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Gibbs Sampler Details 

For simplicity we will omit the "s" subscript for the sample size N and the number of 

menus per respondent, T.  

Priors: 
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We will use two layers of data augmentation: one for the terms and one for , the 

vector of latent utility differences. The fully augmented joint posterior takes the generic 

form of 

iα U
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As suggested in Layton and Levine (2003) we do NOT condition draws of U on  . We 

will also draw  without conditioning on . However, we will need to draw the terms 

to feed into the draws of . 

iα

iαβ iα

Σ

Let’s take a closer look at ( )| , ,p U β Σ X . For the full sample we can write 
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The last term of the augmented posterior kernel in (2) can be written as 
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The explicit form of the augmented posterior kernel can now be written as: 

(4) 
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This leads to the following conditional posterior for β :  
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This is equivalent to the conditional posterior for the generalized regression model. We 

can immediately derive the conditional posterior moments as: 
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Next, it is convenient to draw the individual random vectors .   We aim to draw  

from 

iα iα

( )| , , ,p i iα β Σ U Xi

i

.  Note that only data corresponding to individual “i” are relevant.   
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The conditional kernel then emerges as 
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We have to repeat this N times, for each of the N ’s.   iα

The next step in our GS is the draw of the diagonal terms of the hierarchical variance .  

We obtain 
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For a given individual and choice occasion the conditional posterior for latent utility 

takes the form of 
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Draws from this density can be obtained via a "Gibbs-within-Gibbs" algorithm as 

described in Layton and Levine (2003) and (2005).  We use 50 iterations for this sub-

routine. 
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Posterior Predictive Draws 
 
Draws from the PPDs of compensating surplus can be obtained as follows: 

For each of the R draws of β  and from the original Gibbs Sampler perform the 

following: 

Σ

1) Draw a vector α of random deviation terms from ( )|f α Σ  and compute 

( )1|sp PC δ − ′ ′= − +p prα,β x x α−β . 

2) Repeat the first step  times for smoothness of the PPD (statistically, this is optional).   2r

 In our case, we first thin the original GS by retaining every 10th draw to weaken 

autocorrelation in the sequence.  We then draw 25 -vectors per original parameter set, 

yielding a total of 25,000 draws from. 

α

First-step estimation results, Set 1 

See Table 1. 

First-step estimation results, Set 2 

See Table 2. 

Community Characteristics and Distances 

See Table 3. 

Auxiliary regression model 

This model produces the "regression weights" shown in the next table of this document, 

and ultimately the relative overlap results under the "regression" column in Table 1 of the 

main paper. 
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 We declare one of the 8 communities as a "target site".  We compute the OLR 

statistic (described in the main paper) for each of the remaining sites, based on their step 

1 distributions for the policy-relevant welfare measure.  Let jky be the OLR for a pair of 

sites j,k.  We then compute 1jky = − jky as our dependent variable.  This metric is bounded 

by 0 and 1 (since jky

jky

is bounded by 0 and 1).  It takes a value of zero under perfect 

overlap (i.e. when ).   1=

 On the right hand side we use the distance between j and k, in 10-mile units (let's 

call it jkD ), plus a few aggregate community characteristics.  For example, let jx and 

kx be the population density (residents / acre) in communities j and k.  We then construct 

the following regressor:  

( ) (( ))1 min , / max ,jk j k j kx x x x x= − .  Thus, under perfect compatibility of the two sites with 

respect to this specific characteristic we have 0jkx = .  This transformation allows for a 

meaningful regression model without a constant term - the closer distance and ijx are to 

zero, the closer jky should be to zero as well.  In words: The more "similar" the two sites 

are based on our chosen community characteristics, the better they should overlap in step 

1 welfare densities.  

 Formally, the doubly-truncated regression model is given as 

( ) ( )2
, , , 0 1 ~ 0,jk p jk u jk jk jk jk jky x x D I y nε ε σ= + + + < <  

where ,p jkx  is the aforementioned population density variable and ,u jkx is the transformed 

ratio of the share of urban homes to suburban and rural homes (this was elicited in the 
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survey but could probably be derived through secondary sources as well).  We chose this 

specification after experimenting with numerous other (similar) models.  With a sample 

size of 21 (all possible pairs from 7 sites) we can only include a few regressors. 

