological learning literature, which they
refer to as the power law of practice. The latter principle
asserts that learning curves tend to be initially steep, after
which they flatten out.
     Psychologists generally have focused on individual
learning in “games against nature” for which there is only
one decision-maker.  In contrast, Roth and Erev are
interested in individual learning in strategic environments
with multiple decision-makers.  Roth and Erev argue that,
in such contexts, the law of effect and the power law of
practice fail to account sufficiently for the observed
responsiveness of decision-makers to other decision-
makers in their choice environments.
     Based on extensive observations of individual learning
in multiagent games, Roth and Erev argue for two
additional learning principles that help to capture learning
responsiveness, which they refer to as experimentation
and the recency (or forgetting) effect.  The former
principle asserts that, not only are choices that were
successful in the past more likely to be employed in the
future, but similar choices will be employed more often as
well.  The latter principle asserts that recent experience
generally plays a larger role than past experience in
determining behavior.
     The RE algorithm incorporates each of these four
learning principles to some degree.  Roth and Erev show
that this algorithm is able to track successfully the
observed intermediate-term behavior of human subjects
over a wide variety of multiagent repeated games with
unique equilibria achievable using stage-game strategies.

D. Form of the Roth-Erev Algorithm

     The three parameters characterizing the RE algorithm
are a scaling parameter s(1), a recency parameter r and
an experimentation parameter e.  The implementation of
the RE algorithm will now be illustrated for a group of
buyers and sellers participating in a double auction.  For
simplicity, each buyer and seller is assumed to learn in
accordance with an RE algorithm characterized by the
same three values for these parameters.
     The feasible price offer domain for each buyer and
seller is approximated by a discrete grid consisting of K
feasible actions (bid or ask prices) k, where K is the same
for each trader. At the beginning of the first auction round
1, each trader j assigns an equal propensity qjk(1) to each
of its feasible actions k, given by qjk(1)= s(1)X/K, where
X is the average profit that buyers and sellers can achieve
in any given auction round.
     Moreover, each trader j assigns an equal choice
probability pjk(1) to each of its feasible actions k, given
by pjk(1) = 1/K.  Each trader j then probabilistically
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selects a feasible action k´ to submit to the clearinghouse
in accordance with its current choice probabilities.  On the
basis of all received bids and asks, the clearinghouse
determines buyer-seller matches.  It then communicates
these matches back to the traders along with a quantity
amount and a midpoint price for each match.  Each trader
j then implements its assigned trades and records the total
profits R(j,k´,1) that it gained from this trading activity.
     Now suppose that trader j is at the end of the nth
auction round, for arbitrary positive n, and that in the nth
auction round trader j has submitted a feasible action k´ to
the clearinghouse and achieved total profits R(j,k´,n) from
its resulting auction-directed trading activity.  Trader j
then updates its existing action propensities qjk(n) on the
basis of its newly earned profits, as follows.  Given any
feasible action k, the propensity qjk(n+1) for choosing k in
the next auction round n+1 is determined as

),,,',,()()1()1( eKnkkjEnqrnq jkjk +−=+

where r denotes the value of the recency parameter, e
denotes the value of the experimentation parameter, and
E(·) is an update function reflecting the experience gained
from past trading activity.
     The recency parameter r slowly reduces the
importance of past experience, thus implementing the
recency effect.  The update function E(·) takes the form
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The selected action k´ is thus reinforced or discouraged
on the basis of the profits R(j,k´,n) earned subsequent to
this selection,  but some propensity to experiment among
all other feasible actions k is also retained.  Thus, E(·) is
an implementation of the experimentation principle.
     Given the updated propensities qjk(n+1) for auction
round n+1, trader j’s updated choice probabilities pjk(n+1)
for selecting among its feasible actions k in auction round
n+1 take the form

      In summary, Roth-Erev traders solve a myopic
stimulus-response problem of the following form: Given
this profit outcome, what price should I next choose?
They do not engage in any explicit look-ahead reasoning
e.g., if I choose this price now, how might this affect the
price choices of my rivals in the future?

E. The Modified Roth-Erev Algorithm

     The RE algorithm outlined in Section II.D has two
drawbacks: parameter degeneracy; and no probability
updating in response to zero profits.6

     First, the updating of the choice probabilities is slow if
e is set close to [K-1]/K and ceases entirely if e is set
equal to [K-1]/K. Consequently, care must be taken in
specifying values for e and K.
     Second, a much more substantial difficulty in a
double-auction context is that each trader only updates its
choice probabilities in response to non-zero profit
outcomes.  A zero profit outcome leaves a trader's choice
probabilities unchanged because each of the trader's
current propensity values is shrunk to the same degree. In
a double-auction, traders must learn to make price offers
for which bids exceed asks in order for matching (hence
positive profits) to occur at all.  An absence of probability
updating in response to zero profits can therefore result in
a substantial loss of market efficiency as traders struggle
to learn how to make profitable price offers
     A simple modification of the RE algorithm addresses
both of these problems while still maintaining consistency
with the learning principles embodied in the original RE
algorithm.  Specifically, we replace the update function
E(·) in the original RE algorithm with the following
modified update function:
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         This modification essentially introduces a
differential value for the recency parameter r for selected
versus non-selected actions while at the same time
omitting the profit term in the updating equation for
propensities corresponding to non-selected actions. In
particular, the effect is to reduce the magnitude of the
recency parameter for non-selected actions from r to r* =
(r - e/[K-1]).  Clearly degeneracy no longer occurs for e =
[K-1]/K, but how does this modification also ameliorate
the zero-profit updating problem?
     Note that the shrinkage induced by [1-r] in the
propensity value for the selected action is now larger than
the shrinkage induced by [1-r*] in the propensity values

                                               
6 Alexei Kroujiline pointed out the parameter degeneracy
problem to us.  Deddy Koesrindartoto alerted us about the
zero-profit updating problem in a particularly compelling
way.  In his own double-auction experiments with Roth-
Erev learners participating in 1000 auction rounds,
persistent market inefficiency arose for certain parameter
specifications because the choice probabilities associated
with various zero-profit (non-matching) price offers
remained at persistently positive levels.
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for non-selected actions.  Consider, then, what happens
when a zero-profit outcome results from a selected action
k'. All propensities are shrunk, but the propensity
corresponding to k' undergoes the most shrinkage.
Consequently, in the next auction round the choice
probabilities for the non-selected actions will increase
relative to the choice probability for k', encouraging the
trader to move away from the action that resulted in zero
profits.
     On the other hand, suppose the selected action k'
results in a positive profit outcome.  Then the positive
profit reinforcement in the propensity updating equation
for k' will tend to outweigh the larger shrinkage and hence
to induce a relative increase in the updated choice
probability for this action in the next auction round.
     In summary, when the update function E(·) in the RE
algorithm is replaced with the modified update function
ME(·), the zero-profit updating problem is ameliorated.
The choice probabilities corresponding to action choices
resulting in zero-profit outcomes tend to decrease relative
to other choice probabilities while the choice probabilities
corresponding to action choices resulting in positive-
profit outcomes tend to increase.
     In the current study it will be assumed that electricity
buyers and sellers adaptively update their price offers in
accordance with this modified RE algorithm, hereafter
referred to as the MRE algorithm.

 F. Competitive Equilibrium Calculation

      The main objective of this study is to determine
market power and efficiency outcomes by comparing the
profits that buyers and sellers of electricity obtain in a
discriminatory auction against the profits they would
obtain under competitive equilibrium. This section
explains the meaning and calculation of competitive
equilibrium.
     A competitive equilibrium in a market for a positively
valued good is a (positive) unit price, P, a total quantity
supplied, QS(P), and a total quantity demanded, QD(P),
such that QS(P) = QD(P).  That is, the total quantity
supplied must equal the total quantity demanded.
     The notation QS(P) and QD(P) indicates that these
supply and demand quantities depend on the price P of the
good.  How is this dependence determined?
      The total supply at each given price is simply the sum
of the quantities of good that each seller plans to sell at
that price. Letting qi(P) denote how much of the good
seller i plans to sell at each price P,

Similarly, the total demand at each given price is the sum
of the quantities of good desired by each buyer of the
good at that price. Letting qj(P) denote how much of the
good buyer j plans to buy at each price P,

          Note that the supplies and demands of the
individual sellers and buyers are represented as functions
of the market price P.  This dependence comes from the
assumption that these individual supplies and demands
are the solutions of competitive profit maximization
problems, i.e., profit maximization problems in which the
traders are assumed to take the market price P as given.
     Specifically, for the electricity model at hand, the
competitive profit maximization problem for each seller i
takes the following form:

The marginal cost parameter αi denotes how much it costs
seller i to generate each MWh of electricity, and the
capacity parameter CSi denotes an upper bound on the
amount that seller i can generate in any one auction
round.  The solution to this maximization problem is:

         Note that seller i is assumed to take the market price
P as given and hence exogenous to its profit maximization
problem.  The assumption in the competitive model is that
the sellers believe that their quantity choices have no
effect on the market price.  Consequently, if they try to
sell electricity at a price above the market price, they will
sell nothing; buyers will buy electricity from the sellers
with the lowest price.  If they try to sell electricity at a
price below the market price, they will succeed in selling
all they can generate, but they could also do so at the
market price and make higher profit.  Thus, there is no
incentive for the sellers to sell at any price other than the
market price.

Similarly, for the electricity model at hand, the
competitive profit maximization problem for each buyer j
takes the following form:

Here rj represents the marginal revenue received by buyer
j for each MWh of electricity that buyer j resells in a
secondary retail electricity market, and CBj is an upper
bound on how much electricity buyer j can resell in any
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one auction round. The solution to this profit
maximization problem is

The buyers are assumed to believe that their quantity
choices have no effect on the market price P, so this price
is taken as an exogenous parameter in their profit
maximization problems.

   P ($/MWh)

           37
           35                                                              QS(P)

           17
           16                                               CE

            12                                                             QD(P)
            11

 
                                    20                40              60           MWh

Fig. 1. Competitive equilibrium for a 3-buyer 3-seller model.
Each trader has the same capacity (20 MWh).

