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Abstract 

The parameter values and assumptions of any economic model are subject to change and error. Sensitivity analysis (SA), broadly 
defined, is the investigation of these potential changes and errors and their impacts on conclusions to be drawn from the model. There is a 
very large literature on procedures and techniques for SA, but it includes almost nothing from economists. This paper is a selective review 
and overview of theoretical and methodological issues in SA. There are many possible uses of SA, described here within the categories of 
decision support, communication, increased understanding or quantification of the system, and model development. The paper focuses 
somewhat on decision support. It is argued that even the simplest approaches to SA can be theoretically respectable in decision support if 
they are applied and interpreted in a way consistent with Bayesian decision theory. This is not to say that SA results should be formally 
subjected to a Bayesian decision analysis, but that an understanding of Bayesian probability revision will help the modeller plan and 
interpret an SA. Many different approaches to SA are described, varying in the experimental design used and in the way results are 
processed. Possible overall strategies for conducting SA are suggested. It is proposed that when using SA for decision support, it can be very 
helpful to attempt to identify which of the following forms of recommendation is most appropriate: (a) do X, (b) do either X or Y 

depending on the circumstances, (c) do either X or Y, whichever you like, (d) if in doubt, do X. A system for reporting and discussing SA 
results is recommended. © 1997 Elsevier Science B.V. 

1. Introduction 

The parameter values and assumptions of any 
economic model are subject to change and error. 
Sensitivity analysis (SA), broadly defined, is the 
investigation of these potential changes and errors 
and their impacts on conclusions to be drawn from 
the model (e.g. Baird, 1989). SA can be easy to do, 
easy to understand, and easy to communicate. It is 
possibly the most useful and most widely used tech­
nique available to applied economists (including 
agricultural economists). The importance and useful­
ness of SA is widely recognised: 

"A methodology for conducting a [sensitivity] analy-

sis .. .is a well established requirement of any scien­
tific discipline. A sensitivity and stability analysis 
should be an integral part of any solution methodol­
ogy. The status of a solution cannot be understood 
without such information. This has been well recog­
nised since the inception of scientific inquiry and has 
been explicitly addressed from the beginning of 
mathematics". (Fiacco, 1983, p. 3.) 

There is a very large and diverse literature on SA, 
including a number of reviews (e.g. Tzafestas et al., 
1988; Rios Insua, 1990; Sobieszczanski-Sobieski, 
1990; Eschenbach and Gimpel, 1990; Lomas and 
Eppel, 1992; Hamby, 1994; Clemson et al., 1995). 
However, the existing literature is limited in a num-
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ber of respects. Most of what has been written about 
sensitivity analysis has taken a very narrow view of 
what it is and what it can be useful for. A large 
proportion of the literature is highly mathematical 
and rather theoretical in nature. Even those papers 
with a focus on applied methodology have tended to 
concentrate on systems and procedures which are 
relatively time consuming and complex to imple­
ment. There has been almost no discussion of proce­
dures and methodological issues for simple ap­
proaches to sensitivity analysis. (Eschenbach and 
McKeague, 1989, is a rare exception.) This is re­
markable, considering the usefulness and extremely 
wide usage of simple approaches. 

The other area of notable neglect is the entire 
discipline of economics. Despite countless applica­
tions of SA in the various areas of applied eco­
nomics (e.g. Dungan and Wilson, 1991; Nordblom et 
al., 1994), there has been hardly any discussion of 
methodological issues for SA of economic models. 
Recent exceptions include Canova (1995), Eschen­
bach and McKeague (1989), Eschenbach and Gimpel 
(1990), and Harrison and Vinod (1992). Agricultural 
economists appear to have contributed nothing to the 
literature about sensitivity analysis. 

This paper is an attempt to redress some of these 
areas of neglect. The focus is on 'normative' usage 
of models to develop recommendations for decision 
makers, such as managers. Many techniques and 
procedures will be discussed, ranging from simple to 
complex. While it is acknowledged that some of the 
complex procedures which have been proposed are 
potentially of high value, the primary objective of 
this paper is to provide guidance and advice to 
improve the rigour and value of relatively simple 
approaches. It will be argued that even the simplest 
approaches to SA can be theoretically respectable in 
decision support if they are applied and interpreted 
in a way consistent with Bayesian decision theory. 
The paper is relevant to both optimisation and simu­
lation models used for decision support, although 
there is a greater emphasis on optimisation models in 
the discussion. 

2. Uses of sensitivity analysis 

There is a very wide range of uses to which 
sensitivity analysis is put. An incomplete list is given 

in Table 1. The uses are grouped into four main 
categories: decision making or development of rec­
ommendations for decision makers, communication, 
increased understanding or quantification of the sys­
tem, and model development. While all these uses 
are potentially important, the primary focus of this 
paper is on making decisions or recommendations. 