 We estimate this model, via MLE, sequentially for all S target site cases.  So for 

example, in the first run, GT is the target site, and the remaining 7 town feed into the 

regression model.  In the second run, MF is the target and GT returns to the regression 

sites, etc.   For most of these runs, the overall fit is quite good but individual parameter 

significance is lacking in most cases.  This is not unexpected, given the small sample size 

and the very general nature of our regressors.   

 The next step is key as it links the regression model to the target site.  Assume GT 

is the target.  Let GT be the "j" site.  Compute , ,, ,p jk u jk jkx x D for GT with respect to all 

other sites.  For each case, use the regression results to predict jky , and convert back to 

1jky = −

1

1
/

S

k jk
k

ψ
−

=

= ∑

jky .  Thus we obtain 7 predictions of OLR of the regression sites with GT.  Call 

these predictions .  The mixture weights are then computed as 

.  The intuition is that we would like to allocate more weight to sites 

that are expected to have better welfare overlap with the target, based solely on secondary 

attributes. 

ˆ ,jky k j≠

,k j≠ˆ ˆ jky y

 After drawing from the resulting mixture density, we compare the resulting 

distribution of compensating surplus to GT's actual distribution from step 1, based again 

on the OLR ratio. This is captured in the "regression" column of Table 1 in the main text.
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Second-stage Weights for Benefit-Transfer Distributions 

See Table 4. 

How to draw form the mixture distribution 

With empirical weight vector [ ]1 2 1Sψ ψ ψ −=ψ

)

 in hand, we can easily draw from 

  as follows: ( ) (
1

1

| ,
S

pp s sp
s

p C p Cψ
−

=

=∑ s sy X

1. Generate a vector sumψ containing the cumulative sum of ψ .  Thus, the first element 

of this vector will be 1ψ  and the last element will be 1. 

2. Draw a random uniform term, say u, from the [0,1] interval.   

3. If (1)sumu ψ< , take a draw from 1pC .  If (1) (2)sum sumuψ ψ< < , draw from 2 pC , and so on. 

 We repeat this process 25,000 times to obtain the same number of draws as we 

have for the individual welfare distributions. 

 It is important to note that this is NOT equivalent to averaging draws from the S-1 

underlying densities.  We are not aiming to obtain a weighted average or expectation, but 

an entire weighted distribution. 
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Table 1: First-step estimation results, Set 1 

Georgetown Mansfield Preston Smyrna 

mean std nse mean std nse mean std nse mean std nse 

fixed 

cost($10s) -0.09 0.01 0.00 -0.06 0.01 0.00 -0.07 0.01 0.00 -0.07 0.01 0.00

random means 

acres (10s) -1.41 0.56 0.04 -0.39 0.30 0.01 -0.86 0.43 0.02 -0.70 0.35 0.01

nursery*acres -0.74 0.55 0.01 -0.51 0.40 0.01 -0.47 0.61 0.05 -0.46 0.59 0.04

food*acres -0.32 0.56 0.02 0.22 0.40 0.01 -0.64 0.63 0.06 -0.07 0.66 0.04

dairy*acres -0.52 0.59 0.03 0.01 0.38 0.01 -0.10 0.49 0.02 0.27 0.46 0.02

forest*acres -0.60 0.75 0.06 0.16 0.49 0.02 0.07 0.46 0.01 -0.15 0.47 0.02

walking*acres 1.48 0.65 0.05 1.35 0.37 0.02 0.91 0.52 0.02 1.43 0.47 0.02

hunting*acres 1.29 0.57 0.02 0.16 0.38 0.01 0.29 0.49 0.03 0.47 0.40 0.01

random stds 

acres (10s) 2.73 0.61 0.06 2.34 0.37 0.04 2.76 0.50 0.05 1.85 0.46 0.04

nursery*acres 0.94 0.44 0.05 1.05 0.56 0.08 1.87 1.13 0.23 1.94 1.00 0.13

food*acres 1.22 0.77 0.12 1.55 0.82 0.18 2.02 1.09 0.18 3.34 1.65 0.27

dairy*acres 1.27 0.69 0.09 1.54 0.68 0.10 1.42 0.80 0.14 1.23 0.65 0.08

forest*acres 1.91 1.10 0.22 2.89 1.28 0.23 1.01 0.47 0.06 1.57 0.90 0.11

walking*acres 2.54 1.46 0.22 1.00 0.50 0.09 2.49 1.14 0.17 1.50 0.84 0.11

hunting*acres 1.47 0.96 0.14 1.23 0.64 0.10 1.95 0.90 0.11 1.08 0.52 0.06

*nse = numerical standard error 
**stds = standard deviations 
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Table 2: First-step estimation results, Set 2 
 