     A competitive equilibrium is said to occur at any price
P that equates QS(P) and QD(P).  It is possible that
infinitely many competitive equilibria exist.  An example
of this is shown in Figure 1. In this case there are 3 buyers
and 3 sellers, each with a capacity of 20 MWh. The
competitive equilibrium is located where the supply and
demand functions intersect, which happens to be along
the vertical line segment labeled CE between $16/MWh
and $17/MWh.  Every point on this vertical line segment
is a competitive equilibrium.  For concreteness, we
always take the competitive price to be the midpoint of all
possible competitive prices.  Hence, in the current
example we would take the competitive price to be
$16.50/MWh, the average of the highest and lowest
possible competitive prices $17/MWh and $16/MWh at
the competitive equilibrium quantity 40 MWh.
      It is important to recognize that the buyers and sellers
in our computational electricity market do not actually
solve the competitive profit maximization problems
presented above.  Rather, these profit maximization

problems are used as zero-market-power benchmarks
against which our experimental auction outcomes can be
compared.

III. EXPERIMENTAL DESIGN

A. Tested Hypotheses

     For simplicity, it is assumed that all buyers in the
computational electricity market are energy service
providers and all sellers are generators, implying that
generators do not sell to other generators.  Let NB denote
the number of buyers and let NS denote the number of
sellers. The relative concentration (RCON) of the market
is then defined to be

B

S

N

N
RCON =

Let CB denote the maximum amount of electricity that
each buyer can resell in a retail market, and let CS denote
the maximum amount of electricity that each seller can
generate, both measured in megawatts per hour (MWh).
Then the relative capacity (RCAP) of the electricity
market is defined as:

CSN

CBN
RCAP

S

B

⋅
⋅

=

          Let PBCE denote the profits7 that buyers would
obtain in competitive equilibrium and let PBA denote the
profits that buyers instead obtain when prices and
quantities are determined in the discriminatory auction.
Then the market power of buyers (MPB) is defined as:

PBCE

PBCEPBA
MPB

−=

If the buyers can exert control over the price of electricity
in the auction, i.e., if the buyers can exercise market
power, then they should be able to raise their profits
above their competitive profit level and MPB should be
positive.
     Similarly, let PSCE denote the profits that sellers
would obtain in competitive equilibrium and let PSA
denote the profits that sellers instead obtain in the
discriminatory auction.  Then the market power of sellers
(MPS) is defined as:

                                               
7  For expositional simplicity, we refer to the net earnings
of the buyers as profits, ignoring all further downstream
retail activities by these agents.
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PSCE

PSCEPSA
MPS

−=

If the sellers can exert control over the price of electricity
in the auction, i.e., if the sellers can exercise market
power, then they should be able to raise their profits
above their competitive profit level and MPS should be
positive.
     The level of total profits achieved by all buyers and
sellers in the computational electricity market attains its
maximum value in competitive equilibrium, by
construction.  The market power indices MPB and MPS
measure the extent to which the profit levels achieved
separately by buyers and sellers in the discriminatory
auction differ from the profit levels they would achieve in
competitive equilibrium.  This redistribution of profits
between buyers and sellers may come at the expense of
smaller total profits for all buyers and sellers combined.
    For example, suppose some inframarginal trader (i.e.,
some trader who would match in competitive equilibrium)
engages in opportunistic auction behavior, either
underbidding its true willingness to pay, or asking more
than its true marginal cost.  In this case, it could happen
that an extramarginal trader (i.e., a trader who would fail
to match in competitive equilibrium) would be able to
match in the discriminatory auction by submitting a
higher bid or lower ask than the opportunistic trader,
leaving the latter unmatched.
     To check for possible inefficiencies arising under the
discriminatory auction, we introduce the following
efficiency measure.  The efficiency EA of the market
operating under the auction protocol is defined to be the
ratio of total auction profits to total profits in competitive
equilibrium, measured in percentage terms. That is, using
previously introduced notation, we define

We test the market power and efficiency implications
of discriminatory auction pricing for our computational
wholesale electricity market in the form of three
hypotheses.

H1) As RCAP increases, MPB decreases
while MPS increases, all else equal.

     Intuitively, buyers should have a harder time
exercising market power when there is excess demand
capacity, i.e., when the maximum amount of electricity
that the buyers want to purchase exceeds the amount that
the sellers are able to generate.  Thus, one might expect
the MPB market power index for buyers to decrease and
the MPS market power index for sellers to increase with
increases in RCAP, all else equal.

H2) As RCON decreases, MPB decreases  while
MPS increases, all else equal.

     Intuitively, sellers should have an easier time
exercising market power as electricity generation
becomes concentrated in the hands of fewer sellers per
buyer.  Thus, the MPB market power index for buyers
should decrease and the MPS market power index for
sellers should increase as RCON decreases, all else equal.
For example, hypothesis H2 is consistent with the claim
by Green and Newbery [20, p. 952] that the market power
exercised by generators in the British electricity spot
market would have been reduced substantially if the
industry had been subdivided into five generators rather
than two.

              H3) Most potential gains to trade are
              exhausted, i.e., EA is close to 100 percent.
              Any unrealized profitable trades are those
              offering the smallest gains.

     Hypothesis H3 conjectures that the level of total
profits achieved by buyers and sellers in the
discriminatory auction will be close to the level of total
profits achieved under competitive equilibrium, which is
the maximum possible level.  Consequently, the
conjecture is that the size of the total profit pie under the
discriminatory auction is essentially independent of the
division of this pie among the buyers and sellers and
hence essentially independent of any auction-induced
market power effects. Hypothesis H3 is consistent with
the high efficiency found in a wide variety of human-
subject experiments with double auctions [11].

B.  Tested Parameter Values

     The experimentally tested values for the number NB of
buyers, the number NS of sellers, the capacity CB of each
buyer, and the capacity CS of each seller are given in
Table II.  The capacities of the buyers and sellers are
representative of typical generation and demanded loads.
     The capacities for the buyers and sellers are selected to
provide the following three test ratios for the relative
capacity measure RCAP: 1:2, 1:1, and 2:1. All buyers are
assumed to have identical capacities, and similarly for all
sellers. For simplicity, in this first experimental study the
available transmission capability (ATC) between each
buyer and seller is set at 100 MWh to ensure that the ATC
is not a binding constraint on any buyer-seller match
under these capacity specifications. 8

                                               
8 As stressed by Alvarado [21], determining the effects of
ATC constraints on market power is a subtle issue, since
ATC constraints make it more likely that congestion can
be induced strategically for market power advantages.
This topic will be taken up in future studies.

100×
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TABLE II
TESTED PARAMETER VALUES

1/2

RCAP

1 2
2 NS = 6

NB = 3
CS =10
CB =10

NS = 6
NB = 3
CS = 10
CB = 20

NS = 6
NB = 3
CS = 10
CB = 40

RCON
1

NS = 3
NB = 3
CS = 20
CB =10

NS = 3
NB = 3
CS = 10
CB = 10

NS = 3
NB = 3
CS = 10
CB = 20

1/2 NS = 3
NB = 6
CS = 40
CB =10

NS = 3
NB = 6
CS = 20
CB = 10

NS = 3
NB = 6
CS = 10
CB = 10

     Buyers and sellers are assumed to have linear revenue
and cost functions subject to capacity constraints, so that
their marginal revenues and marginal costs are constant
over their quantity choices up to capacity. The cost
functions specified for the sellers are scaled linear
approximations of the cost functions of actual generating
units.
     Table III shows the specification for marginal revenue
(marginal cost) for each buyer (seller) in the experiments
reported below.  The fixed costs of the buyers and sellers
are set to zero for a simpler model. For a seller, this could
be representative of a generator already up and running
(i.e., synchronized to the transmission grid) and waiting
for a match in the auction to connect to the system and
deliver electricity.
     The marginal costs of the sellers are chosen to cover
three types of operating costs: expensive, medium, and
cheap.  These three types might be representative of an
older generation unit, an older unit that has been updated,
and a new unit, or of different types of fuel usage.  Note
from Table III that, when all six sellers are simulated, two
of each type are included to model the competition
between similar companies. The buyers’ marginal
revenues are similar to the marginal costs of the sellers
but with enough of a difference to keep a competitive
equilibrium profit. This assures the existence of a
competitive equilibrium price, which is then used to
calculate the benchmark profit levels for market power
and efficiency.
     Buyers and sellers are not permitted to submit bid or
ask prices to the auction that would definitely result in
negative profits if accepted.  To implement this rationality
postulate, the set of feasible bid price offers for each
buyer is specified to be the interval [MR-$40/MWh, MR],
where MR denotes the buyer's true (constant) marginal
revenue.  Also, the set of feasible ask price offers for each
seller is specified to be interval [MC, MC+$40/MWh],

where MC denotes the seller's true (constant) marginal
cost.   The lower bound MR-$40/MWh is low enough to
encompass all possible ask prices by sellers, and the upper
bound MC+$40/MWh is high enough to encompass all
possible bid prices by buyers.

TABLE III
LINEAR REVENUE AND COST CURVES

Buyers Marginal Revenue

1 $37/MWh

2 $17/MWh

3 $12/MWh

4 $37/MWh

5 $17/MWh

6 $12/MWh

Sellers Marginal Cost

1 $35/MWh

2 $16/MWh

3 $11/Mwh

4 $35/MWh

5 $16/MWh

6 $11/MWh

     To check the sensitivity of the market power and
efficiency outcomes to the specific values set for the
parameters characterizing the MRE reinforcement
learning algorithm, the nine RCAP/RCON configurations
in Table II are tested three times using three different
settings for these parameter values
     Recall from Section II.E that the MRE algorithm is
characterized by three parameters: a scaling parameter
s(1), a recency parameter r, and an experimentation
parameter e.  Erev and Roth [18, p. 864] note that a good
fit to their experimental data covering twelve distinct
types of human-subject games was obtained for all values
of these parameters lying in the following ranges: 0 < s(1)
< 1000; 0 < r < 0.20; and 0.02 < e < 0.30.
     In the first two tests for Table II reported below, the
parameter values for the MRE algorithm are calibrated to
facilitate the emergence for each trader of a dominant
price offer with a relatively large choice probability by
the final auction round in each run.  In the first test each
run consists of 1000 auction rounds, and in the second test
each run consists of 10,000 auction rounds. The parameter
calibration was accomplished in two stages, as follows.
     First, given the number of auction rounds per run, the
density of the price offers within each trader’s feasible
price offer range was specified to help ensure an adequate
sampling frequency for each possible offer.  For the 1000
auction rounds per run case, K=30 possible price offers
were randomly selected within each feasible price offer
range, implying that each trader could in principle sample
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each price 33 times during each run.  The average profit X
achievable in any auction round for this case was set at
X=15,000.  For the 10,000 auction rounds per run case,
K=100 possible price offers were randomly selected
within each feasible price offer range, implying that each
trader could in principle sample each price 100 times
during the course of each run.  A value X=50,000 was set
for this case.
     Second, by direct search, the values for the three MRE
algorithm parameters s(1), r, and e were calibrated until
the bid or ask price histogram for each of the traders
became single peaked by the final auction round in each
run. The calibrated parameter values found for the 1000
auction round case were s(1)=1.00, r=0.04, and e=0.97.
The calibrated parameter values found for the 10,000
auction round case were s(1)=1.00, r=0.02, and e=0.99.9

For both cases, the calibrated values for s(1) and r fall
within the Erev-Roth good fit ranges presented above
whereas the calibrated values for e do not.
     In the third test for Table II, the scaling parameter s(1),
the recency parameter r, and the experimentation
parameter e for the MRE algorithm are instead set equal
to the values obtained by Erev and Roth [18, p. 863] by a
best overall fit of the RE algorithm to experimental data
from twelve distinct types of games run with human
subjects. These values are s(1)=9.00, r=0.10, and e=0.20.
The MRE algorithm with the latter parameter values is
referred to below as the best-fit MRE algorithm.