In all models, parameters are more-or-less uncer­
tain. The modeller is likely to be unsure of their 
current values and to be even more uncertain about 
their future values. This applies to things such as 
prices, costs, productivity, and technology. Uncer­
tainty is one of the primary reasons why sensitivity 
analysis is helpful in making decisions or recommen-

Table 1 
Uses of sensitivity analysis 

1.1 
1.2 

1.3 
1.4 
1.5 

1.6 

1.7 

2 
2.1 

2.2 
2.3 

3 
3.1 

3.2 

3.3 

4 
4.1 
4.2 
4.3 
4.4 
4.5 
4.6 

Decision making or development of recommendations 
for decision makers 
Testing the robustness of an optimal solution 
Identifying critical values, thresholds or break-even 
values where the optimal strategy changes 
Identifying sensitive or important variables 
Investigating sub-optimal solutions 
Developing flexible recommendations which depend 
on circumstances 
Comparing the values of simple and complex decision 
strategies 
Assessing the 'riskiness' of a strategy or scenario 

Communication 
Making recommendations more credible, 
understandable, compelling, or persuasive 
Allowing decision makers to select assumptions 
Conveying lack of commitment to any single strategy 

Increased understanding or quantification of the system 
Estimating relationships between input and output 
variables 
Understanding relationships between input and 
output variables 
Developing hypotheses for testing 

Model development 
Testing the model for validity or accuracy 
Searching for errors in the model 
Simplifying the model 
Calibrating the model 
Coping with poor or missing data 
Prioritising acquisition of information 
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dations. If parameters are uncertain, sensitivity anal­
ysis can give information such as: 
1. how robust the optimal solution is in the face of 

different parameter values (use 1.1 from Table 1), 
2. under what circumstances the optimal solution 

would change (uses 1.2, 1.3, 1.5), 
3. how the optimal solution changes in different 

circumstances (use 3.1), 
4. how much worse off the decision makers would 

be if they ignored the changed circumstances and 
stayed with the original optimal strategy or some 
other strategy (uses 1.4, 1.6). 
This information is extremely valuable in making 

a decision or recommendation. If the optimal strat­
egy is robust (insensitive to changes in parameters), 
this allows confidence in implementing or recom­
mending it. On the other hand if it is not robust, 
sensitivity analysis can be used to indicate how 
important it is to make the changes to management 
suggested by the changing optimal solution. Perhaps 
the base-case solution is only slightly sub-optimal in 
the plausible range of circumstances, so that it is 
reasonable to adopt it anyway. Even if the levels of 
variables in the optimal solution are changed dramat­
ically by a higher or lower parameter value, one 
should examine the difference in profit (or another 
relevant objective) between these solutions and the 
base-case solution. If the objective is hardly affected 
by these changes in management, a decision maker 
may be willing to bear the small cost of not altering 
the strategy for the sake of simplicity. 

If the base-case solution is not always acceptable, 
maybe there is another strategy which is not optimal 
in the original model but which performs well across 
the relevant range of circumstances. If there is no 
single strategy which performs well in all circum­
stances, SA identifies different strategies for differ­
ent circumstances and the circumstances (the sets of 
parameter values) in which the strategy should be 
changed. 

Even if there is no uncertainty about the parame­
ter values, it may be completely certain that they will 
change in particular ways in different times or places. 
In a similar way to that outlined above, sensitivity 
analysis can be used to test whether a simple deci­
sion strategy is adequate or whether a complex con­
ditional strategy is worth the trouble. 

SA can be used to assess the 'riskiness' of a 

strategy or scenario (use 1.7). By observing the 
range of objective function values for different 
strategies in different circumstances, the extent of the 
difference in riskiness can be estimated and subjec­
tively factored into the decision. It is also possible to 
explicitly represent the trade-off between risk and 
benefit within the model. 

3. Theoretical framework for using sensitivity 
analysis for decision making 

In this discussion, a decision variable is a variable 
over which the decision maker 1 has control and 
wishes to select a level, whereas a strategy refers to a 
set of values for all the decision variables of a 
model. An optimal strategy is the strategy which 
maximises the value of the decision maker's objec­
tive function (e.g. profit, social welfare, expected 
utility). It is assumed that the modeller has subjective 
beliefs (internal beliefs, hunches, or guesses) about 
the performance of different strategies and about 
what is the objective of the decision maker who will 
use the information generated by the model. The 
modeller's subjective beliefs are influenced by the 
model but also by other factors; these beliefs may or 
may not be close to the objective truth. 

Bayesian decision theory provides two tools which 
are helpful in the use of SA for decision support: (a) 
decision theory provides a framework for comparing 
strategies under risk or uncertainty and (b) Bayes' 
rule provides a rigorous and consistent method for 
revising probability distributions of uncertain output 
variables after new information is obtained from the 
SA. Together these elements provide a tool for ratio­
nal and consistent adjustments to strategies and deci­
sions as new information is obtained. SA is a process 
of creating new information about alternative strate­
gies. When viewed in this light, the relevance of 
Bayesian decision theory to SA is obvious. 

1 Although the text refers to a single modeller and a single 
decision maker, SA is also very useful in cases where multiple 
modellers and decision makers are involved. For example it 
allows different perceptions about appropriate parameter values to 
be tested, and reveals whether the differences matter. 
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Conceptually, the process of conducting an SA to 
choose an optimal strategy can proceed as follows. 
Following an initial run with a 'base-case' model 
which incorporates 'best-bet' values of parameters, a 
belief about the optimal strategy can be formed. This 
belief is based on the modeller' s perceptions of the 
probability distributions of profit (or another mea­
sure of benefit or welfare) for the preferred strategy 
and other strategies. Based on decision theory, the 
initial optimal strategy is the one which maximises 
the expected value of the objective function, given 
the initial or 'prior' set of subjectively perceived 
probability distributions of profit for different strate­
gies. These prior distributions could also be used to 
make statements about the modeller's level of confi­
dence that the initial strategy is optimal. 

