

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

�
�
�
�
��

�
��
�
	

�
��

�
�

	
��

D
ep

artm
en

t o
f F

o
o

d
 an

d
 R

eso
u

rce E
co

n
o

m
ics

�
 C

o
lleg

e o
f A

g
ricu

ltu
re an

d
 N

atu
ral R

eso
u

rces
�

 U
n

iversity o
f D

elaw
are

����

����������

���������

February 2002 FREC RR02-02

Designing a Web-based
Interface for Student Peer
Review on a Unix Server

Joshua M. Duke
Jeff Whisler

Designing a Web-based Interface for Student Peer Review on a
Unix Server. By Joshua M. Duke1 and Jeff Whisler2, Department
of Food and Resource Economics and IT-User Services, University
of Delaware. FREC Research Report No. 02-02.

Abstract

This report describes an application of and the procedures for
developing a web-based interface on a Unix server, using a simple
guestbook program. The advantage of the guestbook platform is
that it is commonly available on college campuses and can be
secured. The application facilitates problem-based learning and
other active-learning goals in an undergraduate seminar in
environmental law. This report provides an example of the
application and reviews the programming necessary to accomplish
the learning goals.

Keywords: Problem-based Learning, Peer Review, Guestbook,
Unix

Code: The computer code for this project was posted to the
following web address: http://www.udel.edu/learn/jwhisler/code

Funding and Acknowledgements: This project was made
possible through competitively awarded grants from the Institute
for Transforming Undergraduate Education and The Present’s
Technological Assistance Grant, both from the University of
Delaware. Suggestions and technical assistance were provided by
John Mackenzie, Paul Hyde, Gabriele Bauer, and John Hall.

1 Assistant Professor, Department of Food and Resource Economics, University
of Delaware, Newark, Delaware 19717-1303.
2 Technical Consultant, IT-User Services, University of Delaware, Newark,
Delaware 19716.

This report describes an application of and the procedures for developing a web-based
interface in a Unix environment, using a simple guestbook program. The advantage of
the guestbook platform is that it may be available in a pre-packaged form on college
campuses and can be secured. The application facilitates problem-based learning and
other active-learning (collectively, PBL) goals in the University of Delaware
undergraduate seminar, “Topics in Environmental Law”, which Duke teaches. The report
offers, first, a description of the course’s PBL structure and goals and, second, an
example of the application. The third section specifies the technical details for
replicating the applications.

1. A Summary of the Course

The undergraduate seminar, “Topics in Environmental Law”, includes a large PBL
component and is taught yearly for fifteen to twenty students. The syllabus acts as an
extensive course contract, specifying expectations about student effort, active learning
exercises, and group activities. Students are divided into five permanent groups on the
first day of class and each class meeting involves active-learning exercises such as 50-
minute problems, role-playing advocacy, group reflection, and peer review. Content
objectives center on learning the institutions and processes of environmental conflict
resolution in the United States. As important, however, is the course objective to
improve the analytical skills of the students. To achieve the latter objective, the course
has been designed to include a semester-long problem focusing on student analysis and
the incorporation of peer and instructor reviews.

Students select an actual environmental conflict to study at the beginning of the semester
by searching Lexis-Nexis, using topics of interest to them. The problem, then, is to
identify the fundamental conflict of interests among stakeholders and to assess the
relative performance of the conflict resolution processes. Although ultimate student
achievement has generally been outstanding in the past, a great deal of resistance (or lack
of confidence) from students remained because of the burdens of what was seen as a 25-
page research paper. To attenuate this resistance, the active-learning components of this
problem were emphasized by the construction of a web-based interface for peer review.

The interface was designed so students could submit six assignments using a web form
over the course of a semester. These assignments, collectively, constitute the semester-
long paper. Using the interface, however, the assignments are available to all students for
peer review. Group members are required to review four of the six assignments of their
peers and submit at least three substantive comments for each using the web interface. In
total, each student posts six assignments on the web and receives four web-based
critiques from each group member. The instructor also graded and commented on each
assignment. At the end of the semester, a revision of the problem is due, which requires
students to assimilate between 14 and 18 separate documents of peer and instructor
feedback. The technological challenges in designing and maintaining a secure, private
interface were substantial.

