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Abstract 

The impact of integrated pest management (IPM) on pesticide use, toxicity and other environmental characteristics, yields, and farm 
profits is examined for grape growers. The method is generally applicable for technology adoption and accounts for self-selectivity, 
simultaneity, and theoretical consistency. IPM adopters apply significantly less insecticides and fungicides than nonadopters among grape 
producers in six states, accounting for most of the U.S. production. Both the average toxicity and the Environmental Impact Quotient 
decrease slightly with adoption of insect IPM, but remain about the same for adopters and nonadopters of IPM for diseases. The effect of 
IPM adoption on yields and variable profits is positive but only significant for the case of IPM for diseases, i.e., the adoption of IPM for 
diseases increases yields and profits significantly. Published by Elsevier Science B.V. 

Keywords: Pesticide use; Toxicity; Integrated pest management; Grape production; Self-selection 

1. Introduction 

Despite their positive effect on agricultural pro
duction, evidenced by the willingness of U.S. farm
ers to spend US$7. 7 billion on pesticides in 1995 
(USDA, 1997), the potential effects of pesticides to 
human health and the environment have caused in
creased concern Huang et al., 1994. In 1993, the 
U.S. Department of Agriculture (USDA), the Food 
and Drug Administration, and the Environmental 
Protection Agency pledged to work together to re
duce the health and environmental risks associated 

* Corresponding author. 
1 "The views expressed are those of the author and do not 

necessarily correspond to the views or policies of the U.S. Depart
ment of Agriculture". 

0169-5150/98/$17.00 Published by Elsevier Science B.V. 
PII S0169-5150(97)00054-6 

with pesticide use. As Integrated Pest Management 
(IPM) techniques were designed to address some of 
the health and environmental concerns of pesticides, 
the USDA has set a goal for the use of IPM on 75% 
of U.S. farmland by the year 2000. 

Fruit and vegetable production is particularly in
tensive in pesticides. Per acre expenditures on pesti
cides by fruit and vegetable growers are nearly seven 
times the agricultural average (Fernandez-Cornejo et 
al., 1994). In addition, concerns about pesticide 
residues are especially important in fruits and veg
etables, often consumed with little postharvest pro
cessing National Academy of Sciences, 1987. Grape 
was the top U.S. fruit crop in terms of acreage 
(761,000) and value of production (US$1.8 billion) 
in 1994 (USDA, 1995). Grape and wine production 
dates back more then 4000 years and extends over 
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all continents. Besides U.S. and traditional European 
producers, grapes are grown extensively in some 
countries in Eastern Europe, parts of the former 
Soviet Union, Africa (Algeria and South Africa), 
Australia, Asia, and South America. 

IPM includes an assortment of techniques de
signed to maintain pest infestations at economically 
acceptable levels rather than attempting to com
pletely eradicate all pests Vandeman et al., 1994. 
While there are several conceptual definitions of 
IPM, according to the USDA: "IPM is a manage
ment approach that encourages natural control of 
pest populations by anticipating pest problems and 
preventing pests from reaching economically damag
ing levels. All appropriate techniques are used such 
as enhancing natural enemies, planting pest-resistant 
crops, adapting cultural management, and using pes
ticides judiciously." (USDA, 1993). 

While the adoption of IPM has been analyzed by 
several researchers (Norton and Mullen, 1994), there 
are few farm-level econometric studies on the effect 
of IPM on pesticide use, crop yields, and farm 
profits (Burrows, 1983; Hall and Duncan, 1984; 
Wetzstein et al., 1985; Smith et al., 1987; 
Fernandez-Cornejo, 1996). No study has been pub
lished analyzing grape production. Moreover, little 
farm-level empirical research has been published on 
the effect of IPM on the overall toxicity and other 
environmental characteristics of pesticides and claims 
that pesticides used in IPM differ from those used on 
a preventive or routine schedule (Allen et al., 1987) 
have not been empirically examined. This paper 
presents a framework to examine the impact of IPM 
on pesticide use, toxicity and other environmental 
characteristics of the pesticides, crop yields, and 
farm profits, and calculates the impact of IPM for 
U.S. grape growers. 

2. Potential health and environmental effects of 
pesticide use 

The reported undesirable effects of pesticides on 
nontarget species, including humans, include the fol
lowing: acute and chronic health effects (Clark et al., 
1977; EPA, 1976b; Hayes and Vaughn, 1977); do
mestic animal poisonings (Cadwell et al., 1977); and 

effects on wild birds and mammals, fish, bees, bene
ficial organisms, and small organisms in the soil 
(Bairlein, 1990; Brown, 1978; EPA, 1976a; Martin, 
1978; Van Steenwyk et al., 1975; Pimentel et al., 
1991.) 