Following a sensitivity analysis based on one or 
more of the techniques outlined later, the modeller 
employs Bayes' rule to revise the subjectively per­
ceived probability distributions of profit for different 
strategies (resulting in a set of 'posterior' distribu­
tions). Depending on how the perceptions change, 
the optimal strategy may or may not be altered. The 
posterior distributions are likely to be less uncertain 
(although not necessarily less risky), 2 due to !he 
information obtained from the SA, so the modeller 
can make improved statements about his or her 
confidence in the strategy. 

For this general view of the process to be valu­
able, it is not necessary for the modeller to literally 
use Bayes' rule or a formal decision theory frame­
work. In my opinion, merely conceptualising the 
process in this way will probably improve the rigour 
and consistency of the SA. Even if the modeller 
operates subjectively as a Bayesian decision theorist, 
it may be that an unstructured 'what if?' approach to 
the SA is adequate for some studies. On the other 
hand, the modeller may be encouraged to adopt a 
structured, explicitly probabilistic approach based on 
decision theory. 

2 'Uncertainty' refers to ignorance about the true value or 
probability distribution of a variable. 'Risk' refers to the fact that 
a variable may be intrinsically stochastic, describable by a proba­
bility distribution but not by a particular value. Even if there is no 
uncertainty about a variable (i.e. we have perfect know ledge about 
its probability distribution) there is likely to still be risk. 

One potential conceptual difficulty with the 
framework arises when this type of SA is conducted 
with an optimisation model. A perceived benefit of 
SA is that it conveniently allows assessment of the 
consequences of parameter uncertainty, even with a 
deterministic model. However SA with a determinis­
tic optimisation model most commonly generates 
only a single optimal result for each combination of 
parameter values being tested. If, as is normal, the 
value of the uncertain parameter will not be defi­
nitely known until after the strategy is fixed in place, 
there is in fact a range of possible profit outcomes (a 
probability distribution of outcomes) for each possi­
ble strategy. Thus if a standard SA approach is used 
to investigate parameter uncertainty in a determinis­
tic optimisation model, the resulting output will not 
be easy to relate to the Bayesian decision theory 
framework; it provides only a sub-set of the relevant 
information. Note that this problem is unlikely to 
arise if a simulation model is used, since the ten­
dency with a simulation model is to generate a full 
set of SA results for each strategy under considera­
tion, providing more information about the probabil­
ity distribution of outcomes for that strategy. 

There are three possible responses to this diffi­
culty with optimisation models: 
1. Deal with the parameter uncertainty by explicitly 

representing it within a stochastic model, rather 
than by using SA with a deterministic model. 

2. Constrain the optimisation model to a particular 
strategy and generate solutions for that strategy 
for each combination of parameter values. This 
provides the probability distribution of outcomes 
for that strategy. Repeat the process for each 
strategy of interest. In this approach, the model is 
really being used for simulation rather than opti­
misation. However the optimisation capacity is 
still useful for helping select which strategies to 
simulate. 

3. Using subjective judgement and mindful of the 
correct decision theory approach, estimate the 
posterior distributions based only on the single 
optimal result for each scenario. While the quality 
of posterior distributions obtained in this way is 
likely to be somewhat lower than those obtained 
by Approaches 1 or 2, this approach is computa­
tionally much easier. In practice, a set of single 
SA results from an optimisation model could still 
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be very useful if considered within the type of 
conceptual framework outlined earlier. An aware­
ness of the inconsistency between the SA results 
and the Bayesian decision theory framework 
should at least help the modeller interpret the 
significance and implications of the results. 

4. Approaches to sensitivity analysis 

In principle, sensitivity analysis is a simple idea: 
change the model and observe its behaviour. In 
practice there are many different possible ways to go 
about changing and observing the model. The section 
covers what to vary, what to observe and the experi­
mental design of the SA. 

4.1. What to vary 

One might choose to vary any or all of the 
following: 
1. the contribution of an activity to the objective, 
2. the objective (e.g. minimise risk of failure instead 

of maximising profit), 
3. a constraint limit (e.g. the maximum availability 

of a resource), 
4. the number of constraints (e.g. add or remove a 

constraint designed to express personal prefer­
ences of the decision maker for or against a 
particular activity), 

5. the number of activities (e.g. add or remove an 
activity), or 

6. technical parameters. 
Commonly, the approach is to vary the value of a 

numerical parameter through several levels. In other 
cases there is uncertainty about a situation with only 
two possible outcomes; either a certain situation will 
occur or it will not. Examples include: 

What if the government legislates to ban a partic­
ular technology for environmental reasons? 
In a shortest route problem, what if a new free­
way were built between two major centres? 
What if a new input or ingredient with unique 
properties becomes available? 
Often this type of question requires some struc­

tural changes to the model. Once these changes are 
made, output from the revised model can be com­
pared with the original solution, or the revised model 

can be used in a sensitivity analysis of uncertain 
parameters to investigate wider implications of the 
change. 

