A SZÉLERŐMŰ, MINT A MEGÚJULÓ ENERGIA EGY STRATÉGIAI IRÁNYA

Wind Turbines as one of The Strategic Directions of Renewable Energy

DOMÁN Szilvia¹ – TAMUS Antalné¹ – SIMON Tamás² – KATONA Norbert³

¹Károly Róbert Főiskola
²Óbudai Egyetem
³Debreceni Egyetem

Abstract:
Energy, alternative energy resources, and environmental issues increasingly become a central concern worldwide as well as in Hungary. The significance of wind energy, as one of the oldest and most widely used alternative energy resources, can hardly be questioned these days. In our secondary research we made an attempt to scrutinise this type of renewable energy, its international and domestic spreading, the environmental impacts, and its expected future. Our aim in this research was to observe the position of renewable and alternative energy sources in general, to present the significance of wind energy, and to explore the past and present as well as the circumstances of the installation of wind turbines. After presenting the detailed views and insights in connection with this topic we compared opinions and drew our conclusions. All in all it can be stated that there is plenty of potential in our country to exploit wind energy. In case of such investment the resistance of the population is not significant, opinions in this respect are positive therefore both the development plans and their timing should be reconsidered at national level. Wind turbines are high-performance power plants that can be put into operation relatively easily, in addition – compared to traditional power plants – they are less stationary, furthermore, since wind energy is continuous and renewable, their positive impacts on sustainable energy production is hardly debatable.

Keywords: renewable energy, wind turbines, environmental impacts, international and national trends

Összefoglalás
Mind világszerte, mind hazánkban egyre inkább központi témá az energia, az alternatív energiaforrások, a környezetvédelem kérdésköre. A szélenergia, mint az egyik legrégebben alkalmazott és egyik legismertebb alternatív energiatípus jelentősége manapság aligha vitatható.

Kutatási célként tűztük ki a megújuló, alternatív energiaforrások pozícijának átalakítását, a szélenergia jelentőségének bemutatását, illetve fel kívántuk tárni a szélérőművek telepítésének múltját, jelenét, körülményeit. A témaval kapcsolatos nézetek, megítélésűk részletesen feltárását követően ütközöttünk a véleményeket, illetve levontuk következtetéseinket.

Összességében megállapítható, hogy hazánkban bőven van potenciállé éppen a témáinkul választott szélenergia felhasználás területén is. Egy ilyen beruházás esetén a lakosság ellenállása nem számottevő, az ezzel kapcsolatos nézetek kedvezőek, ezért érdemes lenne központi szinten is újragondolni a fejlesztési terveket, azok ütemét. A szélérőmű ugyanis a leggyorsabban üzembe helyezhető villamos-energiát előállító, nagy teljesítményű erőmű, emellett a hagyományos erőművekhez képest kevésbé helyezett, emellett, mivel a szélenergia folytonos és megújuló, így a fenntartható energiatermelésre gyakorolt pozitív hatása alig vitatható.

Kulcsszavak: megújuló energia, szélérőmű, környezeti hatások, nemzetközi és hazai tendenciák
ANYAG ÉS MÓDSZER

Témafeltárásunk kapcsán áttanulmányoztuk a hozzáférhető hazai és nemzetközi nyomtatott és elektronikus forrásokat, igyekeztünk definálni a témához kapcsolódó alapfogalmakat, összegyűjteni a szakértői véleményeket, összevetni a különböző álláspontokat.

Előként az energia és a szél témáját vettük górcső alá, ezt követően az alternatív energiát, annak jelentőségét, világ- és hazai szintű múltját és jelenét tekintettük át. A szélenergia hasznosításának részletes ismertetését követően konklúzióinkat gyűjtöttük össze.

EREDMÉNYEK

Az energia és a szél

Az energia
Minden emberi tevékenységehez szükség van energiára. Bár sokáig ennek kizárólagos forrása az emberi szervezet volt, a technika fejlődésével sor került más természeti erőforrások kiaknázására is. Az ember életében az energia különböző formákban, de állandóan áramlik a fogyasztókhoz, azonban ez olyannyira természetesnek érezzük, hogy csak akkor veszünk róla tudomást, ha valami zavar támad. Az energiaellátók oldaláról szemléltve viszont az energia folyamatos rendelkezésre állásához óriási apparátusra és erőfeszítésekre van szükség. A XX. század elején a világ energiafogyasztása évente 2-2,2%-kal nőtt, a 2. világháborút követő harmadik évben a növekedés üteme már meghaladta az 5%-ot. Azonban már a 70-es években sem volt zökkenőmentes a fejlődés, jellemzően az akkor prioritást éltéző fosszilis energiaforrások egyenleten földrajzi előszlása miatt. (Vajda 1975)