A pesticide poses a risk to human health and the 
environment if it is toxic and if humans and other 
species are exposed to the pesticide (Cohrs sen and 
Covello, 1988). Human toxicity is usually inferred 
from experimental data on mammalian toxicity. 
Mammalian toxicity includes acute (short-term) and 
chronic (long-term, low-level exposure) toxicity. 
Chronic toxicity includes carcinogenicity (capability 
to produce cancer), mutagenicity (ability to induce 
genetic changes in living cells), and teratogenicity 
(capability to produce malformations or serious devi
ations from normality). 

There are hundreds of pesticide active ingredients 
and each has a different spectrum of pest control and 
a different impact on human health and the environ
ment (Fernandez-Cornejo and Jans, 1995). Thus, it is 
convenient to summarize the toxicity of pesticides in 
an overall index. Several methods have been pro
posed but there is no consensus about the scales and 
the weights assigned to the components of the index. 
This paper uses the overall index of human toxicity 
proposed by Fernandez-Cornejo and Jans (1995). 
This index (LTI) is the average of three components, 
with equal weights, each scaled from 0 to 4, the 0 
corresponding to nontoxic effect. The LAI compo
nent summarizes the acute toxicity resulting from the 
five different measures considered by the EPA. LAI 
is equal to 4 if the active ingredient belongs to 
toxicity category I (danger) of the EPA classifica
tion; similarly LAI is equal to 3, 2, and 1 for 
categories II, III, and IV, respectively. The chronic 
element of the index (LCI) is assigned a lower score 
for weaker indications of carcinogenicity. Following 
Hammitt (1986), LCI is equal to 4 if the pesticide is 
a carcinogen; LCI is equal to 2 if the pesticide is not 
a reported carcinogen but is a neoplastigen (or onco
genic, i.e., it can produce tumors) and is equal to 0.5 
if the pesticide is neither carcinogenic nor oncogenic, 
but is mutagenic (indicating potential carcinogenic
ity). Finally, the LTI component is equal to 4 if the 
pesticide is teratogenic. 

The potential impact of pesticides on human health 
and the environment is approximately quantified us-
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ing the Environmental Quotient Index (Kovach et al., 
1992). The EIQ has three components based on the 
three potentially affected elements: the farm worker, 
the consumer, and the ecology. The EIQ measures 
the impact of each pesticide active ingredient by 
assigning an equal weight to each of its three compo
nents and has a scale of 1 to 5. The farmworker 
component includes acute and chronic elements and 
is calculated from mammal toxicity and persistence. 
The consumer component is based on chronic toxic
ity, persistence, and sistemicity. The ecological com
ponent is calculated from fish, bird, bee, and benefi
cial arthropod toxicity; leaching and surface loss 
potential, and persistence. 

3. Pesticide use and IPM in grape production 

Grape production in the U.S. uses a variety of 
pesticides. As Table 1A shows, fungicides are ap
plied to 93% of the acreage devoted to grape produc
tion; insecticides are used in 66% of the grape acres; 

Table 1 

and herbicides are used on 64%. Among the impor
tant fungicides used, sulfur is first followed by man
cozeb, copper oxychoride sulphate, captan, and my
clobuthanil (USDA, 1994). Cryolite is the most ex
tensively used insecticide, followed by propargite, 
and carbaryl. Commercial bioinsecticides based on 
the bacterium Bacillus thuringensis (Bt) are only 
used on 2% of the acres (USDA, 1994). 

The use of IPM in grape production can be traced 
back to the late 1950s when the grape leafhopper 
Erythroneura elegantula developed resistance to syn
thetic organic pesticides and biological upsets of the 
spider mites and the grape mealybug followed 
(Flaherty et al., 1992). Agricultural scientists from 
the University of California, supported by the grape 
industry, lay the groundwork to a practical manage
ment system integrating chemical, cultural, and bio
logical controls (Flaherty et al., 1992). IPM was 
developed further in the 1960s with the use of 
predaceous mites and insects and cover crops; and in 
the 1970s and 1980s with the use of selective pesti-

Bearing acreage, pesticide treated area, and IPM adoption-U.S. grape producers, 1993 

A. Population (estimated; USDA, 1994) 

State Bearing acreage, thousands Area receiving" 