IV. EXPERIMENTAL RESULTS

     Tables IV-VI report aggregate and individual market
power outcomes and efficiency outcomes for the three
distinct learning specifications outlined in Section III.B.
Specifically, in the first learning specification, each trader
is assumed to use the calibrated MRE algorithm with each
run consisting of 1000 auction rounds.  In the second
learning specification, each trader is assumed to use the
calibrated MRE algorithm with each run consisting of
10,000 auction rounds.  In the third learning specification,
each trader is assumed to use the best-fit MRE algorithm
with each run consisting of 1000 auction rounds.

     --- Insert Tables IV, V, and VI About Here ---

     Each cell in each table corresponds to a unique
RCAP/RCON configuration, in parallel to Table II.  For
each table cell, the auction was run 100 times using 100
different seeds for the pseudo-random number generator.

                                               
9 It is interesting to note that, under the original RE
algorithm, no updating of choice probabilities would
occur for this 10,000 auction round case since e = [K-1]/K
= 0.99.  In contrast, as will be seen below, the MRE
algorithm results in good learning and very high market
efficiency.

For each run, the profit levels attained in the final auction
round by buyers as a whole and by sellers as a whole, as
well as by individual buyers and sellers, were calculated
and compared against competitive profit levels to obtain
aggregate and individual MPB and MPS market power
indices.  In addition, for each run, the value for the market
efficiency measure EA in the last auction round was
calculated and recorded.
     The means and standard deviations of the aggregate
and individual MPB and MPS market power indices were
then calculated across all 100 runs for each table cell.
The aggregate results are given at the top of each table
cell, and the results for individual buyers and sellers are
listed underneath.  A mean market power outcome with a
positive or negative sign is marked with an asterisk if it is
substantially different from zero, in the sense that the
indicated sign does not change when the outcome is either
increased or decreased by one standard deviation. Finally,
the mean and standard deviation for the market efficiency
measure EA calculated across all 100 runs are given at the
bottom of each table cell.

As explained in Section III.A, hypothesis H1 predicts
that the MPB market power index for buyers should
decrease while the MPS market power index for sellers
should increase, all else equal, in response to increases in
relative demand capacity (RCAP).  Looking at the market
power outcomes reported in Tables IV through VI,
however, it is seen that Hypothesis H1 is not supported
under any of the three learning specifications. MPB
actually tends to increase and MPS to decrease with
increases in RCAP for each given relative concentration
(RCON) level, a direct contradiction of H1.
      Also, hypothesis H2 predicts that the MPB market
power index for buyers should decrease while the MPS
market power index for sellers should increase, all else
equal, in response to decreases in relative concentration
RCON.  The latter measure is simply the ratio of the
number of sellers to buyers.  As seen in Tables IV through
VI, however, the changes in buyer and seller market
power levels in response to changes in RCON are small
and unsystematic for each given level of RCAP, in
contradiction to hypothesis H2. This is particularly true
for the experiments comprising 10,000 auction rounds per
run reported in Table V.10

                                               
10 In human-subject experiments with actual electricity
industry participants, Weiss [4, p.1] finds that “increasing
the number of sellers in a given (electricity) market does
not necessarily reduce market power (of sellers), as
suggested by most standard theory….” However, in
Weiss’s study this failure of H2 is due to the existence of
available transmission capability (ATC) constraints that
effectively create local monopolies at some power grid
nodes, constraints that are not present in the current study.
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     Finally, hypothesis H3 predicts that high market
efficiency will be obtained.  The mean and standard
deviation outcomes for market efficiency EA reported at
the bottom of each cell in Tables IV through VI reveal
that high market efficiency is indeed generally obtained
for each tested RCAP/RCON configuration.
Consequently, hypothesis H3 is strongly supported.  Note
that the calibrated MRE algorithm with 10,000 auction
rounds per run strictly dominates the other two learning
specifications with regard to market efficiency.  That is,
the efficiency outcomes reported in each table cell for
Table V are as high or higher than the efficiency
outcomes reported in the corresponding table cells for
Table IV and Table VI.

V. DISCUSSION

     What explains the failure of the market power
hypotheses H1 and H2 in the current electricity market
context?  On the surface, this failure seems to contradict
basic economic intuition. Also, why is the market
efficiency hypothesis H3 so strongly supported?
     A careful case-by-case examination of the micro
events underlying the outcomes reported in Tables IV
through VI goes a long way toward dispelling the
mystery.  Briefly, one sees that the aggregate measures
RCAP and RCON are simply too crude to reflect well the
opportunities for exercising market power that individual
buyers and sellers actually face. To understand the latter,
the market microstructure must be carefully examined.  In
Particular, as stressed by Gode and Sunder [18], it is
important to distinguish between market outcomes that
are due to market microstructure and market outcomes
that are due to learned behavior.
     Two different definitions for market power will next
be given that permit the separate identification of market
power due to structural causes and market power due to
learning.

A. Structural Versus Strategic Market Power

     First suppose that no trader misrepresents its true
reservation price, i.e., suppose each buyer bids its true
marginal revenue and each seller asks its true marginal
cost.  Under the discriminator midpoint pricing rule, the
exact relative positioning of the resulting “true” market
demand and supply curves can still confer market power
on some buyers and not on others and on some sellers and
not on others. Call this structural market power.
      In the current movement to restructure the electricity
industry, all participants are well aware that the choice of
auction protocol can substantially affect their relative
profitability.  Thus, a consideration of the structural
market power allocated to different market participants
under alternative auction protocols would presumably be
of major interest.

     Second, by engaging in unilateral misrepresentation of
their true reservation prices, some buyers and/or some
sellers may have potentially exercisable market power in
addition to (or even in the absence of) structural market
power.  Call this (unilateral) strategic market power.

B. Structural Market Power Outcomes

      Analytically derived structural market power
outcomes are presented in Table VII for the nine tested
RCAP/RCON configurations in Table II.11  The outcomes
in Table VII reveal three interesting regularities.

--- Insert Table VII About Here ---

     First, buyers have negative structural market power
and sellers have positive structural market power for six
of the nine tested RCAP/RCON configurations: namely,
for the six cells in the first two columns in Table VII.
Consequently, in the current electricity market context, it
is generally the buyers who are structurally disadvantaged
in the auction with regard to market power.
     Second, for each given level of RCON, the average
structural market power of buyers as a whole increases as
RCAP increases, and the average structural market power
of sellers as a whole decreases as RCAP increases, in
direct contradiction to the market power hypothesis H1.
     Third, for each given level of RCAP, the average
structural market power of buyers as a whole and for
sellers as a whole are invariant to changes in RCON.  This
directly contradicts the market power hypothesis H2.
     Comparing the experimental market power outcomes
reported in Tables IV through VI against the analytically
derived structural market power outcomes reported in
Table VII, one sees that the experimentally determined
market power outcomes closely track the structural
market power outcomes. Consequently, in the current
electricity market context, market microstructure is
strongly predictive for observed market power outcomes.

B. Strategic Market Power Outcomes

      What about strategic market power? Call a trader
inframarginal if it would engage in a positive amount of
trade in competitive equilibrium, and extramarginal

                                               
11  In cell (1,1) of Table VII, the inframarginal sellers 3
and 6 have the same marginal cost but are matched with
different buyers at different prices depending on their
order of selection.  In cell (3,3), the inframarginal buyers
1 and 4 have the same marginal revenue but are matched
with different sellers at different prices depending on their
order of selection.   The structural market power levels
reported for these traders are their expected market power
levels under the assumption that they are randomly
ordered for matching purposes.
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otherwise.  As will be clarified in Section V.E below,
every inframarginal buyer and seller in each of the nine
tested RCAP/RCON configurations in Table II has
positive strategic market power under the discriminatory
auction protocol.  That is, assuming all other
inframarginal traders bid or ask their true reservation
prices, the remaining inframarginal trader can always
increase its profits above what it would obtain if it bid or
asked its true reservation price.  If the trader is a buyer, it
can accomplish this by suitably lowering its bid price
below its true marginal revenue.  If the trader is a seller, it
can accomplish this by suitably raising its ask price above
its true marginal cost.  Under the discriminatory
midpoint-pricing rule, this opportunistic behavior would
then move the auction price in a direction favorable to the
trader.
     Nevertheless, structurally disadvantaged traders never
learn to effectively exercise strategic market power in our
auction experiments. By construction, the exercise of
strategic market power is measured by the discrepancies
between the experimentally determined market power
outcomes in Tables IV through VI and the analytically
derived levels for structural market power given in Table
VII.  While there are some discrepancies in magnitudes,
there are no instances in which a trader with negative
structural market power attains a positive market power
level in the auction.  Moreover, instances in which a
trader with a positive structural market power level attains
a negative market power level in the auction are rare.
     Specifically, the only sign discrepancies in mean
market power for all buyers or all sellers are as follows:
Table IV has two sign discrepancies [the MPB index for
all buyers in cells (1,3) and (2,3)]; Table V has one sign
discrepancy [the MPB index for all buyers in cell (1,3)];
and Table VI has no sign discrepancies.  In each case the
sign discrepancy in the mean MPB level for all buyers is
due to a sign discrepancy occurring for the mean MPB
level of a single buyer: namely, Buyer 1.  Note, also, that
these sign discrepancies are all to the disadvantage of
Buyer 1, i.e., its realized auction market power is negative
whereas its structural market power is positive.  Finally,
note that none of the mean MPB values showing a sign
discrepancy is marked with an asterisk.  This implies that
the sign discrepancy disappears within one standard
deviation of the reported mean observation.
     These findings show that, apart from the small number
of sign discrepancy cases noted above, learning has no
effect on the relative exercise of market power by buyers
and sellers.  When the discriminatory auction protocol
gives greater structural market power to buyers, the
buyers retain this relative market power advantage in the
auction experiments, and similarly for sellers. Indeed,
when buyers attain a positive mean market power level in
the auction, the mean market power level attained by
sellers in the auction is negative, and vice versa.  As will
be clarified in Section V.E, this “zero-sum game” finding

reflects the high market efficiency levels attained in the
auction experiments.