Az elmúlt évtizedekben egyre többször hallható volt a hír, miszerint fogyóban van a villamos energia ellátásához napjainkban is leginkább használatos kőolaj és szén. Az ökológiaval foglalkozó tudósok állítása szerint a globális felfegyveredés egyik oka az „üvegházgázok” több száz éve tartó légkörbe jutása, melyek felmelegítik a Föld légkörét. (Ilonka, 2004)

Ugyan már a nyolcvanas években is egyre inkább előterbe került a megújuló energiaforrások felhasználásának problematikája, Vajda (1975) a hetvenes évek közepén még egészen másként látta ezt a kérdést, 1975-ben megjelent könyvében úgy értékelte, hogy bár „a veszendőbe menő erőforrások kiaknázása állandóan foglalkoztatja az emberek képzeletét”, ennek ellenére úgy ítélte meg, hogy „a szélenergia felett végleg eljárt az idő”, mert szerinte ez gazdaságtaláló, aligha lehet versenyképes más energiaellátási módkkal. „A szeszélyes és véletlenszerűen kialakuló széljárásla nem lehet alapozni,”, illetve a termelt energia tárolása túlságosan összetett (Vajda 1975. 36. és 37 oldal), (Sembery 2004)

A szélből a szélgenerátorig

A szélenergia a napenergiának köszönhető, abból származó megújuló energiaforrás. A napsugárzás különböző mértékben éri el földfelszint más és más területeken a bolygóon, melynek következtében eltérő hőmérsékletű légtömegek alakulnak ki a földfelszín felett. A kialakult hőmérséklet-különbség eredményeképpen e légtömegekben megváltozik mind a levegő nyomása és sürűsége, majd e különbségek hatására egy áramlás indul meg a föld légkörében. Ez a légmozgás mind addig fenn áll, míg az ezt kiváltó hőmérsékletkülönbségek ki nem egyenlitődnek. Könnyen megállapítható tehát, hogy amíg forog a Föld és váltakoznak a nappalok és éjszakák, addig a szél, mint folyamatosan megújuló energiaforrás korlátlanul kiaknázható. (Sembery, 2004)

A kialakult szél sebessége leginkább attól függ, hogy mekkora a légtömegek mérete melyek közt a hőmérsékletkülönbség fenn áll illetve mekkora maga a hőmérsékletkülönbség. Az így
kialakult szelek az enyhe légmozgástól kezdve a pusztító több száz kilométeres óránkénti sebességet is elérhetik. Éppen ezért a mai modern szélgenerátorok teljes mértékben önműködőre tervezik. Igény nem csak saját magát szabályozza a megfelelő szélsősebességhoz és szélirányhoz igazodva, de képes magát adott szituációban lekapcsolni, illetve befékezni, ezzel megóvva magát az esetleges viharok okozta kártól. (Tóth – Horváth, 2003)

Alapvetően két fajta szélgenerátor különböztethetünk meg, a vízszintes és a függőleges tengelyű. Míg a függőleges tengelyű szélgenerátorok bármilyen irányú légmozgást azonos teljesítményében képesek hasznosítani, addig a vízszintes tengelyűkénél ennek a teljesítménynek a tartása csak akkor lehetséges, ha a tengely állandóan szélirányba van állítva. (Ferenczi, 2007), (Sembery, 2004)

A szélgenerátorok teljesítményük alapján 3 fő csoportra oszthatók:
- A kismérületű és teljesítményű és általában különálló turbinák csoportja, melyeket szinte kizárólag fűtésre és akkumulátorfülölésére használnak. Ezek úgynevezett zigetüzemben működnek, távol a meglévő villamos hálózatoktól. Teljesítményük: 10kW tartomány alatt jellemző.
- A közepes méretű úgynevezett „hibrid energiarendszerek” szélturnáin, amelyeket máshoz, jellemzően fotovoltaikus energiaforrásokkal kombinálnak. Teljesítményük: 10-150kW tartományban mozog.
- A nagyméretű szélturnáknak hűtési és a meglévő villamos hálózatba kapcsolt szélgenerátorok, melyek elszóra is, de mára jellemzően úgynevezett szélforrásokban (szélparkokban) üzemelvő termelik az elektromos áramot, mivel a potenciális szélenergiát nem lehet egyetlen szélkerék méreteinek növelésével kiaznázni.

A korszerű szélturnákat általában három lapáttal építik. Az adott teljesítmény-tartományban jellemzően a lapáthossz 13-52 m, a toronynagyság 30-124 m között változik. A tornyot acélból és betonból készítik. (Sembery, 2004)

Szélkerékek környezeti hatásai

A szélkerékek kifejezetten megújuló energiát hasznosítanak, alapvető előnyük, hogy nem bocsátanak ki káros anyagokat a környezetbe. A hagyományos fosszilis energiahordozókkal összevetve megállapítható, hogy alkalmazásával lényeges szén-dioxid-, kén-dioxid- és nitrogén-oxid-kibocsátást kerülhetünk el, amelyek a globális felmelegedéshez, a savas esőhöz és a levegőszennyezéshez járulnak hozzá. A szélenergia hasznosításának környezetvédelmi jelentősége, előnye vitathatatlan. A lakosság egyetlen tagja sem sérül a szélenergia létesítményeitől és gyakorlatilag nulla kockázata van a szélturnáknak okozta nagy katasztrófa baleseteknek.

