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ABSTRACT 
 
Nitrate concentration in ground water is a major problem 
in specific agricultural areas.  Using regression and neural 
networks, this study models nitrate concentration in 
ground water as a function of iron concentration in 
ground water, season and distance of the well from a 
poultry house.  Results from both techniques are 
comparable and show that the distance of the well from a 
poultry house has a significant effect on nitrate 
concentration in groundwater. 
 
 

INTRODUCTION 
 
Ground water is the major source of water in Sussex 
County, Delaware.  The Coastal Sussex water quality 
management program found areas in Sussex with 
excessive levels of nitrate concentration in drinking water 
supplies.  Sussex county is the southern most County in 
Delaware and is the birthplace of the broiler industry.  
The headquarters of three of the top twenty broiler 
producing companies in the country are located in Sussex 
County.   Poultry manure from the broiler industries could 
be a major cause for having excessive levels of nitrate 
concentration in ground water [6].  This is because 
poultry manure is spread on the farmlands and they leach 
nitrates into ground water. 
 
Nitrates, being extremely soluble in water, move easily 
through the soil and into the ground water.  Ingestion of 
excessive amounts of nitrates causes ill health effects in 
infants less than six months old and susceptible adults.  It 
causes “blue baby syndrome” or Methemoglobinemia in 
infants, which can lead to brain damage and sometimes 
death.  Also, the Maximum Contaminant Level (MCL) for 
nitrates in public drinking water established by the federal  

government is 10 mg l -1.  About 32% of the wells in 
coastal Sussex and 21% of the wells in non-coastal 
Sussex were found to have an average nitrate 
concentration above the MCL  (Ritter and Chirnside, 
1982).  The areas where those wells are located have 
numerous broiler production units.  Agricultural activities 
and operations that disturb and aerate the soil enhance the 
soil nitrogen oxidation, which, along with the fertilizer 
nitrate components will be leached to the groundwater 
(Robertson, 1977).   
 
According to published literature, some work has been 
done pertaining to modeling nitrate concentration in 
ground water. DRAINMOD-N, a mathematical model, 
was used to estimate the accumulated nitrate loss in 
drainage and subsurface water and evaluate different 
water pollution scenarios [8].  Soil and Water Assessment 
Tool (SWAT) was used to model the effect of changing 
land use patterns and practices on nitrate and phosphate 
loads to surface and ground water [2]. SWAT is a 
combination of the earlier models Erosion Productivity 
Impact Calculator (EPIC) and Groundwater Loading 
Effects of Agricultural Management Systems (GLEAMS).  
EPIC simulates relevant biophysical processes, modeling 
cropping systems for long time periods and determines 
the effect of management on soil erosion and 
productivity. GLEAMS is a continuous, simulation model 
and was developed to evaluate the impact of management 
practices on potential pesticide and nutrient leaching 
within, through and below the root zone.  
 
The spatial distribution of nitrates in groundwater was 
assessed when conventional management and best 
management practices were applied [4]. GMS and 
GLEAMS was used to apply particular better 
management practices. Artificial neural networks was 
used to predict the pesticide and nitrate contamination in 

 

mailto:nacha@udel.edu
mailto:baba@udel.edu
mailto:jbernard@udel.edu
mailto:William.ritter@udel.edu


rural private wells [5].  Depth to aquifer materials from 
land surface, well depth and distance to cropland were 
used as input parameters and concentration of pesticides 
or nitrates were the outputs. A set of neural networks was 
used to predict soil water content at a given depth as a 
function of soil temperature and soil type and was 
compared with a multiple regression model [1].  Neural 
networks were generally able to predict the soil water 
content over time but the regression model did not 
perform well in following the trends in the data over time.  
Most of the above models were physical models.  They 
are non stochastic and are based on physical and chemical 
reactions and mathematical equations.  Very little work 
has been done so far in building stochastic models to 
predict nitrate concentration in groundwater using 
regression and neural networks.  
 
The objective of this study was to model nitrate 
concentration in ground water using regression and neural 
networks.  In our study, we assume that nitrate 
concentration in ground water depends on iron 
concentration in ground water, season of the year and 
distance of the well from a poultry house. 
 