4.2. What to observe 

Whichever items the modeller chooses to vary, 
there are many different aspects of a model output to 
which attention might be paid: 
1. the value of the objective function for the optimal 

strategy, 
2. the value of the objective function for sub-optimal 

strategies (e.g. strategies which are optimal for 
other scenarios, or particular strategies suggested 
by the decision maker), 

3. the difference in objective function values be­
tween two strategies (e.g. between the optimal 
strategy and a particular strategy suggested by the 
decision maker), 

4. the values of decision variables, 
5. in an optimisation model, the values of shadow 

costs, constraint slacks or shadow prices, or 
6. the rankings of decision variables, shadow costs, 

etc. 

4.3. Experimental design 

The experimental design is the combinations of 
parameters which will be varied and the levels at 
which they will be set. The modeller must decide 
whether to vary parameters one at a time, leaving all 
others at standard or base values, or whether to 
examine combinations of changes. An important is­
sue in this decision is the relative likelihood of 
combinations of changes. If two parameters tend to 
be positively correlated (e.g. the prices of two simi­
lar outputs) the possibility that they will both take on 
relatively high values at the same time is worth 
considering. Conversely if two parameters are nega­
tively correlated, the modeller should examine high 
values of one in combination with low values of the 
other. If there is no systematic relationship between 
parameters, it may be reasonable to ignore the low 
risk that they will both differ substantially from their 
base values at the same time, especially if they are 
not expected to vary widely. 

In selecting the parameter levels which will be 
used in the sensitivity analysis, a common and nor-
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mally adequate approach is to specify values in 
advance, usually with equal sized intervals between 
the levels (e.g. Nordblom et al., 1994). The levels 
selected for each parameter should encompass the 
range of possible outcomes for that variable, or at 
least the 'reasonably likely' range. What constitutes 
'reasonably likely' is a subjective choice of the 
modeller, but one possible approach is to select the 
maximum and minimum levels such that the proba­
bility of an actual value being outside the selected 
range is 10%. 

If combinations of changes to two or more param­
eters are being analysed, a potential approach is to 
use a 'complete factorial' experimental design, in 
which the model is solved for all possible combina­
tions of the parameters. While this provides a wealth 
of information, if there are a number of parameters 
to analyse, the number of model solutions which 
must be obtained can be enormous. To conduct a 
complete factorial sensitivity analysis for eight pa­
rameters each with five levels would require 390 625 
solutions. If these take 1 min each to process, the 
task would take 9 months, after which the volume of 
output created would be too large to be used effec­
tively. In practice one must compromise by reducing 
the number of variables and/or the number of levels 
which are included in the complete factorial. Prelimi­
nary sensitivity analyses on individual parameters 
are helpful in deciding which are the most important 
parameters for inclusion in a complete factorial ex­
periment. (See later comments on 'screening'.) 

Alternatively one may reduce the number of model 
solutions required by adopting an incomplete design 
with only a sub-set of the possible combinations 
included. Possibilities include central composite de­
signs (e.g. Hall and Menz, 1985), Taguchi methods 
(e.g. Clemson et al., 1995), or some system of 
random sampling or 'Monte Carlo' analysis (e.g. 
Uyeno, 1992; Clemson et al., 1995). 

5. Processing of sensitivity analysis results 

A great deal of information can be generated in 
sensitivity analysis, so much so that there is a risk of 
the volume of data obscuring the important issues 
(Eschenbach and McKeague, 1989). For this reason, 
the modeller must process and/ or summarise the 

information to allow decision makers to identify the 
key issues. The following sub-sections cover various 
possible methods for processing results of a sensitiv­
ity analysis, ranging from very simple to very com­
plex. For many of the methods of analysis, I suggest 
possible layouts for graphs and tables. There are 
many other layouts which may be more suitable than 
these for particular purposes. A number of examples 
are drawn from my research in agricultural eco­
nomics. 

5.1. Summaries of activity levels or objective func­
tion values: one dimension 

The simplest approach to analysis of SA results is 
to present summaries of activity levels or objective 
function values for different parameter values. It may 
be unnecessary to conduct any further analysis of the 
results. 

A simple example of such a summary is presented 
in Fig. 1. This example (like several which follow) is 
from MIDAS, a linear programming model which 
selects optimal combinations of farming enterprises 
for representative farms in a region of Western Aus­
tralia (Morrison et al., 1986; Kingwell and Pannell, 
1987). Fig. 1 shows how the optimal area of wheat 
varies as a number of parameters are varied either 
side of their standard values. Each of the parameters . 
in this example is varied up or down by amounts 
reflecting their realistic possible ranges. The format 
in Fig. 1 allows results from several parameters to be 
presented on a single graph. This allows easy com-
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Fig. 1. Graphing changes in multiple parameters for a single 
output variable. 
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parison of the relative impacts of these parameters 
when varied over their realistic ranges, and these 
ranges are communicated by the horizontal span of 
the lines. In this example one can see that wheat 
yields have the biggest impact on the optimal area of 
wheat. Eschenbach and McKeague (1989) refer to 
this type of graph as a 'spider diagram', for obvious 
reasons. Another variation is to also plot the vertical 
axis in percentage terms so that the graph illustrates 
'elasticities' (see Section 5.3). 