Korábban feltételezték, hogy a szélkerékek veszélyesek lehetnek a madárvilágra. Tapasztalatok szerint a kis fordulatszámú kerekek csak jelentéktelen mértékben veszélyeztetik a madarakat, vagy egyáltalán nem. A ragadozó madarak gyakran használják a gépházakat megfigyelőhelyéként. Kis fordulatszámú szélturnákat telepítenek jellemzően a kontinenseken, míg nagy fordulatszámtuakat a tengeren, tengerpartokon.

A szélkerékek mechanikai és aerodinamikai eredetű zajokat keltenek. Szóba jönnek zajcsökkentő megoldások, de a zajvédelem leginkább a szélkerékek telepítési helyének megválasztásával, lakott területektől megfelelő távolság biztosításával érhető el. Bár a szélkerékek kétségkívül nem zajtalanok, a technika vívmányainak köszönhetően ez a zaj ma már a régi modellekéhez képest elhanyagolható, leginkább már csak a szélkerékkek suhogását hallani. Egyes esetekben halkabb, mint a szél által keltett hang.
A megújuló energiák

A megújuló energiák fajtái

„Megújuló energiának tekinthetünk minden olyan energiaféléséget, mely folyamatosan és bőségesen jelen van, vagy emberi léptékkel nézve viszonylag rövid idő alatt (órák, hetek, hónapok, néhány év) képes újra termelődni olyan mértékben, amely lehetővé teszi a folyamatos vagy időszakos felhasználást” (Véghely, 2004. 3p.). Legkedvezőbben az tekinthető, amikor a fent említett folyamat emberi beavatkozás nélkül valósul meg. „Megújuló energiaforrások közös jellemzői, hogy hasznosításuk során nem csökken a forrásuk, későbbiekben ugyanolyan módon termelhető belőlük energia. A megújuló energiák közös forrása a Nap, melynek energiája gyakorlatilag kifogyhatatlan. A számítások szerint a Nap tömege 10 milliárd év alatt 1 erezzelével csökkent a kisugárzás következtében.” (Internet 8.)

A Földünkön található megújuló energiákat az 1. számú táblázat rendszerezi.

1. táblázat
Megújuló energiaforrások jellemzői

<table>
<thead>
<tr>
<th>Energia fajta</th>
<th>Energia sűrűség</th>
<th>Területi korlát</th>
<th>Időbeli rendelkezésre állás</th>
<th>Zaj</th>
<th>Tisztaság</th>
<th>Ktermelhetőség</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nap (fény, hő)</td>
<td>Közepes</td>
<td>Nincs</td>
<td>Periodikus (Naponta) Évszakfüggő</td>
<td>Csendes</td>
<td>Tiszta</td>
<td>Kiváló, min. beruházás</td>
</tr>
<tr>
<td>Víz (folyó, árnapály, hullám, áramlás)</td>
<td>Magas</td>
<td>Van</td>
<td>Folyamatos Kissé évszakfüggő Közepesen csendes Közepes (karbantartás)</td>
<td>Közepesen csendes Közepes (karbantartás)</td>
<td>Köváló, nagyobb erőmű ber. igényes</td>
<td></td>
</tr>
<tr>
<td>Szél</td>
<td>Magas</td>
<td>Van</td>
<td>Többnyire korlátozott Közepesen csendes Közepes (karbantartás)</td>
<td>Közepesen csendes Közepes (karbantartás)</td>
<td>Köváló, nagyobb erőmű ber. igényes</td>
<td></td>
</tr>
<tr>
<td>Geotermikus (földhő, termálvíz, talajhő)</td>
<td>Magas</td>
<td>Nincs</td>
<td>Folyamatos Napszak- és évszakfüggetlen Közepesen csendes Közepes (karbantartás)</td>
<td>Közepesen csendes Közepes (karbantartás)</td>
<td>Köváló, nagyobb erőmű ber. igényes</td>
<td></td>
</tr>
<tr>
<td>Biomassza (pellet, biodízel, zöldhulladék)</td>
<td>Terméktől függően változó</td>
<td>Van</td>
<td>Periodikus Évszakfüggő</td>
<td>Csendes</td>
<td>Nem tiszta (CO₂ kibocsátás)</td>
<td>Változó (Termék-Függő)</td>
</tr>
</tbody>
</table>