Herbicides, % Insecticides, % Fungicides, % 

California 651.3 62 67 94 
Michigan 11.2 90 97 100 
New York 32.5 81 64 99 
Oregon 4.6 52 3 99 
Pennsylvania 11.0 94 74 99 
Washington 32.7 72 39 52 
Total 743.3 64 66 93 

B. Sample (calculated from the survey) 
State Number of observations Extent of adoption, % 

IPM for insects IPM for diseases 

California 131 32 30 
Michigan 124 40 44 
New York 133 16 14 
Oregon 110 na 20 
Pennsylvania 107 26 22 
Washington 107 35 28 
Total 691 29 26 

•Acres receiving one or more applications of a specific pesticide class. 
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cides, parasites, viruses, and fungus to control in
sects and diseases. 

4. The theoretical framework 

4.1. Theoretical issues 

An econometric model developed to estimate the 
impact of IPM adoption using survey data must take 
into account three theoretical issues. (1) Farmers' 
IPM adoption decisions and pesticide use may be 
simultaneous due mainly to unmeasured variables 
correlated with both IPM adoption and pesticide 
demand such as size of the pest population, pest 
resistance, farm location, and grower perceptions 
about pest control (Burrows, 1983). (2) Growers are 
not assigned randomly to the two groups (adopters 
and nonadopters of IPM), but they make the adop
tion choices themselves. Since adopters and non
adopters may be systematically different, these dif
ferences may manifest themselves in farm perfor
mance and could be confounded with differences due 
purely to IPM adoption. This situation, known as 
self-selectivity must be corrected to prevent biasing 
the results (Greene, 1993). (3) The demand for pesti
cides is a derived demand, and must be consistent 
with farmers' optimization behavior, such as profit 
maximization. 

In conclusion, model specification should allow 
for simultaneity and self-selectivity. In addition, the 
demand and supply functions should be derived from 
a profit (or cost) function. 

4.2. The adoption decision 

The adoption of a new technology is a choice 
between two alternatives, the traditional technology 
and the new one and growers are assumed to make 
decisions by choosing the alternative that maximizes 
their perceived utility (Fernandez-Cornejo et al., 
1994). Thus, grower i is likely to adopt IPM if the 
utility of adopting, ~1 , is higher than the utility of 
not adopting, ~0 . However, only the binary random 
variable Ii (taking the value of 1 if IPM is adopted 
and zero otherwise) is observed, as utility is not 
known to the analyst with certainty and is treated as 
a random variable (Ben-Akiva and Lerman, 1985). 

In the context of IPM adoption: Uij = Vu + eii• 
where ~i is the systematic component of U, related 
to the profitabilities of adopting (j = 1) and not 
adopting (j = 0). Assuming that the disturbances 
(eii) are independently and identically normally dis
tributed, then their difference will also be normally 
distributed and the probit transformation can be used 
to model the farmer's adoption decision. Thus, the 
probability of adoption equation is P(/k = 1) = 
F( y~Zk) where Ik denotes the adoption of IPM for 
insects (k = 1) and diseases (k = 2), F indicates the 
cumulative normal distribution, and the vector Z 
includes the factors influencing adoption. 

The equations for the adoption of IPM for insects 
and diseases estimated using the probit model are: 
11 = L.iy1iZ1i + ~-t 1 and / 2 = L./y2 iZ2i + J-t2 • The 
components Zi of the vector Z include the following 
factors of adoption: farm size, output price, farmer 
education and experience, off-farm labor, use of 
extension and consulting services, contractual ar
rangements for the production/marketing of the crop, 
and type of grape grown (i.e., wine or table grape 
varieties). Both probit equations have the same re
gressors. . 

Heckman's two-step procedure (Heckman, 1976) 
is modified to account for simultaneity in addition to 
self-selectivity. The first step includes the estimation 
of the parameters 'Yk of the probit equations. The 
inverse Mills ratio Ak = c/J( y~Z/ up)jcJJ( y~Z/ uP-) is 
also estimated for each observation, where c/J( ·) and 
iP( ·) are the density and the distribution function of 
the standard normal, and uP- is the standard devia
tion of 1-tk (Greene, 1993; Maddala, 1983). More
over, to account for simultaneity, Ik being endoge
nous, the predicted probabilities (obtained from the 
probit equations) are used as instrumental variables 
for Ik in the second stage, discussed next. 