D. Efficiency Outcomes

     Apart from round-off and truncation error, the market
efficiency measure EA defined in Section III.A equals
100 percent in any given auction round if and only if the
set of active traders in the auction round coincides with
the set of active traders in competitive equilibrium.12 This
implies, in particular, that no extramarginal trader
manages to trade in the auction, and that no infra-
marginal trader fails to trade in the auction.
     Comparing the mean and standard deviation outcomes
reported in Table IV through Table VI for EA, one sees
that the highest mean market efficiency outcomes are
uniformly attained in Table V.  The latter table reports
outcomes for the case in which all buyers and sellers use
the calibrated MRE algorithm with 10,000 auction rounds
per run.  In each cell of Table V, the market efficiency
measure EA attains a mean value of 94 percent or better.
Nevertheless, generally high mean market efficiency
outcomes are also reported in Table IV and Table VI for
distinctly different settings of the MRE algorithm
parameters, and with only 1000 auction rounds per run.
     The overall implication of these generally high market
efficiency levels is that the discriminatory auction
essentially reduces to a zero-sum game.  That is, total
buyer and seller profits are approximately given by total
competitive profits in each experiment, and the key
remaining issue is how these profits are redistributed
among buyers and sellers as one switches from
competitive equilibrium pricing to discriminatory auction
pricing.
     Profit distribution under the discriminatory auction is
measured by market power.  If total profit remains
constant as one switches from competitive to auction
pricing, then market power simply measures the manner
in which the auction redistributes this constant total profit
between buyers and sellers.  In this case, apart from
round-off error, a positive attained market power level for
one type of trader necessarily implies a negative attained
market power level for the other.  As noted in Section
V.C, it is indeed seen in Tables IV through VI that table
cells reporting a high mean market efficiency level also
generally report a mean market power level for all buyers

                                               
12 This simple characterization for market efficiency has
to be slightly qualified in the presence of marginal traders
with identical marginal revenues or marginal costs who
do not all end up trading in competitive equilibrium.  In
this case, market efficiency holds regardless of which of
these marginal traders actually carries out the marginal
competitive equilibrium trades.  This indeterminacy is
absent for the nine tested configurations in Table II.
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that is opposite in sign to the mean market power level for
all sellers.

E. Micro Analysis for Illustrative Cases

     To better understand the underlying reasons for the
findings reported in Section IV, a more detailed micro
analysis will now be given for two of the tested
RCAP/RCON combinations in Table II: namely, cell (3,1)
and cell (3,2).

   P ($/MWh)

           37            B 1, 4                                                    S 1
           35                                                                                        QS(P)

                                       B 2, 5
           17                                                 S 2
           16
                                                      CE

            12                                      B 3, 6      QD(P)
            11
                                    S 3

 
                          10    20   30   40   50   60   70   80  90 100 110 120
                                                   MWh

Fig. 2. Cell (3,1) true demand and supply curves for 6 buyers
and 3 sellers with 10 MWh and 40 MWh capacities respectively.

      First, consider cell (3,1) in Table II with RCAP =
RCON = 1/2.  The market for this case comprises six
buyers, each with capacity 10 MWh, and three sellers,
each with capacity 40 MWh. The marginal revenues and
marginal costs for these buyers and sellers are listed in
Table III. Making use of these capacity, revenue, and cost
specifications, the true demand and supply curves can be
constructed; these are depicted in Fig. 2. The competitive
outcome based on these demand and supply curves is Q =
40 MWh and P = $14/MWh.
     The low RCAP value 1/2 for this case implies the
existence of excess potential supply, which suggests that
buyers should be favored.  Yet the experimental market
power outcomes reported for this case in cell (3,1) in
Tables IV through VI show that Seller 3 is the only trader
in the discriminatory auction that is successfully able to
attain a positive market power level on average.  Why is
this the case?
     It will now be shown that Seller 3 is the only trader
that has positive structural market power.  On the other
hand, all inframarginal buyers and sellers have
countervailing strategic market power.  This prevents any

trader with negative structural market power under the
auction protocol from being able to successfully exercise
its strategic market power to the point that it attains a
positive market power level.
     Under the discriminatory auction protocol, it is the 80
MWh unused capacity of Seller 1 and Seller 2 that
constitutes the excess potential supply reflected in
RCAP=1/2.  These two sellers have relatively high
marginal costs of $35/MWh and $16/MWh, respectively.
If all traders bid and ask their true reservation prices in
the auction, Seller 1 and Seller 2 will not obtain an
auction match. Nevertheless, since they also fail to trade
in competitive equilibrium, their profits under the auction
are the same as under competitive equilibrium.  This
implies that their structural market power is zero even
though their MPS indices are not well defined.
     Similarly, the relatively low marginal revenue
$12/MWh of Buyer 3 and Buyer 6 prevents any auction
match for these buyers if all traders bid and ask their true
reservation prices. Thus, since they also fail to trade in
competitive equilibrium, their structural market power is
zero even though their MPB indices are not well defined.
Seller 3 has a relatively low marginal cost of $11/MWh,
and its total electricity supply capacity is 40 MWh.
Buyers 1 and 4 have a relatively high marginal revenue
(willingness to pay) of $37/MWh, and their total
electricity demand capacity is 20 MWh. Under the
discriminatory midpoint pricing rule, assuming all traders
bid or ask their true reservation prices, Buyers 1 and 4
would purchase 20 MWh from Seller 3 at a price of
$24/MWh, a price that exceeds the competitive price of
$14/MWh.  The profit of Seller 3 on this 20 MWh
contract would thus be $260, greater than its competitive
profit $60, and the profit of Buyers 1 and 4 would each be
$130, less than their competitive profit $230.
     Buyers 2 and 5 with marginal revenue $17/MWh
would then end up purchasing Seller 3’s remaining 20
MWh at the competitive price $14/MWh, giving Seller 3
a (competitive) profit of $60 and Buyers 2 and 5 each a
(competitive) profit of $30.  The MPS structural market
power index for Seller 3 is then calculated to be 1.67, the
MPB structural market power index for Buyers 1 and 4 is
–0.43, and the MPB structural market power indices for
Buyers 2 and 5 are zero.
      These observations imply that, contrary to the
implications of hypothesis H1, excess potential supply (a
low RCAP value) can fail to ensure that any buyer has
positive structural market power in the discriminatory
auction. The reason for this is that excess potential supply
can come from the excess capacity of high-cost sellers
who are extramarginal under competitive equilibrium.
Assuming all traders bid or ask their true reservation
prices, these sellers will not be able to obtain matches in
the discriminatory auction. Consequently, the presence of
these extra-marginal sellers confers neither advantage nor
disadvantage on any other trader with regard to structural
market power, yet their presence can change the value of
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the relative capacity measure RCAP.  Similar
observations apply for extramarginal buyers in the reverse
case of excess potential demand.
     What about strategic market power? Consider, once
again, cell (3,1) in Table II with true demand and supply
curves depicted in Fig. 2.  It turns out that Seller 3 and
Buyers 1, 4, 2, and 5 all have some degree of strategic
market power under the discriminatory auction protocol.
     Specifically, by unilaterally misrepresenting their true
willingness to pay by bidding below their true marginal
revenue $37/MWh, Buyer 1 and Buyer 4 can each
increase their auction profits. Indeed, if either buyer were
to bid $12/MWh plus some small amount epsilon, hence
above the price $12/MWh at which the extramarginal
Buyers 3 and 6 would be able to match, they would obtain
a profit close to $250 on their 10 MWh purchase from
Seller 3.  The latter profit is greater than their $230
competitive profits and much greater than the $130
auction profits that they would earn by bidding their true
marginal revenue. The MPB strategic market power
indices for Buyers 1 and 4 are approximately 0.09.
Similarly, the MPB strategic market power indices for
Buyer 2 and Buyer 5 (who should also strategically bid
$12/MWh plus epsilon) are approximately 0.67.
     On the other hand, Seller 3 also has strategic market
power. Suppose Seller 3 unilaterally raises its ask price
from its true marginal cost $11/MWh up to $16/MWh
minus epsilon but no higher (to prevent Seller 2 from
matching).  Then the contract price of Seller 3 with Buyer
1 and Buyer 4 for 20 MWh under the discriminatory
midpoint pricing rule would be close to $26.50/MWh.
This would give Seller 3 a profit of $310, higher than the
$260 profits it would earn in the auction by asking its true
marginal cost, and much higher than its $60 competitive
profits.
     In addition, by asking $16/MWh minus epsilon, Seller
3’s contract price with Buyer 2 and Buyer 5 for 20 MWh
would be approximately $16.50/MWh.  This would give
Seller 3 a profit of $110, which is higher than the $60
profits that Seller 3 would earn on this 20 MWh contract
either in the discriminatory auction with bidding and
asking of true reservation prices or in competitive
equilibrium.  The total profit of Seller 3 would therefore
be $420, hence the MPS strategic market power index for
Seller 3 is 2.50.
     Thus, Seller 3 and Buyers 1, 4, 2, and 5 in cell (3,1) all
have positive strategic market power. As previously
determined, however, only Seller 3 has positive structural
market power. Examining the results reported for cell
(3,1) in Tables IV through VI, it is seen that none of the
buyers succeeds in exercising its strategic market power
to the point that it ends up with a positive MPB market
power level in the auction.  The problem for the buyers is
that strategic market power is being exercised on both
sides of the market.  When ask prices are being raised by
sellers at the same time that bid prices are being lowered

by buyers, the tendency is for the midpoint price of each
bid-ask spread to remain essentially the same.
     An examination of the actual price offers submitted to
the auction by Seller 3 and Buyers 1, 4, 2, and 5 in cell
(3,1) reveals this effect.  Seller 3 learns to submit ask
prices higher than its marginal cost, and this exercise of
strategic market power by Seller 3 foils the attempts by
the buyers to lower their auction price by underbidding
their true marginal revenues.
      Specifically, as seen in Fig. 3, the average ask price of
Seller 3 in the final auction round is roughly $15/MWh
regardless of the precise parameter values set for the
MRE algorithm.  Note from Table III that $15/MWh
exceeds Seller 3’s true marginal cost of $11/MWh and is
just below the price $16/MWh at which the extramarginal
Seller 2 could feasibly enter the market.