Forrás: (Véghely Tamás: Megújuló energiaforrások, ÖKOGazdaság, 2004/5. 3-6p.) alapján saját szerkesztés

A megújuló energiák közül a szakirodalom legtöbb esetben kiemeli a napenergiát, hiszen ennek forrása, a Nap, mely egyrészt évmilliók óta táplálja energiáival a Földet, másrészt több energiafajta is van, amely közvetlen, vagy közvetett kapcsolatba hozható a Nappal.
A fosszilis energia készletek (köolaj, földgáz, tőzeg, kőszén) a Nap energiáját felhalmozott növények maradványai, de éppúgy a biomassza energiának, mint a szélenenergiának is elsődleges forrása a napenergia. (Véghely, 2004)

Egy másik nézőpont szerint a megújuló energiaforrások két nagy csoportja különböztethető meg: a feltétel nélküli és a feltételezsen megújulók.

Feltétel nélkül megújuló energiaforrások:

→ Napenergia
→ Vízenergia
→ Geotermikus energia
→ Szél energia

Feltételezsen megújuló energiaforrások:

- Mezőgazdasági energiák:
 - Mezőgazdasági hulladék (biomassza)
 - Energiaicélú ültetvények:
 - Energiaerdő
 - Energiaifű
 - Biodizel
 - Bioethanol
- Biogáz
- Hulladék energia:
 - Hulladékégetés
 - Depóniagáz (MacKay, 2011), (Internet 19. 2013.01.29.)

Az energiaforrások a következőképpen is csoportosíthatók:

1. Folytonos:
 - változtatlan,
 - károsítható.
2. Meg nem újítható, illetve
3. Megújítható energiaforrások.

A folytonos természeti erőforrások közé tartozik a:

- Közvetlen napsugárzás, melynek energiája és időtartama van. Ez összefüggést mutat az üvegházhatással és különféle légköri jelenségekkel.
- Szél, mely a szélesebbességgel, a széliránnyal illetve a szélérősséggel írható le.
- Mozgó víz. Ezt az erőforrást a nehézségi erő, a gravitáció, a lamináris áramlás és a turbulens áramlás jellemzi, és a vízeröművekben, valamint a vízimalmokban alkalmazható.

Megújuló energiaforrások:

- Napenergia
- Szélenergia
- Vízenergia
- Geotermikus energia
- Biomassza (Kovács, 2010), (Internet 17. 2013.04.17.)
A megújuló energiák szerepének növekedése

Nemzetközi tendenciák
Az energiatermelés jelentős része ma még a kimeríthető és nem megújuló energiaforrásokra alapszik a villamosenergia-termelésben és a fűtéshez szükséges hő előállításában. Az emberiség környezetszennyező és felelőtlenül energia pazarló magatartása azonban hosszú távon a természet erőforrások kimerüléséhez vezethet, ezért a fosszilis energiahordozók helyett egyre inkább az alternatív energiaforrások kerülnek a figyelem középpontjába. Mivel a „hagyományos” (fosszilis) tüzelőanyagok mennyisége korlátozott, valamint prognózisok szerint a készletek belátható időn belül kimerülhetnek, így nem épülhet erre egy fenntartható energiaigazgatás. Megoldást tehát a környezettudatos szempontok által vezérelt megújuló energiaforrások hasznosítása jelenthet. Világmértéken gondolkozva tehát helytállónak tekinthető, hogy a hagyományos energiahordozók tartalékainak kimerülésével felértékelődnek az megújuló energiaforrások.

A megújuló energiaforrás kifejezés napjainkban egy gyakran használt szókapcsolat a környezet- és természetvédelem ágazatában. Ezért rendkívül fontos, hogy az emberiség olyan állandó energiaforrások használatát aknázza ki, amelyek nem kimeríthetők és megújulók. Ilyenek azok az energiaforrások tekinthetők, melyek energiájukat a naptól, a szélétől, a vízeltől és a növényektől nyerik. (Internet 15. 2013.04.17.)

A megújuló energiák használatának szükségszerűsége nem csak globális, vagy nemzetgazdasági, hanem vállalkozási és lakossági szinten is felmerül. Ebben a viszonylatban az energia költségek csökkentésére irányuló törekvés teszi sarkalatossá a megújuló energiák hasznosítását. A fogyasztók azonban kevésse motiváltaik a változások tekintetében, melynek okaiként említhető a megújuló energiák használatának igen magas beruházási költsége, az egyes hagyományos energiahordozók - esetleg támogatások révén elért - alacsony ára, de a környezettudatos szemlélet kialakulásának és terjedésének lassú üteme is.

A megújuló természeti erőforrásokat hasznosító technológiák elterjedése emiatt csak állami támogatással gyorsítható meg. Az elmúlt években ezért az országok energiapolitikájának fontos projektjeivé vált a különböző támogatásokkal a megújuló energiaforrások használatának elősegítése. (Internet 16. 2013.04.18.).

