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Accounting for Weather Probabilities in Crop Insurance Rating 
 

ABSTRACT 
 

The US crop insurance program previously used a simple average of equally weighted historical 
loss cost data to serve as the backbone for estimating crop insurance premium rates. This article 
develops a procedure for weighting the historical loss cost experience based on longer time-
series weather information and improve statistical validity of estimated premium rates. It was 
determined that the best weather data to account for weather probabilities in crop insurance 
premium rating is the National Climatic Data Center’s Time Bias Corrected Divisional 
Temperature-Precipitation-Drought Index data, also called the Climate Division Data. Using 
fractional logit and out-of-sample competitions, weather variables can be selected to construct an 
index that would allow proper assessment of the relative probability of weather events that drive 
production losses and to construct proper “weather weights” that can be applied when averaging 
historical loss cost data to calculate rates. A variable width binning approach with equal 
probabilities was determined as the best approach for classifying each year in the shorter 
historical loss cost data used for rating. When the weather weighting approach described above is 
applied, we find that for apples, barley, cotton, potatoes, rice, and spring/winter wheat, the 
weather weighted average loss costs at the national level tend to be smaller than the calculated 
average loss costs without weather weighting. However, for corn, cotton, sorghum, and 
soybeans, the weather weighted average loss costs at the national level tend to be larger. Around 
51% of the counties have weather weighted average loss costs lower than the average loss costs 
without weather weighting. 
 
Keywords: Crop Insurance; Premium Rating; Weather Weighting 
 
JEL Classification: G22, Q10, Q18 
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Accounting for Weather Probabilities in Crop Insurance Rating 
 

Introduction 
 
The US crop insurance program utilizes historical loss experience as the foundation of its 

premium rating system. In particular, the Risk Management Agency (RMA) formerly used 

equally-weighted, adjusted, historical, loss cost data (i.e., the ratio of indemnity payments to total 

liability) for a crop in a county as the backbone of the premium rating procedure. The former 

system used county loss cost experience data back to 1975 (where available) and gives each 

year’s experience equal weight. The simple average of the equally weighted historical loss cost 

data then serves as the main basis for crop insurance premium rates, which is consistent with the 

fundamental principle of insurance ratemaking where the rate represents an estimate of the 

expected value of future losses. 

The weighting of historical loss data (say, for 38 years from 1975 to 2012) is an 

important issue because it is directly related to the question of whether this series truly represent 

the “longer” term weather experience that needs to be captured to accurately estimate premium 

rates. In many lines of insurance, 38 years of loss history would be considered a very “long” 

time-series data to use in rate making. However, 38 years may be a relatively short series for 

accurately reflecting probabilities of weather events that are the most dominant factor in crop 

losses. For example, in simple averaging of loss cost data to calculate county base rates, the 

recent 2012 drought year is given a 1/38 weight but the long term frequency of the weather 

events that drove these losses may be greater or less than 1/38. It could be that the 2012 drought 

was a 1 in 20 year event rather than a 1 in 38 year event. If so, a larger weight than 1/38 would 

be appropriate for that year. Alternatively, it could be that the 2012 drought only occurs 1 in 50 

years in a longer weather time series and should be given less weight than 1/38. The intent of 
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weather weighting of loss cost data is to bring additional information from a longer series of 

weather variables to more properly weight the loss cost data used to calculate average county 

rates. 

The objective of this study is to develop a methodology for weighting the historical loss 

cost experience used in calculating crop insurance premium rates (i.e., specifically for the yield-

based Actual Production History (APH) insurance product). A detailed investigation is 

performed to develop an optimal methodology for weighting, or otherwise adjusting, RMA’s 

historical loss cost data in order to maximize its statistical validity for developing premium rates. 

Multiple weighting approaches are evaluated based on statistical validity, feasibility, 

sustainability, and a balance of improvement versus complexity. In particular, we explicitly 

consider the Palmer Drought Index and other weather variables in the development of the 

weighting methodology.  The RMA has now largely adopted the technique proposed in this 

study. 