-- Insert Figure 3 About Here --

     On the other hand, on average, the bid prices of Buyer
1 and Buyer 4 in the final auction round are roughly
$24/MWh for each tested MRE algorithm specification.
This level is lower than their true marginal revenue
$37/MWh but also higher than the level $12/MWh at
which the extramarginal Buyer 3 and Buyer 6 could
feasibly enter the market.  Also, on average, the bid prices
of Buyer 2 and Buyer 5 in each final auction round are
roughly $15/MWh, below their true marginal revenue of
$17/MWh but high enough to prevent entry by Buyer 3
and Buyer 6.
     Thus, all active traders in cell (3,1) exercise strategic
market power to some degree by asking higher than true
marginal costs or bidding below true marginal revenues.
Nevertheless, the net result of these countervailing forces
is that Seller 3’s structural market power advantage
prevails.
     Regarding market efficiency, bid and ask price data for
cell (3,1) reveal that all inframarginal traders learn to
place their bids and asks within ranges that prevent the
entry of extramarginal traders.  Moreover, the buyers end
up bidding above asks, on average, so that coordination
failures are relatively infrequent. The result is high market
efficiency, despite the fact that Seller 3 achieves a
relatively high market power level.
      Higher market efficiency is achieved for cell (3,1) as
the overall volatility of the bid and ask prices in the final
auction round decreases.  As indicated in Fig. 3 for Seller
3, the greatest overall volatility is observed for the
calibrated MRE algorithm with 1000 auction rounds per
run and the least overall volatility is observed for the
calibrated MRE algorithm with 10,000 auction rounds per
run.  This decline in volatility is particularly marked for
Buyer 2 and Buyer 5.
      Next, consider cell (3,2) in Table II with RCAP = 1
and RCON = 1/2.  The market for this case comprises six
buyers, each with capacity 10 MWh, and three sellers,
each with capacity 20 MWh. The marginal revenues and
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marginal costs for these buyers and sellers are listed in
Table III.  Making use of these specifications for
capacities, revenues, and costs, the true demand and
supply curves can be constructed; these are depicted in
Fig. 4. The competitive outcome based on these demand
and supply curves is Q = 40 MWh and P = $16.50/MWh.
     An analysis of the results reported for cell (3,2) in
Tables IV through VI proceeds along lines similar to the
foregoing analysis for cell (3,1), with one interesting
exception.  As seen by comparing Fig. 4 with Fig. 2,
Buyer 2, Buyer 5, and Seller 2 in cell (3,2) face a much
greater challenge with regard to learning how to select
their bid and ask prices than any inframarginal trader in
cell (3,1).  This is because the price range in which they
can successfully match is much narrower.

   P ($/MWh)

           37                B 1, 4                                                  S 1
           35                                                                                            QS(P)

                                                            B 2, 5
           17
           16                                                                   CE
                                                              S 2

            12
            11                                                                        B 3, 6       QD(P)
                                 S 3

 
                       0         10           20           30          40         50         60
                                                          MWh

Fig. 4. Cell (3,2) true demand and supply curves for 6 buyers
and 3 sellers with10 MWh and 20 MWh capacities respectively

     Indeed, under the calibrated MRE algorithm with 1000
auction rounds per run, it is seen in cell (3,2) of Table IV
that Buyer 2 fails to match at all and Buyer 5 matches
only rarely.  An examination of bid and ask data for cell
(3,2) in Table IV reveals that the bid prices of these
buyers are extremely volatile, and they almost never
exceed the marginal cost of Seller 2.  Consequently, this
learning specification does not permit price discovery for
these buyers.
     Seller 2 in cell (3,2) of Table IV manages to match
frequently enough with Buyer 1 and Buyer 4 to sustain a
positive average market power level, although with
extremely high standard deviation.  The average ask price
of Seller 2 is roughly $20/MWh, which is higher than the
marginal revenue $17/MWh of Buyer 2 and Buyer 5.  The
average ask price of Buyer 1 and Buyer 4 in cell (3,2) of
Table IV is roughly $25/MWh.  Interestingly, the average

ask price of Seller 3 in cell (3,2) of Table IV is only about
$16/MWh, which is below the marginal revenue of Buyer
2 and Buyer 5.  Nevertheless, given the extreme volatility
of these latter buyers’ bids, matches with these buyers
essentially never occur.
     Buyer 2 and Buyer 5 in cell (3,2) perform better under
the MRE algorithm specifications reported in Table V and
Table VI.  For example, bid data for Buyers 2 and 5 in
cell (3,2) of Table VI reveal that they manage to bid close
to their true marginal revenue $17/MWh in the final
auction round in about one third of the 100 runs, and this
percentage improves for Table V.
     In contrast, Seller 2 in cell (3,2) performs worse in
Tables V and VI, failing to match at all in Table V.  In
Table VI, the average ask price of Seller 2 in cell (3,2) is
only about $16/MWh, close to its true marginal cost.  This
permits matches with Buyer 2 and Buyer 5, but with very
little gains to trade.  In contrast, the average ask price of
Seller 3 in cell (3,2) of Table VI is around $15/MWh.
Thus, as the seller submitting the lowest ask on average,
Seller 3 is now matched most frequently with Buyer 1 and
Buyer 4, thus crowding out Seller 2 and forcing Seller 2
to trade with Buyer 2 and Buyer 5 for much lower gain.
The average ask price of Buyer 1 and Buyer 4 in cell (3,2)
of Table VI is about $24/MWh.
     Despite the increased challenge that some traders face
to achieve matches in cell (3,2), the coordination failures
mostly involve marginal traders with small gains to trade.
Consequently, high market efficiency is still achieved.

VI. CONCLUDING REMARKS

A. Summary of Key Findings

The careful testing of auction protocols for a
restructured electricity market by means of an agent-
based computational model imposes two requirements on
this model.  First, the model should adequately reflect the
actual microstructure of the market.  Second, the artificial
traders in the model should behave in ways that
approximate the behavior of real traders.

This study attempts to capture in a computational
model the basic features of a restructured wholesale
electricity market operating in the short run, abstracting
from longer-run contracting considerations. We have
assumed that, under restructuring, a small number of
heterogeneous buyers (energy service providers) actively
participate in this market along with a small number of
heterogeneous sellers (generators). The buyers and sellers
submit price and quantity offers repeatedly to a
clearinghouse double auction that employs discriminatory
midpoint pricing.  The capacities, marginal revenues, and
marginal costs of the buyers and sellers are private
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information. These features imply that the buyers and
sellers face an inherently complex strategic situation.13

Moreover, we have attempted to implement learning
in a manner supported by empirical data.  Each buyer and
seller is assumed to update its price offers over time in
accordance with the MRE learning algorithm, a modified
version of an individual reinforcement learning algorithm
developed by Roth and Erev [16], [17].  The latter
researchers developed their algorithm on the basis of
extensive data obtained from experiments with human
subjects in multiagent decision environments.
      As detailed in Section III.A, we test two hypotheses
regarding relative market power, H1 and H2.  As seen in
Section IV, one key finding of this study is that
hypothesis H1 is not supported. When relative
concentration (RCON) is held fixed, the effects of
increasing relative capacity (RCAP) are often in the
opposite direction of the effects predicted by H1.
     A second key finding of this study is that hypothesis
H2 also receives no support.  Holding RCAP fixed,
changes in RCON have only small unsystematic effects
on market power in contradiction to H2.14  This latter
finding strongly cautions against the common practice of
confounding capacity and concentration effects in market
power studies by letting firm size and numbers of firms
vary together in an uncontrolled way.
     The problem with hypotheses H1 and H2 in the current
electricity market context is that they attempt to predict
relative market power effects purely on the basis of
aggregate aspects of market structure as measured by
RCAP and RCON.  However, as seen in Section IV,
neither aggregate turns out to be well correlated with the
actual opportunities open to individual buyers and sellers
to exercise market power under the discriminatory auction
protocol.
     In contrast, as shown in Section V, the microstructure
of the electricity market is strongly predictive for the
relative ability of buyers and sellers to exercise market
power in the discriminatory auction. More precisely, the
relative market power levels attained by buyers and
sellers when they are permitted to learn to make
opportunistic price offers closely track the relative
“structural” market power levels they attain when the
buyers are instead forced to bid their true willingness to

                                               
13 Indeed, in game-theoretic terms, it can be shown that
the computational electricity market has numerous “pure
Nash equilibria,” i.e., numerous offer configurations that
satisfy the following condition: Given the price and
quantity offers of all other traders, no individual trader
can increase its profits by means of a unilateral deviation
from its own current price and quantity offers.
14 Interestingly, a similar finding of unsystematic effects
for changes in RCON, taking RCAP as given, is reported
in Tesfatsion [22] for a computational labor market.

pay and the sellers are instead forced to ask their true
marginal costs.
     Interestingly, examining the market power results
obtained in an earlier electricity study by the authors [23,
Table 3] in which the buyer and seller populations instead
each engage in social mimicry learning via a genetic
algorithm (GA), it is seen that a similar conclusion holds.
Structural market power is strongly predictive for the
relative exercise of market power by the buyers and
sellers; the effects of GA social mimicry learning on
relative market power are small and unsystematic. For
ease of comparison, these GA results are reproduced here
as Table VIII.15