A megújuló energiafelhasználás szempontjából fejlettebb országokban általában vizerőművekre alapozott szivattyús tárolók működnek az időjárási viszonyok miatt olykor kiszámíthatatlan szituciók kiegyenlítésére, áthidalására. Így zökkenőmentesen pótolható a szélsőrendben hiányzó, illetve lehetővé tevő a szeles időben feleslegesen megtermelt áram. (Internet 13. 2013.04.18.)

Megújuló energiák helyzete Magyarországon
A magyar villamosenergia-rendszer működését jelenleg szénhidrogén-fűtésű erőművekkel biztosítják, amelyek a rendszer űrállomány értékesítését legfeljebb 20 megawatt erejű gépesek szabályozni. Emellett azonban az ország fogyasztása 110-120 ezer megawatt űrállomány. (Internet 20; 2013.04.22.)

Magyarországon 1999-ben dolgoztatta ki a kormány 2010-ig az energiatakarékossági és energiahatékonyság-növelési stratégiát és cselekvési programot. Ennek elsődleges célja a megújuló energiaforrások népszerűsítése volt. A szélenergia hasznosítás, mely iránt az 1990-es évek végén igencsak megnőtt az érdeklődés, a program szerves részét képezte.

42
Hazai viszonylatban az összes megújuló energiafelhasználás 72,5%-át a tűzifa képezi. A geotermikus 10,3%-ot, a vízenergia 1,9%-ot, a növényi és egyéb szilárd hulladékok 10,9%-ot, a hasznosított napenergia 0,15%-ot tesz ki. (Internet 22; 2013.01.20.)

A megújuló energiák hasznosítása lakossági szinten

A lakosság is egyre nyitottabbak és érdeklődőbbnek tűnik a megújuló energiaforrások iránt. A legfrissebb kutatások szerint házánkban az emberek 90 %-a egyértelműen támogatja a megújuló energiák nagyobb arányú felhasználását.

(INTERNET 1; 2011. 04. 16.) Ennek oka feltételezhetően az utóbbi időszak energiaválsága, mely kapcsán a lakosság érdeklődésének homlokzatára kerültek az alternatív energiaforrások. Hazánkat jelenleg a fosszilis energiahordozók felhasználásának jelentős tülsúlya jellemzi. Ez nem csupán a környezetudatossági szempontok miatt kedvezőtlen, hanem különféle makrogazdasági hatások miatt is, így a fosszilis energiahordozóktól való erős függés negatív következményeit a lakosság is megérezheté az elmúlt etvizedben. Ezek a problémák áthatották az emberek hétköznapi, jelentősen formálták, alakították a lakosság érdeklődését és ezzel egyidejűleg felértékelődött az alternatív energiahordozók szerepe, nagyobb figyelem hárult ezekre a forrásokra. (Dinya et.al. 2009)

A megújuló energiaforrások során - épületépítékon - az előállított energiát fűtésre, hűtésre, használati melegvíz termelésre, illetve elektromos árammal működő berendezések üzemeltetésére lehet hasznosítani.

Energiatartalmát tekintve a szél sűrű és jól használható energiának tekinthető, ha sebessége a szélhépek optimális működési tartományába esik (mely 4-14 m/s). A szélenergiából villamos áram állítható elő szélgenerátor segítségével, vagy munkája közvetlenül is használható Őrlésre, vagy a vízkiemelés során.

A megújuló energiák lakóépületekben történő hasznosításával kapcsolatosan megállapítható, hogy megterületi idejük a viszonylag magas beruházási költségek miatt hosszú. A költségek azonban támogatásokkal kompenzáthatóak, valamint hosszú távú alkalmazásuk az üzemeltetés során költségkimelőbb bármely fosszilis energiahordozóé, mindemellett pedig környezetkímélő, újratermelődő. (INTERNET 15; 2013.03.20.)

A szélenergia helye a megújuló energiák között

A szél erejét ősödök óta tapasztalhatjuk. Fákat csavar ki tővestül, homokhegyeket hord el, erdőket tarol le, a vizeken óriási hullákmot kelt. A szél energiáját évszázadokkal ezelőtt csak a hajók hajtására használták fel, vitorlába fogva. Amikor megszületett a szélmalom gondolata, a vitorlás hajóról vették a mintát: vitorlákat feszítettek ki a szélkerék küllőire. Eme régebben technológia alkalmazása során a szélenergia csupán mechanikus szerkezetet működtetett és fizikai munkát végzett, mint például a gabonaorlás, vagy a vízpumpálás.

A szélenergia kitermelésének modern formája a szélturbina lapátjainak forgási energiáját alakítja át elektromos árammá. (INTERNET 6; 2013.03.11.)