 1

The effect of the PBL activities on student learning has been positive. The students’
groups functioned well, and the students treated one another with respect. The class had
few disruptions, and the students were consistently engaged. The web-based interface
encouraged the students to complete much more work out of the classroom. In addition,
students tended to take more ownership of their projects, improved their level of
argumentation, and seemed more accountable for the quality of their work. These quality
improvements are likely due to the effect of peer pressure; when the students’ problem
analyses and peer reviews are posted for all the class to see, the incentive to produce a
higher quality product is quite strong. The students actively collaborated in discussing
and solving difficulties they were having in completing their problems. The major
shortcoming in the PBL approach is that the group structure created a vehicle for
organized dissent during the particularly difficult times during the semester. Overall,
however, the instructor believes the students learned more, spent more time learning,
enjoyed class more, and produced higher-quality projects. The higher quality work was
especially evident among the lower-performing students.

2. The Application

The following figures offer examples of actual web pages (without personally identifiable
student information) used in the interface. These pages were accessible only to enrolled
students and the professor via a password (established separately using the University of
Delaware’s password options). Figure 1 shows the “gateway” to the interface, which is
called the “Problems Page”. Here students are divided into their semester-long groups,
with whom they also share a table with during class time. By clicking on any student
name, they can read or comment on that student’s problem. They may also link to submit
and to view their own work from this page.

Figure 1: Problems Page

 2

Student names on the “Problems Page” link to any student’s individual problem. An
example of the “Student Problem Page” is shown in figure 2. In the yellow boxes,
any student or the professor can read submitted work. Each student’s problem has six
sections, which are submitted over the course of the semester using the links under
the “Author: Submit Information” column heading. When students click those links,
they are taken to a modified guestbook form, such as the example in figure 3. Figure
3 also shows the embedded HTML formatting tags—inserted by the professor—to
ensure that all student problems have the same ultimate appearance: fonts type, size,
and headings. Once students post their assignments I, III, V, and VI, their group
members are required to submit peer reviews. By clicking on the link in the far right
column of the reviewee’s problem page, a peer reviewer is taken to a form such as
figure 4. The peer review form allows as many comments to be submitted as the
reviewers wish to provide. The output is simply appended to previous reviews.
These reviews are accessible from the reviewee’s problem page, using the link
directly below each of the four reviewed sections.

Figure 2: Student Problem Page

 3

Figure 3: Sample Form for Submitting Problems

Figure 4: Sample Form for Submitting Peer Review

 4

3. Technical Details

Only two separate perl programs designed by the authors must be run to launch the PBL
interface.

1. startup.pl - Auto-create program

2. gb.pl – formats the guestbook file into proper HTML

A class-PBL directory is defined, and then, to initiate the program, run the startup.pl file.
The program automatically builds the necessary files. It copies the files, sets the
permissions, and sets the “at” job to begin one hour later. During the “at” job, the gb.pl
script is run automatically. Then the “at” job is repeated every hour.

3a. What Files are Created and What They Do

The total files involved in the interface are:

1. startup.pl – main PERL file to create files and folders
• Reads information one line at a time for each student. Reads in folder name

(i.e. username), first name, last name, project title, and group number from an
input file

• Creates folders named for folder names read in
• Sets permissions on all the files necessary for the Guestbook CGI files to

work correctly.
• Changes “main.htm” in the students’ folders from the template to include their

name, the title of their conflict, and a link to their supplementary files
• Outputs a log file (default name: “log.file”)
• Outputs a the problem-index HTML page (default name: “450problems.htm”)
• Outputs a the file to be ran by the “at” command every hour (default name:

“runfiles.dat”)

2. gb.pl – PERL file to read from the Guestbook files and update all submitted
work to the proper HTML page
• Uses the runfiles.dat file that was created by running startup.pl and updates all

information from the Guestbook files in each student’s folder.