     Taken together, these relative market power outcomes
suggest that the microstructure of our electricity market
under the discriminatory auction protocol so strongly
channels the behavior of buyers and sellers that the
precise form of their learning behavior is largely
irrelevant. As noted next, however, this robustness to
variations in learning behavior does not extend fully to
efficiency outcomes.
      As detailed in Section III.A, we also test a basic
market efficiency hypothesis (H3).  A third key finding of
our study is that this hypothesis H3 is strongly supported.
The market efficiency measure EA is 90 percent or better
for almost all of the tested RCAP/RCON configurations.
     The particular parameter values specified for the MRE
learning algorithm used by traders in our current
electricity market study do affect the ability of some
traders to avoid coordination failure. However, in
accordance with hypothesis H3, the trades in question are
marginal trades offering the smallest gains, and the
resulting effects on market efficiency generally tend to be
small and unsystematic.  Our experiments suggest that the
number of auction rounds per run may be a more
important determinant of market efficiency than these
parameter settings per se.
     On the other hand, the market efficiency levels of the
auction outcomes obtained in [23] under the assumption
that the electricity traders instead use GA social mimicry
learning are reported in Table VIII.  These results show
that market efficiency obtained with GA social mimicry
learning is substantially degraded relative to market
efficiency obtained with individual MRE learning.
Consequently, market efficiency is not robust with respect
to switches from individual to social learning. 16

                                               
15 Table VIII corrects a labeling problem in the original
Table 3 in Nicolaisen et al. [23]: namely, the Table 3 row
labeled RCON=1/2 should instead have been labeled
RCON=2, and vice versa.
16  For an example of an oligopoly market in which a
switch from individual to social learning results in
substantially higher average output, see Vriend [24,
Fig.5]. In Vriend’s example, all firms have identical costs.
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     As detailed in Section V.E, a careful examination of
the bid and ask behavior of individual buyers and sellers
in our electricity market provides an explanation for these
market power and efficiency findings.  Since both trader
types can submit opportunistic price offers, each type has
countervailing strategic market power that holds in check
the ability of the other type to offset the structural market
power biases inherent in the discriminatory auction
protocol per se. This is true whether the traders use
individual or social learning.
     Nevertheless, under individual MRE learning,
inframarginal traders are better able to home in on bids
and asks that are sufficiently close to their true
reservation prices to ensure positive bid-ask spreads and
prevent entry by extramarginal traders.  Coordination
failure is thus largely avoided, meaning that the set of
trades conducted under the discriminatory auction agrees
closely with the set of trades that would occur in
competitive equilibrium.  The result is high market
efficiency, despite the fact that some buyers and sellers
have substantially positive or negative structural market
power levels.  The root cause of the inefficiency under
GA social mimicry learning is a relatively high
coordination failure rate due to inappropriate mimicry by
structurally distinct traders.

B. Comparison with Other Studies

Our findings regarding relative market power support
the conclusion reached by Weiss [4] for human-subject
electricity market experiments that active bidding by
buyers may limit the ability of sellers to exercise market
power.  However, since Weiss only considers nodal and
uniform pricing, he is not led to consider the distinction
between structural and strategic market power.

In our context, the discriminatory auction protocol
inherently allocates market power to some traders in
preference to others, even in the absence of opportunistic
bids and asks.  On the other hand, all buyers and sellers
can attempt to secure strategic market power, in the sense
that buyers can attempt to increase their profits by bidding
lower than their true marginal revenues and sellers can
attempt to increase their profits by asking higher than
their true marginal costs.  Therefore our market power
conclusion must be nuanced by saying that the presence
of active traders on each side of the market reduces the
ability of structurally disadvantaged traders to overcome
the structural market power biases inherent in the auction
protocol through the exercise of strategic market power.
In addition, the ability to exercise strategic market power
is further limited in our context by the threat of entry by
extramarginal traders.

Our findings regarding market efficiency are
reminiscent of the conclusions reached by Gode and
Sunder [18] and other previous researchers regarding the
efficiency of continuous double auctions.  A continuous

double auction is a double auction in which bids and asks
are continuously received, trades can occur at any time,
and bids and asks are accepted by the traders themselves
rather than matched by a clearinghouse.  As noted by
Friedman [5, pp. 5-6], continuous double auctions have
been observed in human-subject experiments to induce
very efficient outcomes under a wide range of treatment
conditions, much more so than traditional economic
theory would suggest.

A key question raised by Gode and Sunder [18] is the
extent to which the efficiency of any given market
mechanism is attributable to trader rationality or inherent
in the design of the mechanism. Their findings for
continuous double auctions with zero-intelligence traders
suggest that efficiency is inherent in the continuous
double auction mechanism per se.

Similarly, our market efficiency findings would seem
to suggest that efficiency is inherent in the design of the
discriminatory clearinghouse double auction mechanism.
Nevertheless, this conclusion is tempered by two
additional findings.

First, market efficiency is seriously degraded when
the buyer and seller populations each use GA social
mimicry learning instead of individual MRE learning.
This form of social mimicry is not particularly appropriate
in the current electricity context since buyers have
different marginal revenues and sellers have different
marginal costs.   Second, as indicated in Section II.E
(footnote 6), market efficiency can also be seriously
degraded when buyers and sellers learn in accordance
with the original RE learning algorithm, implying that
they do not respond to the unfavorable stimulus of zero
profits.

 These two additional findings suggest that the
following caution is in order.  While the discriminatory
clearinghouse double auction may reliably deliver high
market efficiency when buyers and sellers refrain from
inappropriate learning behavior, it may not be robust
against the active exercise of bad judgment.

The extent to which our market power and efficiency
findings generalize to wholesale electricity markets
operating under different auction protocols is an
interesting open question. For example, would our
findings generalize to clearinghouse double auctions with
uniform pricing?  Or to continuous double auctions
exhibiting the various special types of rules (opening
price rules, priority rules, etc.) listed by Domowitz [25]
on the basis of a survey of systems in actual operation?

Under alternative auction protocols, the learning
behavior of traders might have more substantial effects on
market power or market efficiency because the traders
have a greater leeway for the exercise of strategic market
power.  In any case, it might be that the MRE learning
algorithm applied in the current study is too simplistic to
capture fully the strategic opportunities open to the traders

For example, Camerer and Ho [26] have developed
an individual learning algorithm that permits traders to
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use past observations to form beliefs about what other
traders will do in the future.  Would the observed strategic
behavior of traders under Camerer-Ho learning differ
significantly from what we have observed using
individual MRE learning and GA social mimicry
learning?   In particular, would the use of Camerer-Ho
learning permit traders to overcome structural market
power biases through strategic pricing?  The inability of
the traders in our current experiments to overcome
structural market power biases through strategic pricing
appears to be due more to the symmetric design of the
double auction (simultaneous bids and asks) than to any
lack of learning power per se.  However, a more
systematic examination of this issue is clearly needed.

In addition, the representation of the traders’ actions
in the current study is very simplistic: each trader submits
a single price offer and a single quantity offer to the
auction in each auction round.  In contrast, as described in
Bower and Bunn [10], each generator in the England and
Wales day-ahead electricity market submits price and
quantity offers for up to three incremental levels of output
for each of its generating units.  That is, in each auction
round each generator submits a supply function rather
than a single price-quantity pair.  The domain of possible
offers by each generator is thus enormously enlarged from
a set of points to a set of functions.

To handle these real-world features, it seems
essential to permit the traders to engage in more
comprehensive forms of learning that include inductive
reasoning (experimentation with new ideas) as well as
aspects of reinforcement learning, social mimicry, and
forecasting of future events. As discussed by Chattoe
[27], social scientists are just beginning to appreciate the
care and attention needed to model computationally the
learning behavior of multiple social agents interacting in
complex real-world contexts.

These issues, critically important for the
computational modeling of restructured electricity
markets, will be addressed in future studies.
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Fig. 3. Plot of Seller 3's ask price in cell (3,1) in the final generation across all 100 runs under three different MRE algorithm
specifications:  A) Table IV -- calibrated MRE algorithm with 1000 auction rounds per run; B) Table V -- calibrated MRE

algorithm with 10,000 auction rounds per run; and C) Table VI -- best-fit MRE algorithm with 1000 auction rounds per run.
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TABLE IV
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THE CALIBRATED MRE ALGORITHM
WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES s(1) = 1.00, r = 0.04, AND e = 0.97.  ZP INDICATES

THAT ZERO PROFITS WERE EARNED BOTH IN THE AUCTION AND IN COMPETITIVE EQUILIBRIUM.

1/2
Relative Capacity

1 2

2

                     MP     StdDev
All Buyers: -0.27     (0.18)
All Sellers:  0.46      (0.88)

Buyer[1]:   -0.24      (0.26)
Buyer[2]:   -0.68*    (0.50)
Buyer[3]:       ZP      (0.00)

Seller[1]:       ZP      (0.00)
Seller[2]:       ZP      (0.00)
Seller[3]:     0.37      (1.97)
Seller[4]:       ZP      (0.00)
Seller[5]:       ZP      (0.00)
Seller[6]:     0.54      (1.32)

Efficiency:   96.01   (0.08)

                     MP       StdDev
All Buyers: -0.23 *    (0.17)
All Sellers:   0.29       (0.48)

Buyer[1]:    -0.21*     (0.19)
Buyer[2]:    -0.87       (0.96)
Buyer[3]:       ZP        (0.00)

Seller[1]:        ZP       (0.00)
Seller[2]:     1.75        (5.46)
Seller[3]:      0.17       (0.85)
Seller[4]:        ZP       (0.00)
Seller[5]:      1.39       (4.71)
Seller[6]:      0.19       (0.80)

Efficiency:   96.30     (0.11)

                      MP      StdDev
All Buyers:   -0.06     (0.28)
All Sellers:   -0.24     (0.33)

Buyer[1]:      -0.06     (0.28)
Buyer[2 ]:         ZP     (0.00)
Buyer[3]:          ZP     (0.00)

Seller[1]:          ZP     (0.00)
Seller[2]:      -0.24     (0.46)
Seller[3]:      -0.24     (0.37)
Seller[4]:          ZP     (0.00)
Seller[5]:      -0.22     (0.44)
Seller[6]:      -0.25     (0.37)