Spider diagrams like these can also be constructed 
with the objective function value rather than an 
activity level as the dependent variable, allowing the 
decision maker to assess the sensitivity of the objec­
tive function value to parameter changes. For exam­
ple if the objective is to maximise profit, this type of 
diagram reveals whether any parameter changes 
would result in a negative profit. 

A potential problem with the use of percentage 
changes in spider diagrams is that if the parameter is 
small (e.g. variation is centred around zero), percent­
age changes may be large relative to those for other 
variables. In fact, if the initial parameter value is 
zero, percentage changes to the parameter are not 
defined. For these parameters, it may be appropriate 
to use an absolute change. 

Spider diagrams are usually practical only for 
displaying the levels of a single activity. Where there 
are several important variables to display, one nor­
mally needs to limit results to changes in a single 
parameter. Fig. 2 is an example from MIDAS show-

3000 30 

u;-2500 25 .., 
<ll <ll c: c: c: c: 
g2ooo 20 g 
c: c: 
0 0 
tl1500 15 tl 

"' "' "C "C e e 
C.1000 10 c. 
c: 0 
-~ 0 
(!) 500 5 $ 

-30 -10 10 30 50 
Wheat price (% change from standard) 

I..._ Wheat -6- Lupin --- Pea -e- Wool 

Fig. 2. Graphing multiple output variables for changes in a single 
parameter. 
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Fig. 3. Graphing the allocation of a resource among alternative 
uses for changes in a single parameter. 

ing production of wheat grain, lupin grain, pea grain, 
and wool as a function of wheat price. Because of 
the different scales of production, wool is shown on 
the right hand axis. This graph reveals that the main 
effect of increasing wheat price is to increase wheat 
production at the expense of wool. There are also 
smaller changes in the production of lupin grain and 
pea grain. 

A different way of summarising the same model 
results is to show the allocation of a particular input 
or resource to the different possible outputs. The way 
these allocations vary can be effectively displayed by 
stacking the lines or bars, as shown in Fig. 3. This 
shows the allocation of land to production of each of 
the four products, with the allocations mirroring the 
trends in Fig. 2. 

5.2. Summaries of activity levels or objective func­
tion values: higher dimensions 

In Fig. 1, because all parameters but one were 
held constant for each line on the graph, it was 
possible to display results for several parameters on 
the same graph. In displaying the results of changing 
parameters simultaneously, it is difficult to handle 
more than two parameters in a graph without it 
becoming complex and difficult to follow. Fig. 4 
shows an example of a method for displaying results 
from sensitivity analyses on two parameters. This 



146 D.J. Pannell/ Agricultural Economics 16 (1997) 139-152 

2500 -r-----------,-----------

'" e. 

2000 

1ii 1500 

i 
~ 1000 

~ 
500 

o+---.---.--4---.---.--~ 
-60 -40 -20 0 20 40 60 

Wheat price(% change from base) 

Fig. 4. Graphing combinations of parameter changes. 

figure shows the impacts of changing wheat price 
and wool price on the optimal area of wheat selected 
by MIDAS. There are many other formats for three 
dimensional graphs which can be used for this pur­
pose. 

Results for more than two parameters require a 
series of graphs or a table. Well structured tables are 
probably the better option. Another approach is to 
develop an interactive database of model results, 
allowing decision makers to select the parameter 
values and displaying the corresponding optimal so­
lution. This type of database acts as a simplified (and 
much quicker) version of the full model. 

A final possible approach to the analysis of 
multi-dimensional sensitivity analysis is to use statis­
tical regression techniques to fit a smooth surface to 
the results (Kleijnen, 1992, 1995b). This approach 
provides an equation which approximates the flmc­
tional relationship between the parameter values and 
the dependent variable (e.g. the activity level or 
objective function value). Such an equation will be 
smoother than the step functions often produced by 
mathematical programming models and this may be 
useful for producing graphs or for conducting some 
of the analyses outlined below. 

5.3. Slopes and elasticities 

The rate of change (the slope) of an activity level 
or of the objective function with respect to changes 
in a parameter is an even briefer summary of the 
issue than the graphs shown so far. An issue is the 
need to compare slopes for different parameters. The 

units of measure of different parameters are not 
necessarily comparable, so neither are absolute slopes 
with respect to changes in different parameters. One 
can often overcome this problem by calculating 
'elasticities', which are measures of the percentage 
change in a dependent variable (e.g. an activity 
level) divided by the percentage change in an inde­
pendent variable (e.g. a parameter). 

e = %LlYj%LlX (1) 

or 

e=BYjBX.XjY (2) 

A comparison of elasticities of an activity level 
with respect to different parameters provides a good 
indication of the parameters to which the activity is 
most sensitive. Table 2 is an example of such a 
comparison for MIDAS. The elasticities have been 
calculated assuming base values for parameters other 
than the one in question. Results have been smoothed 
using regression analysis and elasticities have been 
calculated from the fitted smooth curves. 

An alternative to the use of elasticities is to 
standardise parameters as follows: 

Z= (X-b)ja (3) 

where b is the base value for X and a is the range 
(i.e. Xmax- Xmin) (Kleijnen, 1995a). 