3. runfiles.dat – text file, created by startup.pl, that contains all the files to be
updated by the gb.pl update script (every hour by the “at” command)

4. log.info – verbose installation information, will also say what errors are present,

if any occurred

5. 450problems.htm – main HTML file to point to; all student folders are linked to

from this page

 5

6. Also required: A guestbook program. One guestbook program is supplied by the

University of Delaware IT Department and is located on the central server. If
anyone from another university tries to implement the program, they will need to
have a similar guestbook program.

7. An input file (see section 3.c)

3b. Preliminaries Before You Start

You can run the startup.pl program from any folder, with a few requirements:

• It needs to have a folder called “templates” in the same directory
containing all the files to be copied.

• It copies the files into a directory called “pbl” (default name). So, this
must also be in the same directory as startup.pl. If it is not, it will be
created … just be aware.

• Due to restrictions on some of the code, this program must be run and
setup in the /www/htdocs/ UNIX path hierarchy. (For example, in
“/www/htdocs/FREC/duke”)

• The gb.pl file must reside in the same directory containing startup.pl

3c. Step-by-Step Instructions for Use

1. Upload startup.pl, gb.pl, and templates folder to the desired Copland directory

2. Make sure that startup.pl and gb.pl have executable access. If either does not,

type “chmod 700 startup.pl” and/or “chmod 700 gb.pl” to give it execute access.

3. Create an input file containing the folder name and student name, one student per
line in the following format:

Filename::Student First Name::Student Last Name::Conflict Title::Group Number
For example the file could look like:

jwhisler::Jeff::Whisler::Conflict Title 1::1
duke::Josh::Duke::Conflict Title 2::2

4. The input file must be ordered by increasing group number. (i.e. all group 1

students first, followed by the group 2 students, etc.)

5. To setup the folders and files: type “startup.pl”. When prompted for the name of
the input file, enter it and hit Enter.

6. When the program stops and says “Done,” all of the folders have been created, all

of the files have been placed within them, and all of the permissions have been

 6

set. All the pages in the “pbl” directory should be able to be seen on the web. In
addition, each student is allowed to ftp files into their Student Submitted
Supplementary Material (“supp”) folder. They must logon to an FTP client and
then they can copy files into their “supp” folder. The “supp” folder is located at:
“/www/htdocs/…etc.../pbl/USERNAME/supp” where USERNAME is equal to
the student’s username and the “…etc…” is equal to the path that the pbl
directory is created in.
(i.e., “/www/htdocs/FREC/duke/pbl/student_username/supp”)

Two FTP client options available from the University of Delaware’s software distribution
page are:

• WS_FTP, for Windows users, available at
http://www.udel.edu/sw/win/ws_ftp_le.htm, or

• Fetch, for Mac users, available at

http://www.tsc.udel.edu/macsoftdist/fetch.html

After a student FTP’s a file to their directory, and the “at” script is run (within an hour),
that file will be viewable by everyone. In order to stop the “at” files from being
executed:

• Type: “at –l” to show the at files running and their associated
job_id.

• Delete any running at files by typing: “at –r job_id”

 7

http://www.udel.edu/sw/win/ws_ftp_le.htm
http://www.tsc.udel.edu/macsoftdist/fetch.html

4. Program Code

This section contains the program codes for the two files: gb.pl and startup.pl.

4.a gb.pl - Formatting Perl Program

#!/opt/bin/perl
while (<>){
 if(/^##$/){
 print("<hr>\n");
 }
 if (/^(.*)=(.*)$/){
 $label = $1;
 ($data = $2) =~ s/\\n/<br\>\n/g;
 print("$label
\n$data\n
");
 }

}

4.b startup.pl - Autocreate Perl Program

#!/opt/bin/perl

Creating TextArea Forms on Copland webserver
File: startup.pl
Faculty Member: Josh Duke
Programmer: Jeff Whisler: jwhisler@udel.edu
Copyright (c) 2001, University of Delaware

This script copies and sets permissions on student directories for FREC 450.