4.3. Modeling the impact of !PM 

The impact of IPM on pesticide use, yields, and 
farm profits is examined by estimating the pesticide 
demand functions, the supply function, and the vari
able profit function as a simultaneous system. To 
account for self selectivity, the inverse Mills ratios 
Xk (obtained from the first stage) are appended as 
additional regressors to the supply, demand, and 
profit equations. 
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The well-developed restricted profit function (Di
ewert, 1974) is used to estimate theoretically consis
tent supply, demand, and profit equations (Fernan
dez-Cornejo, 1994). Let Y denote the vector of 
outputs, X the vector of variable inputs, S the vector 
of nonnegative quasi-fixed inputs; R is the vector of 
other factors such as locational or weather proxies 
and also includes as components the predicted proba
bilities of IPM adoption obtained in the first stage; P 
is the price vector of outputs, and W is the price 
vector of variable inputs. The restricted profit func
tion is defined by: 

7T(P, W,S,R) = MaxXY(P'Y- W' X;X,Y E T) 

The production possibilities set T is assumed to 
be nonempty, closed, bounded, and convex cone. 
Under these assumptions on the technology, the re
stricted profit function is well defined and satisfies 
the usual regularity conditions (Diewert, 1974). In 
particular, with some of the inputs fixed, 7T is homo
geneous of degree one in output and variable input 
prices and quasi-fixed input quantities. 

Considering land (L) as a fixed input and using 
the homogeneity conditions, the restricted profit 
function can be expressed as 7T(P,W,L,R) = L. 
iT(P,W,R), where is the per acre profit function: 
iT= Maxyx(P'Y- W' X) andY= Y jL,X = XjL 
are the per acre output and input quantity vectors. By 
Hotteling-Shephard's lemma, the per acre output 
supply and input demand functions are then given by 
Y= aiT(P, W,R)jaP and i = aiT(P, W,R);aw. 

The model is empirically estimated by using a 
normalized quadratic variable profit function (Di
ewert and Ostensoe, 1988). Considering the case of a 
single output, grapes, imposing symmetry by sharing 
parameters and linear homogeneity by normalization, 
using the labor price as the numeraire, appending the 
inverse Mills ratio terms as additional regressors, and 
adding the disturbance terms, the per acre profit 
function, per acre supply function, and per acre 
insecticide and fungicide demand functions are: 

iT= a0 + aP + Ejbjllj + EkckRk 

+ 0.5HP 2 + EjG!iPllj + EkFlkPRk 

+ 0.5EjE;B;jW;llj + EkEjEjkll]Rk 

+ 0.5EjCikRiRk + 031'\.1 + 041A2 (1) 

(2) 

(3) 

(4) 

where now, Y, P, a, H, and the e's are scalars; and 
F and G are column matrices. The vector R includes 
seven components: two farm attributes (farm size 
and off-farm labor), a dummy for the type of grape 
produced, the predicted probabilities of adoption of 
IPM for insects and diseases obtained from the pro
bit model, and two dummies to account for pest 
infestation levels. 

5. Data and estimation 

The data were obtained from the Agricultural 
Chemical Use Survey and its Economic Follow-On 
for fruits, administered between the fall of 1993 and 
the spring of 1994 by the National Agricultural 
Statistics Service of the U.S. Department of Agricul
ture. The probability sample was drawn from a list 
frame based on all known commercial fruit growers 
who have at least an acre of production. A stratified 
sampling technique was used, where each stratum is 
a mutually exclusive set of the commodities. 

The survey included fresh market, processing, and 
wine grape crops grown in California, Michigan, 
New York, Oregon, Pennsylvania, and Washington, 
covering 743,000 acres (Table lA) and accounting 
for most of the U.S. acreage (USDA, 1995). The pest 
management section of the survey was completed by 
691 grape-producing growers (Table lB), but after 
excluding observations with missing values only 609 
usable observations were available for econometric 
analysis. 

The largest proportion of the producers in the 
sample grew wine grape varieties in 1993 (about 
80%) followed by raisin, fresh market, and juice 
grape varieties (about 10% each). However, the pro
portion of the acreage growing wine grape varieties 
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was lower because farms growing wine varieties 
tend to be smaller (for example, the sample average 
size for farms growing wine varieties was about 380 
acres compared to almost 2500 acres for farms grow
ing raisin varieties). Similarly, while more than 80% 
of the 1993 grape acreage was located in California 
(Table 1A), the percent of the farms located in 
California is much lower, because grape farms in 
California are larger that in other states. For exam
ple, the sample average grape acreage in California 
was 3170, while that of New York was 194 and 
Oregon 41 (Table 1B). For this reason, the propor
tion of California farms in the sample was only 
about 20%, similar to that of New York, Michigan, 
Oregon and Pennsylvania (Table lB). 