5.4. Sensitivity indices 

A sensitivity index is a number calculated by a 
defined procedure which gives information about the 
relative sensitivity of results to different parameters 
of the model. A simple example of a sensitivity 
index is the elasticity of a variable with respect to a 
parameter (Section 5.3). The higher the elasticity, the 
higher the sensitivity of results to changes in that 

Table 2 
Elasticities of optimal wheat are with respect to changes in 
various parameters 

Parameter 

Wheat price 
Wheat yield 
Wool price 
Lupin price 
Machinery size 

Elasticity of optimal wheat area 

1.5 
1.4 

-0.5 
-0.3 

0.0 
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parameter. Hamby (1994) outlined 14 possible sensi­
tivity indices for cases where only a single output 
variable is to be evaluated, including the 'importance 
index', the 'relative deviation' index, the 'partial 
rank correlation coefficient', the Smimov test, the 
Cramer-von Mises test, and a number of others. 
These are not outlined in detail here because many 
of them are complex and time-consuming to calcu­
late. Furthermore, Hamby (1995) conducted a de­
tailed comparison of the performance of each of the 
indices relative to a composite index based on ten of 
them. None of the complex indices tested performed 
as well a simple index proposed by Hoffman and 
Gardner (1983): 

SI = ( Dmax- Dmin)/Dmax ( 4) 

where SI is the sensitivity index, Dmax is the output 
result when the parameter in question is set at its 
maximum value and Drnin is the result for the mini­
mum parameter value. 3 In cases where comparisons 
between different models are not important, the fol­
lowing even simpler sensitivity index can be per­
fectly adequate (and perhaps even preferable). 

SI = ( Dmax- Dmin) (5) 

Alexander (1989) suggested a number of complex 
indices for use in situations where the modeller 
wishes to assess the sensitivity of several output 
variables simultaneously. For example, for cases 
where the result of interest is a ranking of several 
variables, Alexander provides an index which indi­
cates the sensitivity of the ranking to changes in a 
parameter. 

5.5. Break-even values 

Consider the question: "If parameter X were to 
change from its current value, by how much would it 
have to change in order for the optimal solution to 
change in a particular way?'' This break-even ap­
proach addresses the issue of uncertainty about pa­
rameter values in a way which is often particularly 

3 A referee suggested that where the relationship between X 
and Y is not monotonic, it may be preferable to use the highest 
and lowest value of D within the range for X, rather than the 
values of D corresponding to the extreme values of X. 

Table 3 
Break-even changes in parameter values for cropping to be as 
profitable as pasture production on Soil type I 

Parameter Break-even parameter change(%) 

Wheat price +50 
Wheat yield on Soil type I + 40 
Wool price -80 
Pasture yield on Soil type 1 -70 
Lupin price + 130 
Lupin yield on Soil type 1 + 120 

helpful to decision makers. It helps in the assessment 
of whether the critical value of the variable falls 
within the range of values considered reasonable for 
the variable. If not, the decision maker can be ad­
vised (for the purposes of planning) to disregard the 
possibility of the variable taking a different value. If 
the break-even value is within the realistic range, this 
information can be used to justify collection of addi­
tional information to help predict the actual value of 
the parameter. 

Table 3 shows an example from MIDAS. In the 
standard version of this model, the optimal use of 
land of a particular type (Soil type 1) is to grow 
pasture for grazing by sheep. The aim is to determine 
the circumstances in which cropping would be as 
good as or better than pasture. The table shows 
break-even percentage changes in various parameters 
(changes needed for the profitability of cropping on 
Soil type 1 to equal that for pasture). By judging 
whether parameter changes of at least this magnitude 
are ever likely to occur, the modeller can judge 
whether cropping is ever likely to be recommended 
on this soil type. 

5.6. Comparing constrained and unconstrained solu­
tions 

The approaches discussed so far are based on 
assessing the sensitivity of the model to changes in 
parameters. A different approach is to add con­
straints to the model so that it is forced to adopt 
other interesting strategies. It is often very valuable 
to know how other strategies perform relative to the 
optimum. Fig. 5 shows an example, where the MI­
DAS model has been constrained to plant crops on 
various percentages of the farm area. Such a graph is 
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valuable if the decision maker wishes to consider 
other strategies which achieve objectives other than 
that represented in the model. Fig. 5 shows how 
much profit must be sacrificed if the farmer wishes 
to deviate from the optimal cropping area of 60%. 

A useful way of indicating the flexibility available 
to the decision maker is to report the set of strategies 
with objective function values within a certain dis­
tance of the optimum. For example, any area of crop 
between 40 and 70% of the farm is within $5000 of 
the maximum profit. This is an example of one 
approach to testing the 'robustness' of a solution 
(one of the uses of SA listed in Table 1). 

Sometimes it is useful to constrain the model to 
exclude an option in order to calculate the total 
contribution of this option to the objective, and to 
identify the best strategy which does not include it. 
Table 4 shows a summary of the MIDAS solutions 
which include and exclude the option of growing 
lupins on the farm. It is apparent that the inclusion of 
lupins increases profits by around 66%. 

5. 7. Using probabilities 

A common characteristic of the methods of analy­
sis presented above is that they do not require the 
modeller to explicitly specify probabilities of differ­
ent situations. Sensitivity analysis can be extremely 
effective and useful even without taking this extra 
step to a more formal and complex analysis of 
results. In excluding probabilities from the analysis, 
the modeller is relying on the decision maker to give 
appropriate weight to each scenario. On the other 
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Fig. 5. Comparing optimal with sub-optimal strategies. 

