The Evolution of Community Development in the United States

Elizabeth A. Dobisa, Michael S. Delgadoa, and Raymond J.G.M. Floraxa,b

a Department of Agricultural Economics, Purdue University, West Lafayette, IN, United States
b Department of Spatial Economics, VU University Amsterdam, Amsterdam, The Netherlands and Tinbergen Institute, Amsterdam, The Netherlands

Contact Author:
Elizabeth A. Dobis
Department of Agricultural Economics
Purdue University
403 West State Street
West Lafayette, IN 47907
edobis@purdue.edu

Copyright © 2014 by Elizabeth A. Dobis, Michael S. Delgado, and Raymond J.G.M. Florax. All rights reserved. DRAFT poster prepared for the 2014 AAEA Annual Meeting. The opinions expressed herein are those of the authors and do not necessarily reflect the views of Purdue University, the VU University Amsterdam, or the Tinbergen Institute. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
THE EVOLUTION OF COMMUNITY DEVELOPMENT IN THE UNITED STATES

ELIZABETH A. DOBIS, MICHAEL S. DELGADO, AND RAYMOND J.G.M. FLORAX

THE BIRTH, LOCATION, AND GROWTH OF COMMUNITIES

Urban areas are loci of population and production.
- In 2010, 80.7% of the United States population resided in urban areas (Census Bureau).
- In 2011, 90.1% of GDP was produced in metropolitan statistical areas (BEA).

Existing work on the growth and location of communities analyzes one aspect of community growth at a time, either the location, growth, or birth of settlements, despite the role all three play in the evolution of urban systems.

Objective: Use the three descriptive aspects of settlements to tell a comprehensive story that addresses when communities were created, where communities are located, and how communities grow in the United States.

Note: This version of the poster focuses on the first of these three aspects, when communities form.

WHAT AFFECTS WHEN COMMUNITIES FORM

The literature suggests a combination of 1st (endowed) and 2nd (created) nature geographic locational properties that influence settlement formation.

WHY INCORPORATED PLACES?

Advantages:
- A conscious decision that provides an objective definition of when settlements begin that is part of public record.
- Smaller than (most) counties and (all) MSAs, providing more accurate and detailed results.
- A geographical unit that has been collected in the decennial census for almost 200 years.

THE EVOLUTION OF COMMUNITY DEVELOPMENT IN THE UNITED STATES

Advantages:
- The literature suggests a combination of 1st and 2nd nature geographic forces influence differing aspects of settlements (rather than economically-based MSAs or CCA clusters.)

INTEGRATED PLACE DATA

Incorporated Place: “A type of governmental unit established to provide governmental services for a concentration of people within legally prescribed boundaries, incorporated under state law as a city, town, borough, village or other description” (US Census Bureau, 2008).

Unit of Analysis: 2010 incorporated places

Geographic Extent: 48 contiguous US states and Washington, DC

Number of Observations: 19,392

Data Sources:
- Incorporation Date: gathered from state and county governments, state municipal leagues, city governments, and the decennial census.
- Population: 1790-2010 decennial censuses, Census Bureau
- Temperature: PRISM Climate Group
- Land Surface Forms: USGS Land Change Science Program
- Elevation: GLOBE Project
- Rivers: NFIDPlus
- Oceans and Great Lakes: Commission for Environmental Cooperation (CEC)
- Longitude: Incorporated place shapfile, Census Bureau

Non-Census variables were calculated using ArcGIS.

Grid Cell Data: Geography variables were calculated from raster data by calculating the average or majority value of all data points within the boundaries of each incorporated place.

Distance Data: Accessibility and Proximity variables were calculated as the Euclidean distance from the center of each incorporated place to the nearest feature of interest (e.g., river).

CONCLUSIONS

Research Question: What 1st and 2nd nature geographic factors influence when communities form?

Model: Inspired by Motamed, et al. (2014), is the log-linearized version of:

Age = α + Accessibilityβ + Geographyγ + Proximityθ + ε

Dependent Variable: Age = 2010 - Incorporation Year

Estimation Process: OLS is our base model, but due to heteroskedasticity a Poisson model was used, following Santos Silva and Tenreyro (2006). Due to overdispersion in the data, the zero-truncated negative binomial specification is our preferred model.

Conclusions:
- Settlements in the Eastern US were incorporated much earlier than Western communities.
- Communities that are mainly located on flat plains incorporated earliest, while settlements mainly located on high mountains incorporated latest. No settlements incorporated on land that was predominantly low hills.
- On average, the youngest settlements are located where July mean temperatures are higher.
- Communities closer to navigable rivers incorporated earlier than those further from rivers. The unexpected result that settlements nearer the Great Lakes and oceans incorporated later may be resolved when proximity variables are added to the regression.

ANALYSIS AND CONCLUSIONS

Marginal Effects of Factors Influencing When IncPl Form

<table>
<thead>
<tr>
<th>Variable</th>
<th>OLS</th>
<th>Zero-Truncated Poisson</th>
<th>Zero-Truncated Negative Binomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>In distance to Great Lakes</td>
<td>5.463</td>
<td>4.387</td>
<td>4.515</td>
</tr>
<tr>
<td>In distance to ocean</td>
<td>8.189</td>
<td>7.261</td>
<td>7.229</td>
</tr>
<tr>
<td>In distance to navigable river</td>
<td>-5.545</td>
<td>-5.138</td>
<td>-5.146</td>
</tr>
<tr>
<td>In longitude</td>
<td>-158.071</td>
<td>-144.466</td>
<td>-142.906</td>
</tr>
<tr>
<td>In January mean temperature</td>
<td>7.435</td>
<td>12.023</td>
<td>11.928</td>
</tr>
<tr>
<td>In July mean temperature</td>
<td>-239.298</td>
<td>-197.062</td>
<td>-205.641</td>
</tr>
<tr>
<td>In elevation</td>
<td>-2.594</td>
<td>-2.661</td>
<td>-2.689</td>
</tr>
<tr>
<td>Major Land Surface Form</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - Flat Plains</td>
<td>base</td>
<td>base</td>
<td>base</td>
</tr>
<tr>
<td>2 - Smooth Plains</td>
<td>-2.407</td>
<td>-0.668</td>
<td>N/A</td>
</tr>
<tr>
<td>3 - Irregular Plains</td>
<td>-8.218</td>
<td>-4.319</td>
<td>-4.417</td>
</tr>
<tr>
<td>4 - Escarpments</td>
<td>-15.958</td>
<td>-15.073</td>
<td>-16.137</td>
</tr>
<tr>
<td>5 - Low Hills</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8 - Low Mountains</td>
<td>-34.302</td>
<td>-23.692</td>
<td>-22.361</td>
</tr>
<tr>
<td>9 - High Mountains</td>
<td>-234.446</td>
<td>-98.065</td>
<td>-98.199</td>
</tr>
<tr>
<td>10 - Drainage Channels</td>
<td>-16.618</td>
<td>-14.069</td>
<td>-14.371</td>
</tr>
</tbody>
</table>