 

DATA AND METHODOLOGY 
 
The data set used for this study was obtained by Ritter 
and Chirnside (1982).  No data has been collected since 
and no modeling work has been done with this data.  This 
data was collected from 119 wells in Sussex County, 
Delaware.  A total of 627 observations was collected from 
these wells during the different seasons of the year.  The 
data set was divided into two groups: 484 observations 
(77% of the data set) for building the model (training data 
set) and 143 observations (23% of the data set) for 
validating the model (validation data set).  Data is 
available upon request. 
 
Regression 
 
Nitrate concentration  (NO3 measured in mg l -1) was the 
dependent (response) variable and iron concentration (FE 
measured in mg l -1), season and distance of the well from 
a poultry house (measured in meters) were the 
independent (explanatory) variables.  Iron and nitrogen 
together form a compound called ferrous nitrate, which is 
very unstable.  It decomposes and liberates nitrogen gas, 
which escapes into the atmosphere.  So as iron 
concentration increases, nitrate concentration will 
decrease as seen in Fig 1.  Therefore, FE is expected to 
have a negative coefficient of regression.  Sometimes, 
iron concentration (FE) was zero.  For season, dummy 
variables spring, summer and fall were created.  Winter 
was taken as the base.  During spring and summer, plants 
tend to absorb the rainwater and a very minimal amount 

of rainwater only seeps through the soil with nitrates into 
groundwater.  In fall, the plants are harvested and the 
rainwater seeps through the soil with nitrates directly into 
groundwater.  Therefore, fall is expected to have a more 
positive coefficient of regression than that of spring and 
summer.  The area around a poultry house was divided 
into three zones as the effect of the poultry house was 
studied in these zones.   Zone 1 is the region where the 
distance of the well from a poultry house is less than 150 
m, zone 2 is the region where the distance of the well 
from a poultry house is between 150 m and 300 m and 
zone 3 is the region where the distance of the well from a 
poultry house is greater than 300 m.  For distance of the 
well from the poultry house, dummy variables D2 and D3 
were created.  When D2 and D3 were zero, the distance 
was less than 150 m (zone 1).  When the distance was 
between 150 m and 300 m (zone 2), D2 was 1, otherwise 
0.  When the distance was greater than 300 m (zone 3), 
D3 was 1, otherwise 0.  Distance less than 150 m (zone 1) 
was taken as the base.  As the distance of the well from 
the poultry house increases, nitrate concentration 
generally decreases.   Therefore, D2and D3 are expected 
to have negative coefficient of regression and D3 must be 
more negative than D2. 
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FIG 1 
 
Various functional forms are present and care must be 
taken in choosing the appropriate form.  For this study, a 
Log-Level model was assumed.  The nitrate concentration 
was never zero.  When the iron concentration was zero, 
season was winter and distance was less than 150 m, all 
the explanatory variables become zero, which prevented 
us from assuming a log form for the explanatory 
variables.  The nitrate concentrations were high and 
taking a log for this is quite acceptable.  So a Log-Level 
model was chosen.  
 
The econometric model was given as: 
 
LNO3 = b 0 +b 1 (FE) + b 2 (spring) + b 3 (summer) + b 4 
(fall) + b 5 (D2) + b 6 (D3)                                              (1) 
 
where  LNO3 was the log of the nitrate concentration in 
ground water (LNO3=Log(No3)), FE was the Iron 
concentration in ground water, spring, summer and fall 

 



were the dummy variables created for season and D2 and 
D3 were the dummy variables created for the distance of 
the well from a poultry house.  The SAS software (SAS 
inc., 1990) was used as a tool to build the model. 
 
Neural Networks 
 
Neural networks are composed of a large number of 
highly interconnected processing elements called neurons.  
Their function is determined by the structure of the 
network, strength of the connections and the processing 
performed at each computing node or neuron.  Neural 
networks are well suited for problems that are too 
complex for conventional technologies.  These problems 
include the ones, which do not have an algorithmic 
solution but can easily be solved by humans.  Neural 
networks are used for pattern recognition and 
classification.  A neural network can generalize in making 
decisions using imprecise input data.  Humans apply 
knowledge they gained from past experience to solve 
problems.  Neural networks mimic this problem solving 
process of the human brain.  They cannot be programmed 
to do a specific task; but rather, learning is done with an 
example, by training or exposing to a truthed set of 
input/output data where the training algorithm iteratively 
adjusts the connection weights.  These connection weights 
show the strength of input and the knowledge necessary 
to solve the problem.  
 