It is difficult to provide a general operational 
definition of IPM since IPM programs are specific to 
the crop and region for which they are designed and 
development of IPM programs has not been uniform 
across pest classes (e.g., insects, plant pathogens, 
weeds), crops, and regions. Most previous economet
ric studies have dealt with IPM adoption in general, 
without further specification of the pest classes that 
are managed or controlled. While there is merit in 
keeping the definition general, additional understand
ing about the barriers to adoption, as well as the 
effects of IPM, is gained by further characterizing 
IPM. Thus, this paper considers separately IPM to 
manage insects and diseases. 

In our operational definition of IPM, a fanner is 
said to have adopted IPM to manage insects (dis
eases) (i) if the fanner reports having used both 
scouting for insects (diseases) and economic thresh
olds in making insecticide (fungicide) treatment de
cisions, and (ii) the fanner reports the use of one or 
more additional insect (disease) management prac
tices among those considered to be IPM techniques. 
Additional IPM techniques included the use of 
pheromones; use of resistant varieties; alternating 
pesticides to slow the development of pest resistance 
to pesticides; adjusting planting dates to lessen pest 
problems; soil testing for pests; pruning; purchasing 
beneficial organisms that prey on pests; adjusting 
application rates, timing, and frequency of pesticide 
use to protect beneficial organisms; and use of insec
ticides less harmful to beneficial insects. 

The number of insecticide (fungicide) applications 
per year are used as a measure of pesticide use. The 

average number of pesticide applications was calcu
lated by dividing the sum (over all active ingredients 
in the given pesticide class) of the treatment acres by 
the number of acres treated. Correspondingly, pesti
cide prices were computed in dollars per insecticide 
(fungicide) application per acre. Per acre variable 
profits are defined as per acre revenues (grape prices 
times yields) minus per acre variable costs (insecti
cides, fungicides, and associated labor costs). 

Unlike simple random sampling, the selection of 
an individual farm for the survey was not equally 
likely across all farms on the list because the sample 
was stratified. Weighted least squares estimation 
methods were used to correct for bias, with weights 
equal to the inverse of the probability of selection. 
The probit equations were estimated separately. Be
cause the errors of the estimating equations for the 
second stage (Eqs. (1)-(4)) could be correlated, and 
to gain estimation efficiency, the per acre supply and 
demand equations were estimated together with the 
per acre profit function in an iterated Seemingly 
Unrelated Regression (ITSUR) framework (Zellner, 
1962). However, ITSUR techniques were not needed 
for the probit, because the regressors are the same 
across all the equations and there are no theoretical 
restrictions for the regression coefficients (Dwivedi 
and Srivastava, 1978). The impact of IPM adoption 
on pesticide use, yields, and farm profits was calcu
lated from Eqs. (1)-(4). For example, the effect of a 
change in the probability of adoption of insect IPM 
on insecticide use was calculated from Eq. (3) since 
3X1/3R 3 = E13 . In elasticity form, the effect of 
adoption of insect IPM on insecticide use is E13 

(R3/X1). The elasticities reported were calculated at 
the means. 

6. Results 

Tables 1B and 2 present a summary of the means 
of the data for grape farms. Table 1B provides the 
number of growers in the sample and shows the 
average extent of adoption of insect IPM and disease 
IPM, distributed by state. Separate sample averages 
of selected variables for adopters and nonadopters of 
IPM for insects and diseases are given in Table 2. 
For a binary indicator variable, the mean represents 
the fraction of growers of each group with that 
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Table 2 
Summary of sample averages-U.S. grape producers, 1993 

Selected variables IPM for insects IPM for diseases 

YIELD, yield, thousand poundsjacre 
AVRPR, Actual price of grapes, US$jpound 
PAPPU, insecticide price, US$/ acre-per application 
P APPLF, fungicide· p,~iGt~c, .,US$/ acre-per application 
PROFIT, V:u;~.;~-s, thousand US$jacre-year 
SIZE" .·. L 
INFESI, in~n level, insectsc 
INFESD, infestation level, diseasesc 
NAPPLI, Number of insecticide applications/year 
NAPPLF, nmnberof fungicide appiicationsjyear 

Adopters 

8.12 
0.33 

29.50 

2.00 
0.28 
0.09 

1.34 

Nonadopters 

9.44 
0.34 

29.86 

1.93 
0.13 
0.18 

'1.39 
:1(" 