Requirements:
1) The template directory ($templatedir) must be in the same
directory as this file.
2) The gb.pl ($perlfile) file must reside in the same directory
with this file
3) Installation needs to occur somewhere in the /www/htdocs
hierarchy on copland, strauss, or mahler

To use:
1) Type: "startup.pl"
2) When prompted, enter the name of the input file

3) To stop the automatically running "at" program, do the following:
a) type "at -l" to get the process number
b) type "at -r process_number", (replacing "process_number" with
the process number you found in step a).

Modifications and Use:
Feel free to use this code, free of charge, just give credit where
credit is due. The University of Delaware encourages information
sharing. If you improve this code, please send your improvements to:
jwhisler@udel.edu

If you get this code to work at another University, please let us know
what you have found it useful for. We like to know when our code finds
a use at other Universities.

use File::Copy;
use Cwd;

files found in the template directory
@files = ('1db.db','1f.dat','1i.html','1o.html','2db.db','2f.dat',
 '2i.html','2o.html','3db.db','3f.dat','3i.html','3o.html',
 '4db.db','4f.dat','4i.html','4o.html','5db.db','5f.dat',
 '5i.html','5o.html','6db.db','6f.dat','6i.html','6o.html',
 'gb.pl','main.htm','pr1db.db','pr1f.dat','pr1i.html',
 'pr1o.html','pr3db.db','pr3f.dat','pr3i.html','pr3o.html',
 'pr5db.db','pr5f.dat','pr5i.html','pr5o.html','pr6db.db',

 8

 'pr6f.dat','pr6i.html','pr6o.html');

@files2 = ('1i.html','2i.html','3i.html','4i.html','5i.html','6i.html',
 'pr1i.html','pr3i.html','pr5i.html','pr6i.html');

@files3 = ('1db.db','2db.db','3db.db','4db.db','5db.db','6db.db',
 'pr1db.db','pr3db.db','pr5db.db','pr6db.db');

@files4 = ('1o.html','2o.html','3o.html','4o.html','5o.html','6o.html',
 'pr1o.html','pr3o.html','pr5o.html','pr6o.html');

Variables that may be changed:
 # Will create all user folders within '$directory' folder
 $directory = "pbl";
 # Will create install log file named '$logfile'
 $logfile = "log.info";
 # Template Directory to copy files from
 $templatedir = "templates";
 # Perl file to read guestbook file and print to static html page
 $perlfile = "gb.pl";
 # Template "main.htm" file
 $templatefile = "main.htm";
 # Template "450 rproblems.htm" file
 $templateprobfile = "templateprob.htm";
 # Temporary output file 1
 $tempfile1 = "tempmain.htm";
 # Temporary output file 2
 $tempfile2 = "tempprob.htm";
 # Temporary output file 3
 $tempfile3 = "temp.dat";
 # Temporary output file 4
 $tempfile4 = "tempprob4.htm";
 # Final main.htm file
 $finalfile1 = "main.htm";
 # Final problem main html file
 $finalfile2 = "450problems.htm";
 # Final problem page title
 $grouppagetitle = "FREC 450 Problems";
 # Final "At" command file
 $finalfile3 = "runfiles.dat";

 # Next groupnumber
 $nextGroupnumber = 0;
 # Current Working Directory
 $wholepath = getcwd;
 $curr_dir = substr($wholepath,12);

 # Variable to test if entered the sub functions yet
 $enteredSetGroups = 0;
 $enteredCreateAt = 0;

 # Variable to test if have entered into the
 $group1first = 0;
 $group2first = 0;
 $group3first = 0;
 $group4first = 0;
 $group5first = 0;
 $group6first = 0;