A szélenergia alkalmazási lehetőségei

A szélenergia alkalmazási lehetőségei igen széleskörűek. A szél ereje felhasználható:

- Elszigetelt területek villamosítására
- Családi házak, nyaralók teljes vagy kiegészítő áramerellátására
- Hajókon áramtermelésre
- Ipari méretű energiatermelésre
- Vízszivattyúsátras
Öntözésre
Vízpótásra
Állattartásra, itatához
Vadgazdálkodáshoz
Halastavak, élőhelyek életben tartására
Belvízvédelemre
Szennyvízszállításra, tisztításra

A szélenergia megújuló energiafajta, amelynek termelése környezetvédelmi és költségelőnyei miatt rohamos ütemben nő a világban, főleg Európában. (Internet 27; 2013.03.11.)

A szélérerőművek környezetvédelmi jelentőségét alátámasztja az a tény, hogy egyetlen 600kW-os szélturbina képes évente 7,1 tonna kén-dioxidtól, 2,8 tonna nitrogénoxidtól, 1114 tonna széndioxidtól, 0,9 tonna szénmonoxidtól és 0,18 tonna portól megkímélni a környezetét. (www.kvvm.hu ÖKOGazdaság, 2004), (Internet 9; 2011. november 6.)

A szélenergia szektor jelentősége nemzetközi viszonylatban
A szélenergiát már közel két évtizede a legjobban fejlődő megújuló energiaforrások között tartják számon. 1995 és 2005 között évente átlagosan 32%-kal növekedett a világ szélenergia kapacitása. 2006-ban a szélérőt felhasználó generátorok 74 223 megawatt energiát termeltek világszerte. Ez azonban még mindig kevesebb, mint a világ áramfelhasználásának 1%-a. (Internet7; 2013.03.11.)

![A világon évente újonnan beépülő szélkapacitások alakulása és megoszlása (MW)](image_url)

2. ábra A világon évente újonnan beépülő szélkapacitások alakulása és megoszlása 1998 és 2011 között

Forrás: Internet 28; 2013.05.06.

Az elmúlt 15 évben a szélenergetikai befektetések költségei - a technológiai fejlődésnek köszönhetően - lényegesen csökkentek, megközelítve a fősszilis energia-technológiák költségszintjét. A szélenergia sektor látványos és erőteljes növekedése a válság ellenére is folytatódott, illetve folytatódni látszik. Az iparágba a gazdasági válság ellenére közel 45 milliárd eurónyi tőke áramlott.
Így pl. 2009-ben 26%-kal (152 ezer megawatttra) bővült a beépített kapacitások mértéke a világban a WEEA statisztikái szerint. (Internet 18; 2013.02.21.), (Internet 14; 2013.02.21.), (Internet 21; 2013.02.25.)

Noha a szélenergia termelésben 2007-ig Németország volt az első a világban, az elmúlt évben az Egyesült Államokban és Kínában igen gyors ütemben szaporodott a szélerőművek száma. Amennyiben a teljes energia-ellátásban való arányokat tekintjük, továbbra is Dánia a zászlóvívő, hiszen ebben az országban a teljes energiaellátásnak közel 20%-át fedezi a szél. Dániaiban elterjedt, hogy a tengerben, de a tengerparti-től távol létesítenek szélerőmű telepeket, kihasználva a nagyobb szelet, ami a nyilt vízen tapasztalható, ugyanakkor nem foglalva el értékes szárazföldi területeket. (Internet 3; 2013.05.02.)

![Az EU 10 legnagyobb szélenergia-kapacitással bíró országa 2012](image)

3. ábra **Az EU 10 legtöbb új szélkapacitását üzembe állító országa 2012-ben**

Forrás: EWEA, Portfolio.hu

2011-re a világon a termelő szélkapacitás több mint 195 000 megawattnyi (MW), az Európai Unióban közel 85 000 MW, az USA-ban 40 000 MW. A fejlődő országok ezen a területen is megelőzik a világ számos országát: 2009-re Kínában már 25 000 MW, 2011-re több mint 42 000 MW kapacitás épült.

„A szélenergia berendezés gyártói kapacitások nem kizárólag a jelentős szélpark beruházásokat eszközöző országokra koncentrálódnak, jelentős beszállítói és gyártói kapacitások települtek kisebb európai országokba is, mint ahogy az például Belgiumban megfigyelhető”- emelte ki Jacopo Moccia, az EWEA Politikai Elemzési területének vezetője. (Internet 9; 2013.03.23.), (Internet 4; 2011. július 5.)
A lakosság és a nemzeti kormányok mind a fejlett, mind a feltörekvő országokban egyre nagyobb arányban ismerik fel, hogy a megújuló energiák, és azon belül is a szélenergia sokkal nagyobb arányú felhasználására van szükség.
Az Európai Unió igyekezzik a változási folyamat elén állni, az Európai Bizottság 2050-ig szóló hosszú távú tervének célja egy 80-95 százalékban széndioxidkiöszöntés-mentes energiaszektorn, melyben kulcsszerepet kapnak a megújuló energiahordozók, ezen belül a szélenergia is.
(Internet 4; 2011.07.05)

A szélenergia szektor Magyarországon
„Magyarországról kitekintve a fejlődés és haladás világszerte látható, ezért várakozzással tekint a jövőbe a magyar szélenergia ipar is” – erősítette meg Hoffmann László az MSZIT elnöke.
(Internet 4; 2013.02.11.)