Table 4 
Profit and optimal rotations with and without lupins 

Lupins included Lupins excluded 

Whole-farm profit($) 40870 24553 
Rotation selected 

Soil type 1 pppp pppp 
Soil type 2 CL PPPC 
Soil type 3 CCL ecce 
Soil type 4 CCL ecce 
Soil type 5 CCF CCF 
Soil type 6 pppp pppp 
Soil type 7 CCF CCF 

C, cereal crop; P, pasture; L, lupins; F, field peas. 

hand, an analysis using probabilities may be unnec­
essarily difficult and time consuming to conduct, and 
is likely to be more difficult to explain to the deci­
sion maker. The potential simplicity of sensitivity 
analysis is one of its attractions: an analysis which is 
not understood is unlikely to be believed. Depending 
on the importance of the issue and the attitudes and 
knowledge of the decision maker, the best approach 
to sensitivity analysis might not involve formal and 
explicit use of probabilities. Even if a probabilistic 
sensitivity analysis is to be conducted, a simpler 
preliminary analysis may be useful in planning the 
final analysis. 

6. Overall strategies for sensitivity analysis 

The techniques outlined above are a powerful set 
of tools for assisting a decision maker. However the 
modeller needs to avoid conducting sensitivity analy­
sis in an aimless or mechanical fashion. The ap­
proach should be adjusted to suit the decision prob­
lem. As the analysis proceeds, the results obtained 
may lead to further model runs to test ideas or 
answer questions which arise. In a thorough sensitiv­
ity analysis, a number of the approaches suggested in 
the previous section might be used. 

Within these broad guidelines, there are very many 
overall strategies for sensitivity analysis which might 
be adopted. Here are three systematic suggestions of 
overall strategies which are likely to be effective in 
cases where the analysis is used to help make a 
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decision or recommendation about the optimal strat­
egy. 

Strategy A (the most comprehensive) is as fol­
lows. 
1. Select the parameters to be varied. Identify a 

range for each parameter which realistically re­
flects its possible range. For example, use maxi­
mum and minimum values, or an 80% confidence 
interval, but not a uniform 10 or 20% either side 
of the expected value. Also identify other possible 
discrete scenarios requiring changes to the model 
structure or formulation (e.g. changes in the ob­
jective to be optimised, inclusion of additional 
constraints). 

2. Conduct sensitivity analyses for each parameter 
individually, using two parameter values (high 
and low or maximum and minimum). Conduct 
sensitivity analysis for each discrete scenario indi­
vidually. 

3. Identify parameters and discrete scenarios to 
which the key decision variables are relatively 
unresponsive, using one of the sensitivity indices 
presented in Section 5.4 (e.g. Eq. (5)). 4 

4. Exclude unresponsive parameters and scenarios 
from further analysis. For the remaining parame­
ters, consider whether they are likely to have high 
positive, high negative or low correlation with 
each other. If it is intended to use probability 
distributions for random sampling of scenarios or 
for summarisation of results, estimate the distribu­
tion for each parameter and, for cases of high 
correlation, estimate the joint probability distribu­
tion. Possibly also estimate probabilities for the 
discrete scenarios selected in Step 1. 

5. Design and conduct a modelling experiment which 
allows appropriately for combinations of parame­
ter changes, paying particular attention to the 

4 Steps 2 and 3 constitute a very simple version of what is 
commonly termed 'screening', meaning the identification of im­
portant factors for investigation in a later modelling experiment 
(e.g. Kleijnen, 1995a, 1996). Among the more sophisticated ap­
proaches to screening suggested in the literature are sequential 
bifurcation (Bettonvil and Kleijnen, 1996), iterated fractional fac­
torial design (Andres, 1996) and replicated LHS design (McKay, 
1995). 

cases of high correlation between parameters. 
Possibly use Latin hypercube sampling (Clemson 
et al., 1995) or, if the number of combinations is 
manageable, a complete factorial design. 5 Repeat 
this for each of the discrete scenarios individu­
ally, or if practical, for all combinations of the 
discrete scenarios. 

6. Summarise results. For each key decision vari­
able, calculate the values of a sensitivity index for 
all parameters and discrete scenarios, and rank 
them by absolute value. 6 These results can be 
reported directly or used to select which parame­
ters will be examined in graphs and tables (e.g. 
spider diagrams). This approach helps to prioritise 
the presentation of results which is essential to 
avoid an overload of graphs and tables. It also 
allows the decision maker to focus on important 
parameters and relationships. Calculate break-even 
parameter values for particular circumstances of 
interest. 

7. On the basis of results so far, identify a tentative 
best-bet strategy and several others of interest. 
The other strategies might be chosen because they 
contribute to objectives other than those repre­
sented in the model, or because they are of per­
sonal interest to the decision maker. French (1992) 
suggested focusing on 'adjacent potentially opti­
mal' alternative solutions, meaning strategies 
which are close to the base-case optimum and 
which would become optimal if parameters 
changed sufficiently. It is not necessary to limit 
the analysis to such a narrow set of strategies, 
although one should be mindful of the number of 
solutions required in the next step. 