 # Variable to show if there was a group 6 (example/test group)
 $isGroup6 = 0;

print "\nEnter the name of the input file: ";
$filename = <STDIN>;

Open logfile output filehandle
unless (open(LOGFILE,"> $logfile")) {
 print STDERR "Can't open file $logfile: $!\n";
}
Print timestamp to log file
$now_string = localtime;
print LOGFILE "$now_string\n";

Open input filehandle
unless (open(INFILE,$filename)) {
 print STDERR "Can't open file $filename: $!\n";
 print LOGFILE "Can't open file $filename: $!\n";
 exit 1;
}

 9

Test to see if $directory (base directory) exists; if not, create
unless (opendir(DIRHANDLE,$directory)) {
 print STDERR "$directory/ directory does Not exist ... creating ... ";
 print LOGFILE "$directory/ directory does Not exist ... creating ... ";
 # create $directory if does NOT exist
 unless (mkdir("$directory",0705)) {
 print STDERR "Error creating file $directory/: $!\n";
 print LOGFILE "Error creating file $directory/: $!\n";
 exit 2;
 }
 unless (chmod(0755,"$directory")) {
 print STDERR "Error setting permissions on directoy $directory: $!\n";
 print LOGFILE "Error setting permissions on directoy $directory: $!\n";
 }
 print "created\n";
 print LOGFILE "created\n";
}

print encouraging message (will take a little time to copy/setup files):
print "Setting up Folders and Files ... Please wait ...\n";

Loop through input file and create directories
while($_ = <INFILE>) {
 # Read in variables from input file
 ($username,$firstname,$lastname,$conflicttitle,$groupnumber)=split(/::/, $_);

 # Setting up Group html page
 #setGroups($lastname,$groupnumber);
 setGroups();

 # Creating new directory for student: '$directory/$username'
 unless (mkdir("$directory/$username",0705)) {
 print STDERR "Error creating file $directory/$username: $!\n";
 print LOGFILE "Error creating file $directory/$username: $! --
Exiting.\n";
 print STDERR "\nPlease make sure you want to overwrite
$directory/$username.\nIf so, please delete the folder first. (\"rm -r
$directory/$username\")\n";
 print LOGFILE "\nPlease make sure you want to overwrite
$directory/$username.\nIf so, please delete the folder first. (\"rm -r
$directory/$username\")\n";
 print "Exiting\n\n";
 print LOGFILE "Exited";
 print "View \"$logfile\" for further install information.\n\n";
 exit 3;
 }
 print LOGFILE "Creating folder: $directory/$username\n";

 # Setting CORRECT permissions
 unless (chmod(0705,"$directory/$username")) {
 print STDERR "Error setting permissions on directoy $username: $!\n";
 print LOGFILE "Error setting permissions on directoy $username: $!\n";
 }
 print LOGFILE "Setting permissions on $directory/$username\n";

 # Copying files into student directory
 foreach $i (@files) {
 unless (copy("$templatedir/$i","$directory/$username/")) {
 print STDERR "Error copying file $i: $!\n";
 print LOGFILE "Error copying file $i: $!\n";
 }
 print LOGFILE "copying file into $directory/$username: $i\n";
 }

 # Open main html file (main.htm) for the students
 unless (open(MAINFILE,"$templatedir/$templatefile")) {
 print STDERR "Can't open file $templatedir/$templatefile: $!\n";
 print LOGFILE "Can't open file $templatedir/$templatefile: $!\n";
 exit 1;
 }