All networks consist of at least three hierarchical layers, 
namely the input layer, one or more hidden layers and the 
output layer.  All these layers are fully connected. Inputs 
or patterns are fed to the network via the input layer, 
which communicates with one or more of the hidden 
layers where the actual processing and weight 
adjustments are performed.  The hidden layers then pass 
this information to the output layer where the actual 
output is received.  
 
The most common method used for adjusting the weight 
is back propagation; these networks are called Back 
Propagation Neural Networks (BPNN).  For every 
observation, the difference between the desired and actual 
output, called the network error, is calculated and 
propagated backwards through the network.  In BPNN, 
weights are adjusted so that the square of the network 
error is minimized.  This process is repeated until the 
error is within the acceptable range.  Once the network is 
trained to a satisfactory level, it can be used to predict the 
output for the input, which the network has not seen 
before.  But this time, the network works only in the 
forward propagation mode and the output is retained.  For 
this study we used NeuroShell Easy Predictor (Ward 
Systems Group Inc., 1997). 

 
 

RESULTS AND DISCUSSION 
 
Regression 
 
Regression results for training data set 
 
The regression equation was given as: 
 
LNO3 = 2.7628 – 0.2411 FE – 0.0088 spring + 0.0721 
summer + 0.4717 fall  - 2.0312 D2 –1.8524 D3             (2) 
 
Other regression outputs are given in Table 1.  The R-
square value was 0.4476.  This value of R-square shows 
that 44.76% of the variation in LNO3 can be explained by 
the model.  At a 5% significance level, the F-value for the 
model was 64.41.  As the p value was less than 0.0001, 
the above regression model was statistically significant.  
The Variation Inflation Factor (VIF) was less than 10 for 
all explanatory variables and also the Condition Index 
from the Collinearity Diagnostics was less than 30 for all 
explanatory variables.  Thus, multicollinearity was not a 
problem. The Chi-Square statistic for the 
heteroskedasticity was 45.21 and the p-value was 0.0006.  
At a 5% significance level, we reject the null hypothesis 
of homoskedasticity.  This result implies that the model 
has heteroskedasticity, causing the variances to be biased.  
So t-values and p-values calculated for the regression 
coefficients by SAS will be misleading.  Feasible GLS 
and other usual methods were employed to remove 
heteroskedasticity.  Still only the signs of the regression 
coefficients changed and  heteroskedasticity was not 
removed.  So the heteroskedastic robust t-values were 
calculated for the regression coefficient from White’s 
heteroskedasticity consistent variances, which is shown in 
Table 2.  From this, we see that all the regression 
coefficients except spring and summer are statistically 
different from zero.  However, intuitively, we still retain 
spring and summer in the model; removing this might 
give misleading results. 
 
The coefficient for FE was –0.2411, which implies that 
with a unit increase in FE, there will be a 24.1% decrease 
in LNO3.  The coefficient for fall was 0.4717 which 
implies that there will be 47.1% increase in LNO3 in fall 
when compared to winter.  The coefficient of D2 was –
2.0313 which implies that there will be a 20.3% decrease 
in LNO3 when the distance changes from less than 150 m 
(D1) to a distance between 150 m and 300 m (D2).  The 
coefficient of D3 was –1.8524 which implies that there 
will be a 18.5% decrease in LNO3 when the distance 
changes from less than 150 m  (D1) to a distance greater 
than 300 m (D3).  From the scatter plot of the residual vs 
predicted LNO3   (Fig 2), we see that there is no special 
pattern or trend in this distribution.  They are randomly 
distributed about zero. 
 