8. Repeat the experiment (Step 5) with the model 
constrained to each of the strategies (from Step 

5 Alternatively an incomplete factorial design such as 2 k- P 

(Kleijnen, 1996) may be useful. If the model output is to be used 
for estimation of a statistical regression model, the cost of exclud­
ing runs in the 2 k- P design is likely to be small. 

6 Commonly there are interations between parameters in their 
impacts. To avoid reporting an unrepresentative value for a sensi­
tivity index, it is desirable to calculate an expected value (or at 
least a simple average) for the sensitivity index over all scenarios 
modelled. 
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7). Summarise these results. Identify scenarios (if 
any) where each strategy is optimal. Calculate the 
cost of each strategy relative to the best-bet. 
Possibly repeat this with another strategy as the 
best-bet. At this stage the modeller may wish to 
use probability distributions to make probabilistic 
statements about the results. 

9. Attempt to draw conclusions. It can be helpful to 
the analysts to focus their thinking by trying to 
couch conclusions in terms similar to one of the 
following examples. 

(a) The optimal strategy is X in almost any 
plausible scenario, so X is a safe best-bet strategy. 
(b) In some scenarios the optimal strategy is X, 
whereas in these other scenarios the optimal strat­
egy is Y. If you can predict or identify the sce­
nario, it is important to do the right strategy in the 
right scenario. 
(c) In some scenarios the optimal strategy is X, 
whereas in these other scenarios the optimal strat­
egy is Y. However, the cost of doing the wrong 
strategy is very low, so it is not very important to 
worry about doing the right strategy in the right 
scenario. 
(d) In some scenarios the optimal strategy is X, 
whereas in these other scenarios the optimal strat­
egy is Y. The cost of doing the wrong strategy 
when the decision maker should be doing Y is 
low, but the cost of doing the wrong strategy when 
the decision maker should be doing X is high, so 
if it is not possible to predict or identify the 
scenario, X is a safe best-bet strategy. 
These conclusions correspond to the following 

recommendations: (a) do X, (b) do either X or Y 
depending on specific circumstances, (c) do either X 
or Y, it does not matter which, (d) if in doubt, do X. 
In addition there is a converse set of conclusions 
about which strategies are never likely to be optimal: 
(e) never do Z, (f) in certain circumstances do not do 
Z, (g) if in doubt, do not do Z. Try to identify which 
of the categories (a) to (d) the problem falls into and 
whether it is possible to specify any strategies like Z 
in categories (e) to (g). 

Strategy B (slightly less comprehensive) includes 
all of the steps of Strategy A except 7 and 8. 

Strategy C (the simplest strategy which is still 
systematic and useful) includes only Steps 1, 2, 3, 6 
and 9. 

7. Reporting results of sensitivity analysis 

It is common for written reports of sensitivity 
analyses in published papers to address only a subset 
of the issues on which the SA can provide informa­
tion. Of course one must be selective in the reporting 
and discussion of results, but too often discussions of 
sensitivity analyses drift away from the central issue 
being investigated onto interesting but relatively 
unimportant details. In other cases, SA results are 
presented without sufficient discussion of their con­
sequences and implications for the central issue. To 
avoid these traps, the following report structure is 
recommended as a standard minimum. 
1. From the base-case model, or other information, 

what is the initial optimal recommendation which 
is to form the standard for comparisons in the 
SA? 

2. Which parameters most affect the optimal recom­
mendation? A table of values for a sensitivity 
index ranked according to their absolute value is 
recommended. If appropriate, what are the 
break-even levels of parameters for changes in the 
recommendation? 

3. How does the optimal recommendation change if 
the important parameters (from 2) change? 

4. What are the consequences of not following the 
optimal recommendation? For example, how 
much less profitable are other recommendations? 

5. Overall, what level of confidence can there be 
that the recommendation is in fact optimal? 
In addressing these issues, the space devoted to 

each need not necessarily be large, and the relative 
importance of each will depend on the particular 
study. Point 1 is particularly important as it ensures 
that the discussion of the SA will be well focused 
and relevant. The recommendation to state the 'level 
of confidence' is not intended to provoke a formal 
probabilistic or statistical statement, but at least some 
relatively informal and subjective statement of confi­
dence should be made. If the conclusion is subjec­
tive, say so. 

A void the trap of overloading the report with the 
results of Category 3. As noted above, a helpful 
strategy in this regard is to demonstrate that certain 
parameters have little impact on the important deci­
sion variables, and then to avoid reporting further 
results for these parameters. 
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8. Concluding comments 

There is clearly much more to the use of a 
normative model than finding a single optimal solu­
tion. That solution should be viewed as the starting 
point for a wide ranging set of sensitivity analyses to 
improve the decision maker's knowledge and under­
standing of the system's behaviour. 

Even without undertaking the relatively complex 
procedures which explicitly involve probabilities in 
the sampling of scenarios or interpretation of results, 
sensitivity analysis is a powerful and illuminating 
methodology. The simple approach to sensitivity 
analysis is easy to do, easy to understand, easy to 
communicate, and applicable with any model. As a 
decision aid it is often adequate despite its imperfec­
tions. Given its ease and transparency, the simple 
approach to SA may even be the absolute best 
method for the purpose of practical decision making. 
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