 # Create Temporary file to temporarily store main.htm
 unless (open(TEMPFILE1,"> $directory/$username/$tempfile1")) {
 print STDERR "Can't open file $directory/$username/$tempfile1: $!\n";
 print LOGFILE "Can't open file $directory/$username/$tempfile1: $!\n";
 }

 foreach $i (<MAINFILE>) {

 10

 # Substitute "CONFLICTTITLE" with the name of the student's conflict
 $i =~ s/CONFLICTTITLE/$conflicttitle/;

 # Substitute "STUDENTNAME" with the student's name from the infile
 $i =~ s/STUDENTNAME/$firstname $lastname/;

 print TEMPFILE1 $i;
 } # END foreach

 # Finally mv the temp file to the final filename
 `mv -f $directory/$username/$tempfile1 $directory/$username/$finalfile1`;

 close TEMPFILE1;
 close MAINFILE;

Change the guestbook.db files links #
 # Changing links in "*i.html" files
 $k=0;
 foreach $j (@files2) {

 # Open TEMP file (each file to be changed)
 unless (open(TEMPFILEHANDLE,"$directory/$username/$j")) {
 print STDERR "Can't open file $directory/$username/$j: $!\n";
 print LOGFILE "Can't open file $directory/$username/$j: $!\n";
 exit 1;
 }

 # Create Temporary file to temporarily store main.htm
 unless (open(TEMPFILE2,"> $directory/$username/tempfile2")) {
 print STDERR "Can't open file $directory/$username/tempfile2: $!\n";
 print LOGFILE "Can't open file $directory/$username/tempfile2: $!\n";
 }

 foreach $k (<TEMPFILEHANDLE>) {
 # Substitute "CHANGE_DIR" with the current working directory
 $k =~ s/CHANGE_DIR/$curr_dir\/$directory\/$username/;

 print TEMPFILE2 $k;
 }

 # mv the temp file to the final
 `mv -f $directory/$username/tempfile2 $directory/$username/$j`;
 #`chmod 644 $directory/$username/$j`;

 close TEMPFILE2;
 close TEMPFILEHANDLE;

 createAt();
 $k++;
 } # END foreach

 # Setting permissions on student files
 `chmod 606 $directory/$username/*.db`;
 `chmod 644 $directory/$username/*.dat`;
 `chmod 700 $directory/$username/$perlfile`;
 `chmod 644 $directory/$username/$templatefile`;
 `chmod 644 $directory/$username/*i.html`;
 `chmod 755 $directory/$username/*o.html`;

 # Create "supp" directory for students to put work
 `mkdir $directory/$username/supp`;
 `chmod 705 $directory/$username/supp`;
 `setfacl -m user:$username:rw-,mask:rw- $directory/$username/supp`;

 # Setting FACL for folders so students can write to their "supp" folder
 `setfacl -m user:$username:--x,mask:--x $directory/$username`;
 `setfacl -m user:$username:--x,mask:--x $directory`;
 `setfacl -m user:$username:--x,mask:--x .`;

} # END WHILE

Add closing code to and then Close TEMPFILEs
 if ($isGroup6 == 1) { # yes, there is a group 6
 print TEMPFILE4 "\n </table>\n </div>\n\n </tr>\n</table>\n\n";
 print TEMPFILE4 "<p>\n\n</body>\n</html>\n";
 close TEMPFILE4;
 print TEMPFILE3 "at -f $finalfile3 now + 1 hour\n";

 11

 close TEMPFILE3;
 }

 elsif ($isGroup6 == 0) { # no, there is not a group 6
 print TEMPFILE4 "\n </table>\n </div>\n <td>\n \n
</td>\n </tr>\n</table>\n\n";
 print TEMPFILE4 "<p>\n\n</body>\n</html>\n";
 close TEMPFILE4;
 print TEMPFILE3 "at -f $finalfile3 now + 1 hour\n";
 close TEMPFILE3;
 }

Finally mv the temp file to the final filename ("450problems.htm")
 `mv -f $tempfile4 $finalfile2`;
 `chmod 604 $finalfile2`;
 `mv -f $tempfile3 $finalfile3`;
 `chmod 600 $finalfile3`;

print "Done\n\n";
print LOGFILE "Done";

print "View \"$logfile\" for further install information.\n\n";

close LOGFILE;
close INFILE;