Adopters Nonadopters 

9.93 7.15 
0.24 0.32 

9.84 10.48 
1.88 1.86 
0.32 0.11 

0.12 0.21 

~ ~-·. '2:67 4.43 

~RRTWX· ~~tftrJe"~~V~~~~~;(,totlMge~:.farms (> 3tlb acrel>); 0'otherwi~f"R~~,y~l~<ffl~~~o ~.if-~ w-oduces wine grapes, o 
otnerw1se.cl':iummy vanable equal to 1 1f the farmer reports an mfestatJOn worse than normal, 0 otherw1se. 

attribute. For example, the variable SIZE shows that 

W%Jlgf ·tRK~fl~.ffiewn~J~ ·~11ryi~~q;s ~~rat.e ~~ge 
~ &HW161-4!afbi~ aca::sJr,tmOW tha» tw~ ~ 
Pxff.~~er~Prufl€'11%l.,qpt~re (N~·· ~n compm:iSj<;>n, 
tmft~P.nti-fllffi~· L~lfis r~pr~@nt the actual ~% 
tM~m~HWCC:<trtlm!>~v&_ag~ fl~9l18l;Sr~ yi~fl ob~fll!J.!llg 

'. '· ~ ! ; . l ~ ., ( '! -..·n 

<2:1 = Q !( l + :,· 

!.fflcP~~fk@ft:W~,for diseases is about 9900pounds 
Rfilifll§r~H@i8Mii:th~n the yield for nonadopters. Table 
2 also shows that, on average, adopters of insect IPM 
tfse=sf[ghtiJ.y Iewer insecticide applications than non 
adopters, while adopters of IPM for diseases uses 
40% fewer fun$icide applications than nonadopters. 
3.3. J)a; 

T~3 ·· . 
Estimates for adoption, per acre•pesticide demand, and supply equations-U.~"grape producers, 1993 

Variable Pro bit estimates ITSUR estimates 

IPM for diseases Insecticide demand Fungicide demand Per acre supply 

Parameter estimate Chl-square Parameter estimate t-value Parameter estimate t-value Parameter estimate t-value 

INTERCEPT 1.09 * * * 9.98 2.857 * * * 16.81 4.309• * * 9.88 4.572• * * 7.60 
OFF-FARMW. -0.002• * * 13.77 0.000 -0.06 0.002 1.01 -0.003 -0.98 
EXPERIENCE -0.025• * * 16.32 
EDUCATION 0.758 * * * 22.24 
CONTRACT -1.082 * * * 48.24 
EXTENSION -0.083 0.15 
CONSULTANT -0.127 0.23 4.80 
PAPPLF -0.123 * * * -4.63 0.038 0.51 -0.008 -1.24 
AVPR -0.003 * * * 45.18 0.013 * * * 4.80 -0.008 -1.24 0.001 0.10 
SIZE 0.56 * * * 10.77 0.434 * * 2.13 2.529 * * * 4.67 -0.950 -1.23 
WINE -0.52• * * 11.06 0.343 * * 2.19 0.038 0.09 2.713* * * 4.60 
INFESI -0.723••• -3.46 4.285 * * * 7.69 -2.722••* -3.46 
INFESD 0.360 1.32 -4.501 * * * -6.19 2.785•** 2.63 
PROBIPMP -1.319•• -2.11 0.687 0.41 2.427 1.18 
PROBIPMD" -1.484** -2.35 -3.812•• -2.29 8.615• * * 4.16 

Afns 0.009 0.03 0.565 0.77 1.614• 1.77 

A~is -0.326 -0.96 -1.021 -1.14 -2.063 * -1.82 
Adjusted R2 2394c * * * 0.26 0.27 0.22 

"Predicted value of probability of adoption of IPM for insects and diseases. 
binverse Mills ratio, IPM for insects and diseases, respectively. 
cLikelihood ratio. 
* * *, * *, *significant at the 1%, 5%, and 10% level. 
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Regarding the results from the probit regressions, 
both regressions are highly significant, as measured 
by likelihood ratio tests (only one probit-regression 
estimates are shown in Table 3 for lack of space, 
other results are available upon request). Among the 
statistically significant variables, the coefficient of 
the operator's off-farm work activities, measured by 
the number of off-farm work hours is negative, as 
expected, confirming that the availability of operator 
labor has a positive influence on IPM adoption. This 
corroborates other findings (McNamara et al., 1991; 
Fernandez-Cornejo et al., 1994) that off-farm em
ployment may present a constraint to IPM adoption, 
because it competes for on-farm managerial time, as 
IPM requires a substantial amount of operator's time. 
Farmer experience is negatively correlated with 
adoption. This negative sign may be due to the 
correlation of experience with the age of the operator 
and would indicate that older farmers are more reluc
tant to accept newer techniques. Farmer education is 
positively correlated with adoption, as expected, but 
use of extension and consultants is not significantly 
related to IPM adoption. The size variable is positive 
and significant, confirming other studies that opera
tors of larger farms are more likely to adopt innova
tions. The type-of-grape dummy is also significantly 
negative, indicating that wine grape growers are less 
likely to adopt IPM than table grape producers. 