 



 
FIG 2 

 
From the plot of the predicted LNO3 vs actual LNO3  (Fig 
3), we can see that there are two separate clusters of 
points.  This pattern is because we have used the dummy 
variables for season and distance.  Also, a paired t-test 
was done to check if any statistically significant 
difference existed between the actual LNO3 and predicted 
LNO3 for the training data set.  The probability of the 
calculated t-value exceeding the tabulated t-value (for α = 
0.05 and df=477) was 1.  Thus, no statistically significant 
difference exists between the actual LNO3 and predicted 
LNO3 for the training data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG 3 

 
Model validation using validation data set 
 
For model validation purposes, 143 observations (23% of 
the data set) were used.  The mean sum of squared errors 
(mean SSE) was calculated for the validation data set and 
then compared with the mean SSE of the training data set.  
The mean SSE for both the training and validation data 
sets are shown in Table 3.  The mean SSE for the 
validation data set is less than that of the training data set, 
implying that the predictions are better for the validation 
data set than the training data set.  From the plot of 
predicted LNO3 vs actual LNO3 for the validation data set 
is shown in Fig 4, we can see that there are two separate 
clusters of points. This pattern is because we have used 
the dummy variables for season and distance.  A paired t-
test was done to check if any statistically significant 
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FIG 4 

 
difference existed between the actual LNO3 and predicted 
LNO3 for the validation data set.  The probability of the 
calculated t-value exceeding the tabulated t-value  (for α = 
0.05 and df=136) was 1.  Thus, no statistically significant 
difference exists between the actual LNO3 and predicted 
LNO3 for the validation data set. 
 
Neural Networks 
 
Neural networks results for training data set 
 
The same 484 observations used for building the 
regression model was used to train a neural network.  The 
R-square value of the training data set was 0.4470.  A 
paired t-test was done to check if any statistically 
significant difference existed between the actual LNO3 
and predicted LNO3 for the training data set.  The 
probability of the calculated t-value exceeding the 
tabulated t-value (for α = 0.05 and df=477) was 0.3179.  
Thus, no statistically significant difference existed 
between the actual LNO3 and predicted LNO3 for the 
training data set.   
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The importance of each input is shown in Fig 5.  D3 was 
expected to have greater importance than D2 because 
nitrate concentration would decrease with increasing 
distance.  However, from Fig 5, we see that D2 (Zone 2) 
has the highest importance.  This result might be due to 
the fact that although the nitrate concentration decreases 
as the distance increases, other factors such as rainfall and 
agricultural activities may tend to increase the nitrate 
concentration in zone 3.  Heavy rainfall causes nitrates to 
be leached.  It takes a long time (1.5 to 2 years) for the 
nitrates to reach the groundwater depth where the 
sampling wells were located.  From Fig 5 we see that, 
among the seasons, fall is significant.  This result is 
because, in fall two years before the data was collected, 
there was a considerable amount of rainfall and this 
rainwater has taken around two years to reach the ground 

 



water depth, which happens to be the fall of the year 
during which this data was collected.  Also the whole of 
the previous two years have been wet and there was a 
total rainfall of 264.55 cm in the previous two years [3]. 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 5 
 
Model validation using validation data set 
 
The same 143 observations used for validating the 
regression model was used here.  The mean SSE for both 
the training and validation data sets are shown in Table 3 
and they are used to compare the predictions of both data 
sets.  From Table 3, we see that the mean SSE is less for 
the validation data set than that of the training data set.  
This result implies that the predictions are better for the 
validation data set than for that of the training data set.  A 
paired t-test was done to check if any statistically 
significant difference existed between the actual LNO3 
and the predicted LNO3 for the validation data set.  The 
probability of the calculated t-value exceeding the 
tabulated t-value (for α = 0.05 and df=136) was 0.8539.  
Thus, no statistically significant difference exists between 
the actual LNO3 and predicted LNO3 for the validation 
data set. 
 