Brooklyn Pomfret Thompson Woodstock 

    mean std nse  mean std nse  mean std nse   mean std nse 

fixed 

cost($10s) -0.07 0.01 0.00 -0.06 0.01 0.00 -0.06 0.01 0.00 -0.04 0.01 0.00

random means 

acres (10s) -0.74 1.62 0.02 -0.10 1.60 0.02 -1.12 1.60 0.02 -0.20 1.59 0.02

trees*acres -0.13 1.62 0.02 -0.26 1.60 0.02 -0.46 1.60 0.02 -0.19 1.59 0.02

food*acres -0.26 1.63 0.02 0.09 1.59 0.02 -0.21 1.59 0.02 -0.02 1.60 0.02

dairy*acres -0.31 1.63 0.02 -0.04 1.59 0.02 -0.53 1.61 0.02 0.00 1.60 0.02

walking*acres 1.78 0.40 0.02 0.98 0.28 0.01 1.92 0.41 0.02 1.18 0.31 0.01

random stds 

acres (10s) 2.08 0.46 0.03 1.82 0.33 0.02 2.84 1.36 0.08 1.69 0.37 0.02

trees*acres 1.28 0.56 0.05 1.01 0.43 0.05 0.94 0.80 0.06 0.81 0.31 0.03

food*acres 1.33 0.56 0.06 0.92 0.37 0.04 0.82 0.72 0.06 0.85 0.35 0.04

dairy*acres 1.24 0.69 0.08 0.78 0.27 0.03 1.60 1.78 0.26 1.07 0.49 0.05

walking*acres 1.26 0.57 0.07 1.28 0.45 0.04 3.27 2.41 0.20 1.26 0.46 0.04

*nse = numerical standard error 
**stds = standard deviations 
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Table 3: Community Characteristics and Distances 
 
Community Characteristics 

pop. / homes / fraction fraction average average 

  acre acre urban HHs  rental HHs HH size yrs. of residence

Georgetown 0.194 0.066 0.099 0.109 2.560 18.660 

Mansfield 0.709 0.188 0.085 0.091 2.510 20.110 

Preston 0.231 0.094 0.025 0.065 2.690 20.170 

Smyrna 0.224 0.080 0.179 0.046 2.750 15.750 

Brooklyn 0.387 0.146 0.362 0.106 2.820 19.950 

Pomfret 0.147 0.058 0.139 0.073 2.790 19.800 

Thompson 0.284 0.119 0.409 0.042 2.691 22.150 

Woodstock 0.183 0.077 0.155 0.066 2.730 19.630 

 
Distances in Miles 

  Georgetown Mansfield Preston Smyrna Brooklyn Pomfret Thompson 

Mansfield 270 - - - - - - 

Preston 265 27 - - - - - 

Smyrna 44 244 241 - - - - 

Brooklyn 281 22 21 258 - - - 

Pomfret 286 20 28 262 6 - - 

Thompson 292 30 36 269 17 12 - 

Woodstock 288 25 39 264 17 13 10 

 



14 

 

 
Table 4: Second-stage Weights for Benefit-Transfer Distributions 
 

Target = GT Target = MF 

regression distance regression distance 

MF 0.151 0.084 GT 0.136 0.017 

PR 0.136 0.085 PR 0.145 0.173 

SM 0.158 0.516 SM 0.133 0.019 

BR 0.143 0.080 BR 0.144 0.213 

PO 0.140 0.079 PO 0.150 0.234 

TH 0.138 0.077 TH 0.143 0.156 

WO 0.135 0.078 WO 0.148 0.187 

Target = PO Target = WO 

regression distance regression distance 

GT 0.131 0.008 GT 0.129 0.011 

MF 0.146 0.119 MF 0.152 0.130 

PR 0.141 0.085 PR 0.133 0.083 

SM 0.132 0.009 SM 0.137 0.012 

BR 0.151 0.397 BR 0.148 0.191 

TH 0.147 0.198 PO 0.154 0.249 

WO 0.151 0.183 TH 0.147 0.324 
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Figure 1:  Posterior distribution of compensating surplus, original vs. benefit 
transfer models 
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Legend:  solid line:   original model 
  dashed:    BT via empirical weights 
  dashed-dotted:  BT via distance weights 
  dotted:   BT via uniform weights 