Table 3 also presents the estimated parameters of 
the insecticide and fungicide demand functions and 
the per acre supply function. The overall goodness of 
fit is good for all three equations (adjusted R 2 = 

0.27), given the cross-sectional nature of the study. 
The coefficients of the inverse Mills ratios are signif
icant in the supply and profit equations, confirming 
that self-selection does occur. 

Insecticide use is negatively and significantly re
lated to the adoption of insect IPM. Similarly, fungi
cide use is negatively and significantly related to the 
adoption of IPM for diseases. The elasticity of pesti
cide demand with respect to the probability of adop
tion of the corresponding IPM (calculated at the 
mean) is -0.26 for the case of insecticides and 
-0.10 for fungicides (Table 4). That is, a 10% 
increase in the probability of adoption of IPM for 
insects would decrease the number of insecticide 
applications by nearly 3% and a 10% increase in the 
probability of adoption of IPM for diseases would 

Table 4 
The impact of IPM adoption for grape producers-U.S. grape 
producers, 1993 

Elasticity with re
spect to probability 
of IPM adoption 

Elasticity of pesticide u~e with respect to 
IPM for insects - 0.26 
IPM for diseases -0.10 

Elasticity of yields with respect to 
IPM for insects ns 
IPM for diseases 0.30 

Elasticity of farm profits with respect to 
IPM for insects ns 
IPM for diseases 0.39 

ns: standard error was too large; the underlying regression coeffi
cient was not significant. 

decrease the number of fungicide applications by 
1%. 

Table 3 also shows that the impact of IPM on 
yields is positive for both insect and disease IPM, 
although this effect is not significant for insect IPM. 
About a third of the ITSUR parameter estimates for 
the profit function (not shown but available upon 
request) are significant at the 1% level. .The effect of 
IPM adoption on profits is positive but only signifi
cant for IPM for diseases: the elasticity of variable 
farm profits with respect to the probability of adop
tion of IPM for diseases is 0.39 (Table 4). This result 
means that an increase of 10% in the probability of 
adoption of IPM for diseases would increase variable 
profits by almost 4%. 

Our results are consistent with those of Hall 
(1977) in that IPM reduced pesticide use. However, 
the empirical evidence on the effect of IPM on 
pesticide use is mixed, even for a given crop. Among 
econometric studies, Burrows (1983) found that IPM 
adoption lead to a significant reduction in pesticide 
expenditures for a sample of California cotton grow
ers, but Carlson (1980) cites evidence of "both 
complementary and substitute relationships between 
scouting and pesticide use'' among cotton producers 
in North Carolina, and Wetzstein et al. (1985) found 
that "IPM has no effect on pesticide expenditures" 
among a sample of Georgia cotton farmers. There is 
little econometric results on the impact of IPM among 
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fruit producers (Norton and Mullen, 1994); Fernan
dez-Cornejo and J ans ( 1996) found that IPM did not 
have a significant effect on insecticide use for a 
sample of orange producers in California and Florida. 

Having determined that IPM reduces overall pes
ticide use for grape growers, we also examine the 
impact of IPM on major pesticide active ingredients. 
We focus on 11 active ingredients which represent 
more than 90% of the insecticides and fungicides 
used on grapes. As shown in Table 5, on the aver
age, adopters of insect IPM use fewer applications of 
two of the three major insecticides listed and adopters 
of disease IPM use fewer applications of six of the 
eight major fungicides. 

The overall index of human (mammal) toxicity 
(L TI) encompassing both acute and chronic effects is 
also calculated for each of the 11 ingredients and 
shown in Table 5. In addition, a weighted average 
toxicity index is calculated, where the weights are 
based on the area treated, application rate, and num
ber of applications. As it can be seen at the bottom 
of Table 5, the average toxicity of the insecticides 
used by adopters of insect IPM is slightly lower 

Table 5 

(LTI = 1.7) than that of nonadopters (LTI = 1.8); 
both of these toxicities are considered as moderate. 
The toxicity of fungicides used is essentially the 
same for adopters and nonadopters of IPM for dis
eases and in both cases the average toxicity of 
fungicides is quite low (L TI = 0.35). However, the 
fungicide results are strongly influenced by sulfur, 
which has a large weight because it is intensively 
used in grape production. Sulfur has a low mammal 
toxicity (LTI = 0.33). 