`at -f $finalfile3 now + 1 minute`;

########################
END Main Program
########################

########################
START sub Functions
########################

sub setGroups {

 # Test if have not modified temp file already
 if($enteredSetGroups == 0) {
 # Create Temporary file Tempfile2 (tempprob.htm) to temporarily store
"450problems.htm"
 unless (open(TEMPFILE4,"> $tempfile4")) {
 print STDERR "Can't open file $tempfile4: $!\n";
 print LOGFILE "Can't open file $tempfile4: $!\n";
 }

 $nextGroupnumber = $groupnumber + 1;

 print TEMPFILE4 "
<html>
<head>
 <title>
 $grouppagetitle
 </title>
</head>
<body>
\n<center>
 <h2>Welcome to the Problems Page.</h2>
</center>
\n<p>\n
<center>
 Here you will be able to access your problem and other problems in the class.
</center>
\n<p>\n
<center>
 To complete a peer review, read your group member's entry and then comment using their
problem page.
</center>
\n<p>\n
<table width=\"70%\" border=2 align=\"center\" bgcolor=\"#FFFF66\"
bordercolor=\"#0000FF\" cellpadding=5>
 <tr>
 <td valign=\"top\">\n";

 close TEMPFILE4;

 $enteredSetGroups = 1;
 } # END if

 12

 if ($enteredSetGroups == 1) {
 # Open template html page ("templateprob.htm") for the problems and append to it
 unless (open(TEMPFILE4,">> $tempfile4")) {
 print STDERR "Can't open file $tempfile4: $!\n";
 print LOGFILE "Can't open file $tempfile4: $!\n";
 exit 1;
 }
 } # END if

 if (&isSame($groupnumber,$nextGroupnumber)) {
 if ($groupnumber!=4) {
 print TEMPFILE4 "\n </table>\n </div>\n </td>\n <td
valign=\"top\">\n";
 }
 if ($groupnumber==4) {
 print TEMPFILE4 "\n </table>\n </div>\n";
 }

 $nextGroupnumber++;
 }

START Group 1
 if ($groupnumber == 1) {
 if ($group1first == 0) {
 print TEMPFILE4 " <div align=\"center\">\n <table>
 <tr>
 <td>
 <div align=\"center\">
 <big>Group: 1</big>
 </div>
 </td>
 </tr>";
 $group1first = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group1

START Group 2
 if ($groupnumber == 2) {
 if ($group2first == 0) {
 print TEMPFILE4 " <div align=\"center\">\n <table>
 <tr>
 <td>
 <div align=\"center\">
 <big>Group: 2</big>
 </div>
 </td>
 </tr>";
 $group2first = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group2

START Group 3
 if ($groupnumber == 3) {
 if ($group3first == 0) {
 print TEMPFILE4 " <div align=\"center\">\n <table>
 <tr>
 <td>

 13

 <div align=\"center\">
 <big>Group: 3</big>
 </div>
 </td>
 </tr>";
 $group3first = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group3

START Group 4
 if ($groupnumber == 4) {
 if ($group4first == 0) {
 print TEMPFILE4 " </td>\n </tr>\n <tr>\n <td>\n <div
align=\"center\">\n <table>
 <tr>
 <td>
 <div align=\"center\">
 <big>Group: 4</big>
 </div>
 </td>
 </tr>";
 $group4first = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group4

START Group 5
 if ($groupnumber == 5) {
 if ($group5first == 0) {
 print TEMPFILE4 " <div align=\"center\">\n <table>
 <tr>
 <td>
 <div align=\"center\">
 <big>Group: 5</big>
 </div>
 </td>
 </tr>";
 $group5first = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group5

START Group 6
 if ($groupnumber == 6) {
 if ($group6first == 0) {
 print TEMPFILE4 " <div align=\"center\">\n <table>
 <tr>
 <td>
 <div align=\"center\">
 <big>Example:</big>
 </div>
 </td>
 </tr>";
 $group6first = 1;

