Actions towards food safety: choosing labels or self-protection

Shiwen Quan
School of Agricultural Economics and Rural Development
Renmin University of China

Yuan Chen
Department of Agricultural and Resource Economics
University of California, Davis

Yinchu Zeng
School of Agricultural Economics and Rural Development
Renmin University of China

Copyright 2014 by Shiwen Quan, Yuan Chen and Yinchu Zeng. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
1. Introduction

Actions towards food safety: choosing labels or self-protection

Shiwen Quan1, Yuan Chen2, Yinchu Zeng3

1. School of Agricultural Economics and Rural Development, Renmin University of China
2. Department of Agricultural and Resource Economics, University of California, Davis

2. Objectives

- Provide theoretical rationale of consumers’ optimal choices of different protective behaviors so as to meet their demand for food safety.
- Treat a protective behavior as a production process with a special focus on the cost.
- Deeply discuss the mixed effects of factors that affect consumers’ protective behaviors, with a special focus on the factor ‘income’.

3. Theoretical Model

3.1 Expected Utility Framework:

\[EU = \pi(U_x, Y) + (1 - \pi)U_s(X, Y) \]

where:
- \(U_x \) is the primary food item.
- \(U_s \) is the secondary food item.
- \(T \) is the household’s total time endowment for working.
- \(\pi \) is a wage rate.
- \(A \) is a non-wage income.

3.2 Household Productive Framework:

\[\min C = w(t_1 + t_2) + p(z_1 + z_2) \]

\[S.T.: \quad m = m(t_1, z_1, a) \]

where:
- \(S.T. \) is the household’s total time endowment for working.
- \(\pi \) is the wage rate.
- \(A \) is the non-wage income.
- \(m(t_1, z_1, a) \) is the production technology.

3.3 Pursuing Food Safety —— Get the optimal level of protective behaviors:

\[EU = \pi(U_x, m) - U_s + U_f \]

where:
- \(U_f \) is the utility of self-protective behavior.
- \(m(t_1, z_1, a) \) is the production technology.

4. Empirical Model

4.1 Bivariate Tobit Model:

\[y_i = \begin{cases} \beta_i x_i + \epsilon_i, & i = 1, 2, \ldots, n, j = 1, 2 \end{cases} \]

where:
- \(y_i \) is the dependent variable.
- \(x_i \) is the independent variable.
- \(\epsilon_i \) is the error term.

5. Results

5.1 Comparative static analysis:

- With respect to behavior production technologies:
 \[\frac{\partial m_t}{\partial w} = \frac{\partial m_t}{\partial A} = -C_m \frac{\partial m_t}{\partial A} \]

- With respect to wage rate:
 \[\frac{\partial m_t}{\partial w} = \frac{\partial m_t}{\partial A} = -C_m \frac{\partial m_t}{\partial A} \]

5.2 Propose two hypotheses:

- Behavior production technologies have positive effects on the corresponding protective behavior.
- Non-wage income has positive effects on both protective behaviors, nevertheless the wage rate will discourage self-protective behavior and prompt label-choosing behavior.

6. Conclusion

- Behavior production technologies have significant positive effects on the corresponding protective behaviors. This finding has important policy implications for those aimed at improving consumers’ levels of protective behaviors.
- Mostly importantly, income has mixed effects on the protective behaviors. Non-wage income works purely to increase the level of protective behaviors as long as they are normal. The effect of wage-income, however, is much more complicated.