Horticultural Industry Partnerships—Challenges and Success Stories

Craig J. Regelbrugge
Senior Vice President
CraigR@AmericanHort.org
American Horticulture

• AmericanHort’s mission is to unite, promote, and advance the horticulture industry through advocacy, collaboration, connectivity, education, market development, and research.

• The horticulture industry's production, wholesale, retail, and landscape service components have annual sales of $163 billion, and sustain over 1,150,000 full- and part-time jobs.

• Specialty crops represent roughly half of the value of American agricultural crop production. Nursery and greenhouse crops represent about one-third of the total farmgate value of specialty crops.
“Victim and Vector”

- Horticultural crops (and landscapes and forests) extremely vulnerable to introduced pests, pathogens
- Imported plants can be one (not the only) vector for pest introduction
- The industry takes the issue seriously
Plant Trade in Context

• In past, most international trade involved small quantities for new variety introduction
• That’s changing. Ex: vegetative annual cuttings
• Pest by pest regulation
• Most taxa allowed unless specifically restricted or prohibited
• Preclearance or post-entry quarantine in few cases
• Heavy reliance on inspection upon arrival
• Regulatory framework evolving (Quarantine 37)
“It’s Your Wake-up Call!”

• *Phytophthora ramorum* – science catches up to reality, links tree death, nursery pathogen

• Millions in losses, compliance costs

• Response elements:
 • Traditional quarantine
 • Research – NORS-DUC established
 • Recovery protocols
 • Best practices
 • Pilot ‘systems approaches’
 • (e.g., GAIP in Oregon)
Voluntary Industry Best Management Practices for *Phytophthora ramorum*

Introduction or Establishment in Nursery Operations - Version 1.0

Approved by HRI Industry P. ramorum Committee – March 28, 2008
“An International Incident...”

• *Ralstonia solanacearum* Race 3 Biovar 2 (RsR3B2) is bacterial pathogen of concern to geranium... and potato!
• Introduction on cutting imports spurred response plan
• Rigorous systems approach considers facility, propagation, sanitation, water, handling, etc.
And Another...

- Boxwood Blight fungal pathogen discovered in fall of 2011
- Boxwood is major high value nursery crop and iconic landscape plant
- Threat of widespread panic, disruption
- Industry working group, scientists and regulators developed research needs, best management practices, model compliance agreements
Is There a Better Way?
Our Goals

• 21st Century plant health system
• Broad-based “integrated measures” / systems approaches that conform with int’l standards
• Focus on critical control points, best management practices, audits
• USDA-APHIS, National Plant Board, Industry collaboration
• Voluntary Standard
• Potentially applicable for international, domestic
Plant Production Certification: Cutting Through the Jargon

Integrated Measures
Actions taken during the production process

Systems Approach
Using at least two independent measures, which together appropriately manage risk.
Critical Control Point (CCPs)
Specific steps in the process where procedures can be applied to most efficiently manage risk – The “What.” Also, “hazard” points.

Best Management Practices (BMPs)
Actions taken to address the concerns raised by a critical control point – The “How.”
1. **Standard**
 To Participate You Must Address XYZ

2. **Application for Designation**
 To Participate We Will Address XYZ

3. **Pest Management Plan**
 (Operation Manual)
 Describes How We Will Address XYZ

4. **Records**
 Confirm That We Are Doing XYZ as Described in PMP

5. **Audits**
 Evaluates Records and Confirms that PMP is Being Adhered to.
It all boils down to RISK MANAGEMENT

- Prevent problems coming in
- Monitor crops for issues
- Accurately diagnose pests/diseases
- Treat problems as appropriate
- Avoid shipping pests/diseases
Voluntary Systems Approach Certification

• Dependent on complexity of operation – Identify specific CCPs – Grower chooses BMP’s (toolbox).

• Grower and inspectors/auditors work together as the operation develops its unique management plan.

• Grower keeps records, which are periodically audited by inspectors.

• Grower has significantly more shipping flexibility and saves money on phytosanitary certificates.
Our Efforts 2012-2013

- Draft Certification Standard that meets International Standards (ISPM-36 and RSPM-24)
- Draft CCP/BMP Matrix (i.e., toolbox)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component, site, or stage of production</td>
<td>Target pests or pathogens</td>
<td>Contamination Hazard</td>
<td>BMP-suggested by ANLA/SAF working group</td>
</tr>
<tr>
<td>water management</td>
<td>waterborne pathogens</td>
<td>infested surface irrigation water</td>
<td>Disinfect irrigation water using effective methods</td>
</tr>
<tr>
<td>water management</td>
<td>waterborne pathogens, fungus gnats, moth flies, shoreflies, molluscs, nematodes</td>
<td>splash dispersal of pathogens; pest damage from standing water</td>
<td>Prevent standing water by not overwatering and correcting drainage problems, or by raising containers off the ground.</td>
</tr>
<tr>
<td>water management</td>
<td>waterborne pathogens</td>
<td>Recycled or recaptured water</td>
<td>Disinfect recycled and recaptured water using effective methods. Note; runoff from production may be regulated.</td>
</tr>
<tr>
<td>Site selection and preparation</td>
<td>waterborne pathogens, fungus gnats, moth flies, shoreflies, molluscs</td>
<td>Splash dispersal of pathogens; damage from standing water</td>
<td>Facilities constructed to drain well and avoid standing water.</td>
</tr>
<tr>
<td>Site selection and preparation</td>
<td>waterborne pathogens, fungus gnats, moth flies, shoreflies, molluscs</td>
<td>Splash dispersal of pathogens; damage from standing water</td>
<td>Roads and pathways should be properly graded to allow drainage and avoid standing water standing water. Pavement, gravel or other impermeable surfaces may also help prevent standing water.</td>
</tr>
<tr>
<td>Site maintenance</td>
<td>waterborne pathogens, fungus gnats, moth flies, shoreflies, molluscs, nematodes</td>
<td>If standing water persists, introduction of unwanted pests increases</td>
<td>Address standing water by improving drainage, using gravel or impervious water barriers or raising plants off of floor.</td>
</tr>
<tr>
<td>plant propagation - all</td>
<td>all pests and pathogens</td>
<td>irrigation</td>
<td>Irrigate so as to minimize splashing and periods of leaf wetness. Use a water source that does not contain plant</td>
</tr>
</tbody>
</table>
Related Efforts (e.g., CA)
Key Take-Home Messages

• Status quo is neither stellar nor sustainable
• Solutions must be practical, “speed of business”
• Farm Bill has been major tool
 • Horticulture Title, pest and disease and block grant funds
 • NORS-DUC
• USDA-APHIS engagement on international stage has been, will be critical (NAPPO, IPPC, partners)
• Fine line with respect to trade rules, obligations
• Legal options (e.g. Controlled Import Permits, CIPs) are part of solution