 14

 15

 $isGroup6 = 1;
 }
 print TEMPFILE4 "
 <tr>
 <td>
 <div align=\"center\">
 $lastname
 </div>
 </td>
 </tr>";

 } # END if group6

} # END setGroups()

sub createAt {

 # Test if have not modified temp file already
 if($enteredCreateAt == 0) {
 # Create Temporary file Tempfile2 (tempprob.htm) to temporarily store
"450problems.htm"
 unless (open(TEMPFILE3,"> $tempfile3")) {
 print STDERR "Can't open file $tempfile3: $!\n";
 print LOGFILE "Can't open file $tempfile3: $!\n";
 }

 print TEMPFILE3 "$wholepath/$perlfile $directory/$username/$files3[$k] >!
$directory/$username/$files4[$k]\n";

 $enteredCreateAt = 1;
 } # END if

 elsif ($enteredCreateAt == 1) {
 # Open template html page ("templateprob.htm") for the problemsand append to it
 unless (open(TEMPFILE3,">> $tempfile3")) {
 print STDERR "Can't open file $tempfile3: $!\n";
 print LOGFILE "Can't open file $tempfile3: $!\n";
 exit 1;
 }
 } # END if

 print TEMPFILE3 "$wholepath/$perlfile $directory/$username/$files3[$k] >!
$directory/$username/$files4[$k]\n";

} # END createAt()

sub isSame {
 local ($a, $b) = @_ ;

 if($a == $b) {
 return 1;
 }
 elsif($a != $b) {
 return 0;
 }

} # END isSame()

The Department of Food and Resource Economics
College of Agriculture and Natural Resources

University of Delaware

The Department of Food and Resource Economics carries on an extensive and coordinated
program of teaching, organized research, and public service in a wide variety of the following
professional subject matter areas:

Subject Matter Areas

Agricultural Finance Natural Resource Management
Agricultural Policy and Public Programs Operations Research and Decision Analysis
Environmental and Resource Economics Price and Demand Analysis
Food and Agribusiness Management Rural and Community Development
Food and Fiber Marketing Statistical Analysis and Research Methods
International Agricultural Trade

The department’s research in these areas is part of the organized research program of the
Delaware Agricultural Experiment Station, College of Agriculture and Natural Resources. Much
of the research is in cooperation with industry partners, other state research stations, the USDA, and
other State and Federal agencies. The combination of teaching, research, and service provides an
efficient, effective, and productive use of resources invested in higher education and service to the
public. Emphasis in research is on solving practical problems important to various segments of the
economy.

The department’s coordinated teaching, research, and service program provides professional
training careers in a wide variety of occupations in the food and agribusiness industry, financial
institutions, and government service. Departmental course work is supplemented by courses in other
disciplines, particularly in the College of Agriculture and Natural Resources and the College of
Business and Economics. Academic programs lead to degrees at two levels: Bachelor of Science
and Masters of Science. Course work in all curricula provides knowledge of tools and techniques
useful for decision making. Emphasis in the undergraduate program centers on developing the
student’s managerial ability through three different areas, Food and Agricultural Business
Management, Natural Resource Management, and Agricultural Economics. The graduate program
builds on the undergraduate background, strengthening basic knowledge and adding more
sophisticated analytical skills and business capabilities. The department also cooperates in the
offering of an MS and Ph.D. degrees in the inter disciplinary Operations Research Program. In
addition, a Ph.D. degree is offered in cooperation with the Department of Economics.

For further information write to: Dr. Thomas W. Ilvento, Chair
Department of Food and Resource Economics
University of Delaware
Newark, DE 19717-1303

FREC Research Reports

are published as a

service to Delaware’s

Food and Agribusiness

Community by the

Department of

Food and Resource

Economics, College

of Agriculture and

Natural Resources

of the University of

Delaware.

	Abstract
	1. A Summary of the Course
	2. The Application
	3. Technical Details