2000-ben felépült Várpalota-Inotán hazai és külföldi befektetői közreműködésével az első nagyobb (250 kW-os) szélérőmű, ezt követte a kulcsi 600 kW-os erőmű, mely elsőkét már közvetlenül áramszolgáltatói hálózatra termelt. (www.kvvm.hu in ÖKOGazdaság, 2004/5. 12-14p.)

Magyarországon 2004-ben azonban még csupán 3,2 megawattnyi áramot termeltek szélkeresekkel, és 2005-ben is mindössze 7 megawattal bővült a kapacitás. Ugyanakkor a megújuló energiaforrások terjedését segítő szabályozási környezet az alternatív energia, ezen belül is leginkább a szél alapú energia felhasználását prognosztizálta a MAVIR Rt. elnök-vezérigazgatója 2005-ben.
(Internet 13; letöltés: 2013.03.15.)

A világ szélenergiáit előállító országainak listáján Magyarország a 32. helyet foglalja el.
Az Európai Szélenergia Társaság szerint összehasonlítva a 27 EU tagország megújuló nemzeti cselekvési terveit, látható, hogy Magyarország az elképzelések és tervek szintjén úgy átlagában a megújuló, mind a szélenergia tekintetében az utolsó helyen áll. Ennek okai elgondolkodtatóak, hiszen annak ellenére vagyunk így lemaradva, hogy Magyarországon az új hazai gazdaságfejlesztési irányok egyértelműen preferálják a zöld-energetikát – rámutatva az abban rejlő lehetőségekre, valamint elkészült a Nemzeti Energiastratégia, és a Nemzeti Megújuló Energia Cselekvési Terv is. Látható tehát, hogy ugyan a politikusok az európai trendekkel összhangban nyilatkoztak a megújuló energiák jövőbeli szerepéről, ugyanakkor Magyarországon a pozitív változás kézzelfogható eredményei még várhatnak magukra: a további hazai szélérőmű engedélyek kiadása jelenleg döntéshozói szándékon múlik.
(Internet 4; 2013.02.11.) (Internet 18; 2013.02.22.)

Minden pedig ugyanis a 2008-ban deklarált 410 MW-os szélenergia keretre sem írt ki tendert a Magyar Energia Hivatal, valamint a 2020-ig engedni tervezett kapacitások korlátot sem ad teret jelentős bővülésnek (nagysága megegyezik a 2008. évi 740 MW-os értékkel).
A Magyar Szélenergia Ipari Társaság (MSZIT) közleménye szerint az új magyarországi gazdaságfejlesztési irányok ugyan kiemelten foglalkoznak a zöld-energetikában rejlő lehetőségekkel, mégsem támogatják a szélenergiakapacitását. Magyarország 2030-ig szóló energiastratégiaja az időszak végére 1440 megawatt új szélérőmű-kapacitással számol.
(Internet 14; 2013.04.28.) (Internet 18; 2013.03.17.)

Jelenleg Magyarország üzemben lévő szélkapacitása 330 megawatt, melynek közel 80 százaléka az ország északnyugati részén található. A jövőbeni kiírások más területeket is alkalmaznak találhatnak. Az MSZIT szerint a 2020-ra tervezett kapacitás pedig nem ad teret jelentős bővülésnek, mivel az megegyezik a 2008-as 740 megawattos értékkel. Magyarország
2030-ig szóló energiastratégiája a periódus végére 1440 megawatt új szélerőmű-kapacitással számol. (Internet 14; 2013.03.17.)

KÖVETKEZTETÉSEK

Az energia előállításhoz rendkívüli erőfeszítésekre van szükség. Mivel azonban még napjainkban is a fosszilis energiaforrásokból nyerik a villamos-energia döntő hányadát – melynek véges voltáról egyre többször hallani – a megújuló energiaforrások kérdése egyre inkább előtérbe kerül.

A szélenergia (a nap-, a víz- és a geotermikus energiával együtt) a feltétel nélkül megújuló, folytonos energiaforrásokhoz tartozik, melyek a fenntartható energiagazdálkodás legstabilabb építőkövei lehetnek.

A szélenergia alkalmazási lehetőségei emellett igen széleskörűek.