Efficiency:    77.60   (0.15)

Relative
Concentration

1

                     MP      StdDev
All Buyers:  -0.37*    (0.20)
All Sellers:    0.55      (0.67)

Buyer[1]:     -0.33*    (0.20)
Buyer[2]:     -0.73*    (0.50)
Buyer[3]:         ZP      (0.00)

Seller[1]:         ZP      (0.00)
Seller[2]:         ZP      (0.00)
Seller[3]:      0.40       (0.86)

Efficiency:   86.88   (0.18)

                     MP        StdDev
All Buyers:  -0.26*     (0.17)
All Sellers:    0.44       (0.56)

Buyer[1]:     -0.24*     (0.18)
Buyer[2]:     -1.00       (0.00)
Buyer[3]:         ZP       (0.00)

Seller[1]:         ZP       (0.00)
Seller[2]:       2.37       (6.49)
Seller[3]:       0.27       (0.90)

Efficiency:   96.48      (0.05)

                      MP     StdDev
All Buyers:  -0.13     (0.37)
All Sellers:  -0.27     (0.37)

Buyer[1]:     -0.13     (0.37)
Buyer[2]:         ZP     (0.00)
Buyer[3]:         ZP     (0.00)

Seller[1]:         ZP     (0.00)
Seller[2]:     -0.29     (0.51)
Seller[3]:     -0.25     (0.37)

Efficiency:   90.98   (0.24)

1/2

               MP      StdDev
All Buyers: -0.33*     (0.16)
All Sellers:   0.55*     (0.50)

Buyer[1]:    -0.29*     (0.19)
Buyer[2]:    -0.68*     (0.52)
Buyer[3]:        ZP       (0.00)
Buyer[4]:    -0.29*     (0.17)
Buyer[5]:    -0.68*     (0.49)
Buyer[6]:        ZP       (0.00)

Seller[1]:        ZP       (0.00)
Seller[2]:        ZP       (0.00)
Seller[3]:     0.37        (0.76)

Efficiency:  85.53     (0.18)

                     MP        StdDev
All Buyers: -0.25*       (0.16)
All Sellers:   0.44         (0.44)

Buyer[1]:    -0.21*       (0.17)
Buyer[2]:    -1.00         (0.00)
Buyer[3]:        ZP         (0.00)
Buyer[4]:    -0.25*       (0.24)
Buyer[5]:    -0.98*       (0.20)
Buyer[6]:        ZP         (0.00)

Seller[1]:         ZP         (0.00)
Seller[2]:      0.77         (4.60)
Seller[3]:      0.41         (0.72)

Efficiency:  96.39        (0.04)

                      MP     StdDev
All Buyers:   0.01     (0.33)
All Sellers:  -0.21     (0.25)

Buyer[1]:      0.01     (0.43)
Buyer[2]:        ZP     (0.00)
Buyer[3]:        ZP     (0.00)
Buyer[4]:    -0.03     (0.44)
Buyer[5]:        ZP     (0.00)
Buyer[6]:        ZP     (0.00)

Seller[1]:         ZP    (0.00)
Seller[2]:     -0.25     (0.37)
Seller[3]:     -0.18     (0.31)

Efficiency:   96.55  (0.13)
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TABLE V
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THE CALIBRATED MRE ALGORITHM
WITH 10,000 AUCTION ROUNDS AND PARAMETER VALUES s(1) = 1.00, r = 0.02, AND e = 0.99.  ZP INDICATES

THAT ZERO PROFITS WERE EARNED BOTH IN THE AUCTION AND IN COMPETITIVE EQUILIBRIUM.

1/2
Relative Capacity

1 2

2

                     MP      StdDev
All Buyers: -0.04      (0.07)
All Sellers:   0.19      (0.32)

Buyer[1]:   -0.04       (0.06)
Buyer[2]:   -0.04       (0.33)
Buyer[3]:       ZP       (0.00)

Seller[1]:       ZP       (0.00)
Seller[2]:       ZP       (0.00)
Seller[3]:    0.23        (0.44)
Seller[4]:       ZP       (0.00)
Seller[5]:       ZP       (0.00)
Seller[6]:    0.14        (0.36)

Efficiency:  100.00    (0.00)

                     MP         StdDev
All Buyers: -0.07         (0.26)
All Sellers:   0.21*       (0.19)

Buyer[1]:    -0.07*       (0.05)
Buyer[2]:    -0.30         (0.47)
Buyer[3]:        ZP         (0.00)

Seller[1]:         ZP        (0.00)
Seller[2]:     -0.15        (0.79)
Seller[3]:      0.26*      (0.22)
Seller[4]:         ZP       (0.00)
Seller[5]:     -0.30        (0.63)
Seller[6]:      0.24*      (0.21)

Efficiency:   99.49      (0.01)

                      MP      StdDev
All Buyers:   -0.07     (0.24)
All Sellers:   -0.06     (0.19)

Buyer[1]:      -0.07     (0.24)
Buyer[2 ]:         ZP     (0.00)
Buyer[3]:          ZP     (0.00)

Seller[1]:          ZP     (0.00)
Seller[2]:      -0.06     (0.24)
Seller[3]:      -0.06     (0.17)
Seller[4]:          ZP     (0.00)
Seller[5]:      -0.06     (0.25)
Seller[6]:      -0.06     (0.17)

Efficiency: 100.00     (0.00)

Relative
Concentration

1

                        MP    StdDev
All Buyers:   -0.16*    (0.09)
All Sellers:     0.60*    (0.38)

Buyer[1]:     -0.14*     (0.07)
Buyer[2]:     -0.30       (0.38)
Buyer[3]:         ZP       (0.00)

Seller[1]:         ZP       (0.00)
Seller[2]:         ZP       (0.00)
Seller[3]:      0.60*      (0.38)

Efficiency:  94.13       (0.09)

                       MP          StdDev
All Buyers:  -0.08*         (0.07)
All Sellers:    0.22           (0.28)

Buyer[1]:     -0.08*         (0.07)
Buyer[2]:     -0.30           (0.58)
Buyer[3]:         ZP           (0.00)

Seller[1]:         ZP           (0.00)
Seller[2]:      -0.05          (1.15)
Seller[3]:       0.25          (0.32)

Efficiency:    99.66        (0.01)

                      MP      StdDev
All Buyers:   0.06       (0.24)
All Sellers:  -0.05       (0.19)

Buyer[1]:      0.06      (0.24)
Buyer[2]:         ZP      (0.00)
Buyer[3]:         ZP      (0.00)

Seller[1]:         ZP       (0.00)
Seller[2]:     -0.05       (0.24)
Seller[3]:     -0.04       (0.16)

Efficiency: 100.00      (0.00)

1/2

               MP      StdDev
All Buyers:  -0.14*     (0.07)
All Sellers:    0.59*     (0.36)

Buyer[1]:    -0.14*      (0.06)
Buyer[2]:    -0.24        (0.36)
Buyer[3]:        ZP       (0.00)
Buyer[4]:    -0.12*     (0.06)
Buyer[5]:    -0.23       (0.34)
Buyer[6]:        ZP       (0.00)

Seller[1]:        ZP       (0.00)
Seller[2]:        ZP       (0.00)
Seller[3]:     0.59*     (0.36)

Efficiency:  95.22      (0.09)

                       MP         StdDev
All Buyers:  -0.06*        (0.05)
All Sellers:    0.20*        (0.19)

Buyer[1]:    -0.06           (0.06)
Buyer[2]:    -0.31           (0.60)
Buyer[3]:        ZP           (0.00)
Buyer[4]:    -0.06           (0.06)
Buyer[5]:    -0.27           (0.64)
Buyer[6]:        ZP           (0.00)

Seller[1]:        ZP           (0.00)
Seller[2]:        ZP           (0.00)
Seller[3]:     0.20*         (0.19)

Efficiency:  99.56         (0.01)

                      MP      StdDev
All Buyers:   0.10       (0.20)
All Sellers:  -0.08       (0.16)

Buyer[1]:      0.10       (0.20)
Buyer[2]:         ZP      (0.00)
Buyer[3]:         ZP      (0.00)
Buyer[4]:      0.10      (0.20)
Buyer[5]:         ZP     (0.00)
Buyer[6]:         ZP     (0.00)

Seller[1]:         ZP      (0.00)
Seller[2]:      -0.10     (0.20)
Seller[3]:      -0.07     (0.14)

Efficiency:  100.00    (0.00)
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TABLE VI
EXPERIMENTAL MARKET POWER AND EFFICIENCY OUTCOMES FOR THE BEST-FIT MRE ALGORITHM

WITH 1000 AUCTION ROUNDS AND PARAMETER VALUES s(1) = 9.00, r = 0.10, AND e = 0.20.  ZP INDICATES
THAT ZERO PROFITS WERE EARNED BOTH IN THE AUCTION AND IN COMPETITIVE EQUILIBRIUM.