 

COMPARISON OF REGRESSION AND 
NEURAL NETWORK TECHNIQUES 

 
In neural networks and regression, among the seasons, 
only fall has a significant effect on LNO3.   This result is 
because, in fall two years before the data was collected, 
there was a considerable amount of rainfall and this 
rainwater has taken around two years to reach the ground 
water depth, which happens to be the fall of the year 
during which this data was collected.  Also, D2 and D3 
are highly significant and D2 is more negative than D3 in 
neural networks and regression.  This result might be due 
to the fact that although the nitrate concentration 
decreases as the distance increases, other factors such as 
rainfall and agricultural activities may tend to increase the 
nitrate concentration in zone 3.  In Neural networks, FE 
has very little effect on LNO3, in contrast to regression, 
where FE has a significant effect on LNO3. Spring and 

summer have practically no effect on LNO3 in neural 
networks and regression.  The mean SSE is less for neural 
networks than for regression for both training and 
validation data sets (Table 3).  Also, the R-square values 
from regression and neural networks are close to each 
other for both data sets, indicating that both techniques 
perform equally well.  The Mean Absolute Error (MAE) 
was calculated to compare the predictions of regression 
and neural networks.  For both data sets, MAE is less for 
neural networks than for regression, implying that the 
predictions of neural networks are better.  
 
Two paired t-tests were done to check if any statistically 
significant difference existed in the predictions from 
regression and neural networks for both the training and 
validation data sets.  For both the training and validation 
data sets, the probability of the calculated t-value 
exceeding the tabulated t-value (for α = 0.05 and df=477 
and 136) was 1.  Thus, no statistically significant 
difference exists in the predictions of regression and 
neural networks for both the data sets.  These tests shows 
that both regression and neural networks are performing 
equally well.  Regression over predicts by 3% for 90% of 
the observations in the validation data set.  Predictions 
from neural networks lies within  ± 5% of the actual 
output for 90% of the observations in the validation data 
set. 
 
 

CONCLUSION 
 
Two models have been built using regression and neural 
networks to predict the nitrate concentration in ground 
water as a function of iron concentration in ground water, 
season and distance of the well from a poultry house.  
Results from both techniques were comparable and show 
that the distance of the well from a  poultry house has a 
significant effect on nitrate concentration in ground water.  
All the tests showed that there was no statistically 
significant difference between the predicted LNO3 and 
actual LNO3. Though the statistics from neural networks 
were better than that of the statistics from regression, 
neural networks under predicted LNO3.  But regression 
over predicts LNO3.  It is safer to use the LNO3 predicted 
by regression, as it might be a good margin of safety.  As 
a further extension, some new methods can be employed 
to remove heteroskedasticity from the model. 
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Table 1 
Regression Output for training data set 
 

 

Independent Variables 

 

FE, spring, summer fall, D2, D3 

Dependent Variable LNO3 

No. of observations 484 

R2 value 0.4476 

F-statistic for overall significance 64.41 

p-value for F-statistic (α=0.05) < 0.0001 

χ2 statistic for heteroskedasticity 45.21 

p-value for χ2 statistic for heteroskedasticity 0.0006 

VIF for all the independent variables < 10 

Condition index for all the independent variables < 30 
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Table 2 
Heteroskedasticity Robust t-values 
 
Variable Coefficient Standard Error Calculated t-value p-value 

FE -0.24113 0.10811 -2.23041    0.0262 * 

Spring -0.00875 0.14219 -0.06154 0.9510 

Summer 0.07207 0.14026 0.51383 0.6076 

Fall 0.47173 0.15382 3.06677    0.0023 * 

D2 -2.03128 0.11100 -18.29982 < 0.0001 * 

D3 -1.85238 0.11589 -15.98395 < 0.0001 * 

 *  Significant at 5% level 

 

Table 3 
 
Comparison of regression and neural networks 
 

 Regression Neural Networks 

R2 value 

1) Training data set 

2) Validation data set 

 

 

0.4476 

0.5638 

 

 

0.4470 

0.5541 

 

Mean Sum of Squared Errors 

1) Training data set 

2) Validation data set 

 

1.1547 

1.0062 

0.2176 

0.1651 

Mean Absolute Error (MAE) 

1) Training data set 

2) Validation data set 

 

0.9755 

1.1132 

 

0.3536 

0.3115 
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addition, a Ph.D. degree is offered in cooperation with the Department of Economics.

For further information write to: Dr. Thomas W. Ilvento,  Chair
Department of Food and Resource Economics
University of Delaware
Newark, DE 19717-1303
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