Az elmúlt években világszinten évi 25-30%-os szélenergia-kapacitás bővülés volt jellemző, Magyarország azonban a jelenleg működő 172 szélerőművel a 27 EU tagország között (a megújuló nemzeti cselekvési tervek alapján) az utolsó helyet foglalja el. (Internet 14; 2011.07.05)

Összességében úgy véljük, akik jártasak a megújuló energiák témakörében, pontosan tudják, hogy hazánkban bőven van potenciál éppen a témánkúl választtott szélenergia felhasználás területén is.

Egy ilyen beruházás esetén a lakosság ellenállása nem számottevő, az ezzel kapcsolatos nézetek kedvezőek, ezért érdemes lenne központi szinten is újragondolni a fejlesztési terveket, azok útemét.

A szélerőmű ugyanis a leggyorsabban üzembe helyezhető villamos-energiát előállító, nagy teljesítményű erőmű, emellett a hagyományos erőművekhez képest kevésbé helyező kötött, emellett, mivel a szélenergia folytonos és megújuló, így a fenntartható energiatermelésre gyakorolt pozitív hatása alig vitatható.

ÖSSZEGZÉS

Tanulmányunk megírása során azt a célt tűztük ki, hogy megvizsgáljuk a megújuló energiák, azon belül is a szélenergia szerepét, annak változásait nemzetközi és hazai viszonylatban, Kutatásaink az energia jelentősége, a szélenergiával kapcsolatos alapvető ismeretek (pl. a szél kialakulása, a szél energiájának alkalmazása, annak fejlődése, a szélerőművek tipusai) feltárása mellett a megújuló energiák fontosságának növekedését, a világ érdeklődésének egyre inkább fókuszálása kerülését követték nyomon.

Az alternatív energiák csoportosítását követően pozícióáltuk a szélenergiát a megújuló energiák között, ismertettük annak széleskörű alkalmazási lehetőségeit hazai, európai és világvizonylatban egyaránt. Rövid kitekintést tettünk a Magyarországi szélenergia szektor helyzetére.

Hivatkozott források

Szakkönyvek

VAJDA Gy: Energiaellátás ma és holnap, MTA TKK, Bp, 2004

Szakcikkek

BOHOCZKY F: Megújuló energiaforrás Hasznosítási elvárások, Bio Energia 2008/6 12-16.oldal
BRENDÁ T: Felhőkarcoló a mezőn, Népszabadság, 2009. 10. 27. 11.p.
VÉTHELY T: Megújuló energiaforrások, ÖKOgazdaság, 2004/5. 3-6p.

Kutatási jelentések, tanulmányok

Elektronikus források

[Internet 9.] http://www.eewe.org/publications/reports/?no_cache=1&tx_err_php%5BshowsReport%5D=41&cHash=f7673134baea08c1c0e45da2446a75f, The European Wind Initiative, EWEA Report, 2013 Január,

[Internet 11.] http://www.felsofokon.hu/kornyezetvedelem-es-kutatas-fejlesztese/2012/02/04/a-szeleromuvek-mukodese-es-kornyezeti-hatasaik

[Internet 13.] http://www.mfor.hu/cikkek/Kifognanak_a_szelkerekek_a_hazai_villamosenergia_rendszere.html 2005. szeptember 20, letöltés: 2013. 03. 15.

[Internet 14.] http://www.mswiz.hu/archivum/archivum/article/europai-sereghajtok-a-magyar-megujulo-tervek/, Forrás: Napi Gazdaság, 2011.07.05

[Internet 15.] http://www.muszakiaj.hu/tudastar/energia/megjulo-energiaforrasok

[Internet 19.] http://www.tqconsulting.hu/a-megjulo-energiaforrasok-csoportositas

[Internet 20.] http://zoldtech.hu/cikkek/20050609erk

[Internet 21.] http://zoldtech.hu/cikkek/20070314erk

[Internet 23.] Magyar Szélenergia Társaság - statisztika 2011

[Internet 27.] http://users.atw.hu/knorbi/szelenergia.html

[Internet 28.] http://www.portfolio.hu/vallalatok/zold_energia/magyarorszag_ismet_lemaradt_a_szelenergia_rekordeverol.179840.html
Szerzők:

Dr. DOMÁN Szilvia, PhD
főiskolai docens,
Károly Róbert Főiskola,
Győngyös, Mátrai út 36.
doman@karolyrobert.hu

TAMUS Antalné, PhD
főiskolai tanár,
Károly Róbert Főiskola,
Győngyös, Mátrai út 36.
tamusne@karolyrobert.hu

SIMON Tamás
főiskolai hallgató,
Óbudai Egyetem,
Keleti Károly Gazdasági Kar,
Budapest, Tavaszmező u. 15-17
spadatomi@gmail.com

KATONA Norbert,
Phd-hallgató,
Debreceni Egyetem,
Ihrig Károly Gazdálkodás- és Szervezéstudományok Doktori Iskola,
katonanorbert@freemail.hu