To examine the environmental impact of IPM we 
use the environmental impact quotient (EIQ) (Kovach 
et al., 1992). As indicated earlier, the EIQ measures 
the impact of each pesticide active ingredient on 
human health and the environment. Table 5 provides 
the EIQ values of the active ingredients used in 
grape production. We also calculate an overall 
weighted average EIQ for the major insecticides and 
fungicides used. Weights are based on the area 
treated, application rates, and number of applications 
(Table 5). As seen at the bottom of Table 5, the 
overall EIQ of insecticides decreases slightly for 
adopters of insect IPM (from 25.2 to 24.7) but the 

Major pesticides used, toxicity, and environmental impact quotient-U.S. grape producers, 1993 

Active Area Application Overall Environmental 
ingredient applied•, rate•, toxicity impact 
(class) % Lbjacre index, quotientb, 

LTI EIQ 

Captan, (fungicide) 3 1.83 3.00 28.6 
Carbaryl, (insecticide) 7 1.61 3.67 22.6 
Cryolite (insecticide) 35 5.32 1.33 21.4 
Copper hydroxide (fungicide) 9 0.64 2.67 33.3 
Copper oxychl. sui. (fungicide) 4 2.62 0.33 25.oc 

Fenarimol (fungicide) 39 0.03 2.67 27.3 
Mancozeb(fungicide) 11 1.98 1.00 62.3 
Myclobutanil (fungicide) 33 0.10 1.66 41.2 
Propargite (insecticide) 32 1.54 3.33 42.7 
Sulfur (fungicide) 82 9.64 0.33 45.5 
Triadimefon (fungicide) 11 0.12 1.00 33.3 
Average toxicity index (LTI) for insecticides 
Average toxicity index (LTI) for fungicides 
Average EIQ for insecticides 
Average EIQ for fungicides 

•From USDA (1994). 
bEIQ values for individual active ingredients are from Kovach et a!. (I 992) 
c Estimated (not included in Kovach et a!., I 992) 

IPM for insects IPM for diseases 

Adopters Nonadopters Adopters Nonadopters 

Number of applications per year 

1.65 2.54 
1.04 1.16 
1.67 1.53 

1.10 1.52 
1.34 1.54 
1.51 2.06 
2.10 1.70 
2.18 1.76 

1.18 1.31 
4.89 6.19 
1.07 1.93 

1.71 1.77 
0.35 0.35 

24.69 25.24 
45.6 45.6 
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overall EIQ of fungicides remains the same (at about 
45.5) for adopters and nonadopters of IPM for dis
eases. 

7. Concluding comments 

This paper presents a methodology to calculate 
the impact of IPM on pesticide use, toxicity and 
other environmental characteristics of the pesticides, 
crop yields, and farm profits. The methodology is 
applied to the case of grape producers in six states 
accoonting f.or most 0f th€ U.S. production. The 
method is :gemenilil.ly applicabJe to technology adop
tion. It accounts for self-selectivity and simultaneity, 
and the pes,ticide demllJld and yield equations are 
theorett<;aiiy cqfisis\ertt with a restricted profit func-
tioif '·"''·' ~~ -··· '"' ,. 

the results support the notion that, among grape 
growers, adopters of IPM for insects and IPM for 
diseases use significantly fewer insecticide and 
fungicide applications than do nonadopters. In addi
tion, both average toxicity and the environmental 
impact quotient decreases slightly with adoption of 
insect IPM, but they remain about the same for 
adopters and nonadopters of IPM for diseases. The 
effect of IPM adoption on yields and variable profits 
is positive but only significant for the case of IPM 
for diseases, i.e., the adoption of IPM for diseases 
increases yields and profits significantly. Other im
portant determinants of pesticide demand, besides 
IPM adoption, are pesticide prices, grape prices, pest 
infestation levels, type of grape, operator off-farm 
work, and farm size. 

Two limitations of the study are the incomplete 
modeling of the substitution possibilities between 
pesticides and other purchased inputs, particularly 
fertilizers, and the exclusion of production risk. In 
the first case, the limitations are attributable to the 
lack of price input data for some inputs. Panel data 
would be needed to address the second issue satisfac
torily. When better data become available, these 
limitations will be surmounted helping improve our 
understanding of technology adoption in agriculture. 
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