1/2
Relative Capacity

1 2

2

                     MP      StdDev
All Buyers: -0.13*    (0.09)
All Sellers:  0.55*     (0.38)

Buyer[1]:   -0.12*     (0.08)
Buyer[2]:   -0.20       (0.40)
Buyer[3]:       ZP       (0.00)

Seller[1]:        ZP      (0.00)
Seller[2]:        ZP      (0.00)
Seller[3]:     0.54       (0.63)
Seller[4]:        ZP      (0.00)
Seller[5]:        ZP      (0.00)
Seller[6]:     0.55      (0.60)

Efficiency:  99.81     (0.02)

                     MP        StdDev
All Buyers: -0.15*      (0.09)
All Sellers:   0.38*      (0.33)

Buyer[1]:    -0.13*      (0.10)
Buyer[2]:    -0.75*      (0.33)
Buyer[3]:        ZP        (0.00)

Seller[1]:         ZP        (0.00)
Seller[2]:     -0.50        (1.34)
Seller[3]:      0.45*      (0.40)
Seller[4]:         ZP        (0.00)
Seller[5]:     -0.42        (1.67)
Seller[6]:      0.46*      (0.41)

Efficiency:  96.30       (0.05)

                      MP      StdDev
All Buyers:    0.10      (0.30)
All Sellers:   -0.10      (0.25)

Buyer[1]:      0.10       (0.30)
Buyer[2 ]:        ZP      (0.00)
Buyer[3]:         ZP      (0.00)

Seller[1]:         ZP       (0.00)
Seller[2]:      -0.12      (0.34)
Seller[3]:      -0.10      (0.22)
Seller[4]:          ZP      (0.00)
Seller[5]:      -0.08      (0.36)
Seller[6]:      -0.09      (0.24)

Efficiency:   99.88      (0.06)

Relative
Concentration

1

                      MP      StdDev
All Buyers:  -0.22*     (0.12)
All Sellers:    0.80*     (0.53)

Buyer[1]:     -0.21*     (0.11)
Buyer[2]:     -0. 31      (0.44)
Buyer[3]:          ZP      (0.00)

Seller[1]:          ZP      (0.00)
Seller[2]:          ZP      (0.00)
Seller[3]:      0.76*      (0.63)

Efficiency:   92.13      (0.09)

                       MP       StdDev
All Buyers:  -0.13*      (0.10)
All Sellers:    0.28        (0.35)

Buyer[1]:     -0.11*      (0.10)
Buyer[2]:     -0.80*      (0.40)
Buyer[3]:         ZP        (0.00)

Seller[1]:         ZP        (0.00)
Seller[2]:      -0.37       (1.89)
Seller[3]:       0.34        (0.45)

Efficiency:   94.59        (0.07)

                      MP      StdDev
All Buyers:   0.13       (0.33)
All Sellers:  -0.10       (0.26)

Buyer[1]:     0.13        (0.33)
Buyer[2]:        ZP       (0.00)
Buyer[3]:        ZP       (0.00)

Seller[1]:         ZP       (0.00)
Seller[2]:     -0.10       (0.34)
Seller[3]:     -0.11       (0.24)

Efficiency: 100.00      (0.00)

1/2

               MP     StdDev
All Buyers:  -0.21*    (0.12)
All Sellers:   0.67*     (0.46)

Buyer[1]:    -0.18*     (0.12)
Buyer[2]:    -0.37       (0.47)
Buyer[3]:        ZP       (0.00)
Buyer[4]:    -0.20*     (0.11)
Buyer[5]:    -0.38       (0.47)
Buyer[6]:        ZP       (0.00)

Seller[1]:        ZP       (0.00)
Seller[2]:        ZP       (0.00)
Seller[3]:     0.63*      (0.55)

Efficiency:  91.84      (0.09)

                     MP        StdDev
All Buyers:  -0.14*      (0.08)
All Sellers:    0.30        (0.31)

Buyer[1]:     -0.14*      (0.10)
Buyer[2]:     -0.77*      (0.44)
Buyer[3]:         ZP        (0.00)
Buyer[4]:     -0.11        (0.11)
Buyer[5]:     -0.73*      (0.46)
Buyer[6]:         ZP        (0.00)

Seller[1]:         ZP        (0.00)
Seller[2]:      0.14         (2.69)
Seller[3]:      0.32         (0.48)

Efficiency:  94.24        (0.07)

                      MP     StdDev
All Buyers:   0.09      (0.24)
All Sellers:  -0.07      (0.19)

Buyer[1]:      0.09      (0.27)
Buyer[2]:        ZP      (0.00)
Buyer[3]:        ZP      (0.00)
Buyer[4]:      0.10      (0.25)
Buyer[5]:        ZP      (0.00)
Buyer[6]:        ZP      (0.00)

Seller[1]:         ZP      (0.00)
Seller[2]:      -0.08     (0.27)
Seller[3]:      -0.07     (0.17)

Efficiency:  100.00    (0.00)
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TABLE VII
ANALYTICALLY DERIVED STRUCTURAL MARKET POWER OUTCOMES

1/2
Relative Capacity

1 2

2

All Buyers:     -0.14
All Sellers:       0.56

Buyer[1]:        -0.43
Seller[3]:         1.67
Seller[6]:         1.67

All Others:      0.00

All Buyers:         -0.12
All Sellers:           0.45

Buyer[1]:           -0.37
Seller[3]:             1.36
Seller[6]:             1.36

All Others:          0.00

All Buyers:         0.04
All Sellers:        -0.05

Buyer[1]:             0.12
Seller[3]:            -0.16
Seller[6]:            -0.16

All Others:          0.00

Relative
Concentration

1

All Buyers:       -0.14
All Sellers:         0.56

Buyer[1]:         -0.43
Seller[3]:           1.67

All Others:        0.00

All Buyers:        -0.12
All Sellers:          0.45

Buyer[1]:           -0.37
Seller[3]:            1.36

All Others:         0.00

All Buyers:         0.04
All Sellers:        -0.05

Buyer[1]:            0.12
Seller[3]:           -0.16

All Others:         0.00

1/2

All Buyers:       -0.14
All Sellers:         0.56

Buyer[1]:         -0.43
Buyer[4]:         -0.43
Seller[3]:           1.67

All Others:        0.00

All Buyers:       -0.12
All Sellers:         0.45

Buyer[1]:         -0.37
Buyer[4]:         -0.37
Seller[3]:           1.36

All Others:        0.00

All Buyers:         0.04
All Sellers:        -0.05

Buyer[1]:            0.12
Buyer[4]:            0.12
Seller[3]:           -0.16

All Others:         0.00
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TABLE VIII
EXPERIMENTALLY DETERMINED MARKET POWER AND EFFICIENCY OUTCOMES

 WITH GA SOCIAL LEARNING FROM NICOLAISEN ET AL. [23].  ZP INDICATES THAT ZERO PROFITS
 WERE EARNED BOTH IN THE AUCTION AND IN COMPETITIVE EQUILIBRIUM.

1/2
Relative Capacity

1 2

2

                     MP     StdDev
All Buyers: -0.53*    (0.35)
All Sellers:  0.19     (1.04)

Buyer[1]:   -0.52*    (0.36)
Buyer[2]:   -0.63*    (0.62)
Buyer[3]:       ZP      (0.00)

Seller[1]:       ZP      (0.00)
Seller[2]:       ZP      (0.00)
Seller[3]:    -0.12     (1.47)
Seller[4]:       ZP      (0.00)
Seller[5]:       ZP      (0.00)
Seller[6]:     0.50      (1.84)

Efficiency:  60.50

                     MP        StdDev
All Buyers: -0.50*      (0.39)
All Sellers:   0.19       (1.02)

Buyer[1]:    -0.49*     (0.40)
Buyer[2]:    -0.99*     (0.09)
Buyer[3]:        ZP       (0.00)

Seller[1]:        ZP       (0.00)
Seller[2]:     -0.72       (1.89)
Seller[3]:      0.30       (1.12)
Seller[4]:        ZP       (0.00)
Seller[5]:        ZP       (0.00)
Seller[6]:      0.27       (1.12)

Efficiency:  65.33

                      MP      StdDev
All Buyers:   -0.37     (0.57)
All Sellers:   -0.43      (0.54)

Buyer[1]:      -0.37     (0.57)
Buyer[2 ]:         ZP     (0.00)
Buyer[3]:          ZP     (0.00)

Seller[1]:          ZP     (0.00)
Seller[2]:      -0.44     (0.65)
Seller[3]:      -0.42     (0.50)
Seller[4]:          ZP     (0.00)
Seller[5]:      -0.44     (0.66)
Seller[6]:      -0.41     (0.51)

Efficiency:  59.68

Relative
Concentration

1

                     MP       StdDev
All Buyers:  -0.66*   (0.29)
All Sellers:    0.25*   (1.13)

Buyer[1]:     -0.63*   (0.32)
Buyer[2]:     -0.90*   (0.35)
Buyer[3]:         ZP     (0.00)

Seller[1]:         ZP     (0.00)
Seller[2]:         ZP     (0.00)
Seller[3]:      0.19*    (1.17)

Efficiency:   51.06

                     MP          StdDev
All Buyers:  -0.60*       (0.34)
All Sellers:    0.24        (1.12)

Buyer[1]:     -0.59*       (0.35)
Buyer[2]:     -1.00         (0.00)
Buyer[3]:         ZP         (0.00)

Seller[1]:          ZP        (0.00)
Seller[2]:      -0.20        (3.30)
Seller[3]:       0.28         (1.26)

Efficiency:   58.67

                      MP     StdDev
All Buyers:  -0.44      (0.57)
All Sellers:  -0.50*     (0.49)

Buyer[1]:     -0.44      (0.57)
Buyer[2]:         ZP      (0.00)
Buyer[3]:         ZP      (0.00)

Seller[1]:         ZP      (0.00)
Seller[2]:     -0.52      (0.58)
Seller[3]:     -0.48      (0.49)

Efficiency:   52.68

1/2

               MP     StdDev
All Buyers: -0.59*    (0.28)
All Sellers:   0.71     (1.15)

Buyer[1]:    -0.55*    (0.30)
Buyer[2]:    -0.83*    (0.46)
Buyer[3]:        ZP      (0.00)
Buyer[4]:    -0.56*    (0.29)
Buyer[5]:    -0.79*    (0.50)
Buyer[6]:        ZP      (0.00)

Seller[1]:        ZP      (0.00)
Seller[2]:        ZP      (0.00)
Seller[3]:     0.70       (1.17)

Efficiency:  65.38

                     MP          StdDev
All Buyers: -0.53*        (0.32)
All Sellers:   0.67          (1.12)

Buyer[1]:    -0.51*        (0.32)
Buyer[2]:    -1.00          (0.00)
Buyer[3]:        ZP          (0.00)
Buyer[4]:    -0.52*        (0.32)
Buyer[5]:    -1.00          (0.00)
Buyer[6]:        ZP          (0.00)

Seller[1]:         ZP         (0.00)
Seller[2]:      0.05          (4.53)
Seller[3]:      0.73          (1.29)

Efficiency:  73.67

                      MP      StdDev
All Buyers:  -0.30      (0.54)
All Sellers:  -0.30      (0.44)

Buyer[1]:     -0.31      (0.58)
Buyer[2]:         ZP      (0.00)
Buyer[3]:         ZP      (0.00)
Buyer[4]:     -0.30      (0.56)
Buyer[5]:         ZP      (0.00)
Buyer[6]:         ZP      (0.00)

Seller[1]:         ZP      (0.00)
Seller[2]:      -0.38     (0.57)
Seller[3]:      -0.24     (0.48)

Efficiency:   70.00