Data Issues and Conceptual Considerations in Weather Weighting Historical Loss Data 

Historical Loss Cost Data 

The objective of premium rate setting in insurance is to provide an estimate of the expected value 

of future losses (or costs). In the US crop insurance program, rates are typically set separately for 

each crop because different crops are subject to different perils and, consequently, varying loss 

costs. In addition, one of the most important components of the US crop insurance rating system 

is the use of aggregate county level loss cost data to first estimate a county base rate.1 County 

level data is initially used in crop insurance rating because it is rare that an individual insured 

will have a sufficiently long time series of historical loss data to be able to directly calculate an 

                                                 
1 The county base rate is then adjusted based on different factors (such as choice of coverage level, crop type, 
insured’s yield relative to the county average, etc.) to provide an individualized rate for each insured. See Coble et 
al. (2010) for more details of the full RMA rating procedure.    
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estimate of individual expected losses. Therefore, aggregating experience data of individual 

farmers in a county, for a particular crop, is the approach followed in US crop insurance rating. 

 The starting point for constructing the historical county level experience data is to collect 

observed indemnity and liability data from individual insureds within a county for a particular 

crop. The individual experience data collected is then “normalized” by removing and/or 

adjusting individual level insurance data so that the resulting experience data are comparable 

(i.e., normalized to a common base). For example, prevented planting is not considered to be a 

production loss since the crop was not planted on the ground (i.e., typically due to weather 

constraints). Hence, prevented planting indemnities and liabilities are typically excluded when 

constructing the historical county level data used for estimating county base rates (called the 

StatPlan database). 2 Revenue insurance experience is also utilized in the construction of the 

county level data by recomputing indemnity and liability data from these revenue policies as if it 

were a yield insurance policy.  

Once the indemnities and liabilities are normalized, the historical loss cost data can be 

calculated and the county base rate can be estimated. More formally, an average of the equally-

weighted yearly county level loss cost data is used to calculate a county base rate for which the 

individual premium rates are derived: 

(1)   
1 1

1( ) ( )
n n

i ij ij ij ij
j j

County Base Rate  = E LC f LC LC LC
n= =

= × =∑ ∑ , 

where LCij is the loss cost ratio from the StatPlan database for county i and year j = 1, …, n, and 

( )ijf LC  is the calculated probability based on probability density function (pdf) of LCi over n 

discrete time periods. Note that catastrophic loading procedure is also utilized in the estimation 

                                                 
2 A detailed discussion of the individual adjustments made to indemnity and liability data to construct the StatPlan 
data base is in Coble et al. (2010). 
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of county base rates to reduce the influence of outliers in the historical loss experience. 

Catastrophic loading is intended to remove anomalous experience from the county data while 

preserving normal loss experience.  In general, losses deemed catastrophic are spread across all 

counties for a crop in a state. The previous catastrophic loading procedure censors the county 

loss experience at the 80th percentile of the historical county experience. All indemnities above 

the truncation point are aggregated to the state level. Once the catastrophic portion has been 

removed from the county experience, the uncensored observations below the 80th percentile and 

the censored values of the censored observations remain; and these values are used in (1). 

Using equal weights in the averaging process in (1) implicitly assumes a uniform pdf 

where observed loss cost values are equally likely to occur. But given that weather is the major 

factor that drive agricultural losses the equal weights assumption may be problematic, since 

weather distributions may not follow a uniform distribution. Conceptually, probability 

information from a long time series of weather data may help augment the inherently small 

sample in the StatPlan database and better estimate the weights when averaging loss cost data. 

 Another related issue is the need to capture a good range of LC values typically from a 

long time series of loss cost data. Ideally one would like a long enough time series such that the 

range of all possible LC magnitudes is represented. However, as mentioned above, the StatPlan 

database typically starts from 1975 and data from this time series length may not be able to 

provide a good range of LC values. Hence, from this perspective it may be desirable to have the 

longest possible time series of loss data for rating purposes.  

But it should be noted that there is an inherent tension between the need to use long time 

series data to properly capture the probability and magnitudes of infrequent but catastrophic 

weather events versus the concern that, with a long time series, loss data from the more distant 
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past may not be truly representative of the current production and insurance environment such 

that the measured losses at that time would not be comparable to more recent losses. For 

example, contract specifics will have changed over time and, thus, effectively modifying 

expected losses.  Also, data quality and credibility has improved over time. Finally, agricultural 

production technology has evolved rapidly such that the effect of a particular weather event on 

insurance losses may be different from what would have occurred in the past. With a proper 

weather weighting procedure, it is possible to utilize a shorter series of loss data to assure 

improved representativeness, but also use a long series of weather data to more properly weight 

infrequent catastrophic weather events that cause crop loss.  

Weather/Climate Data 

In developing a system to weight loss experience data using longer weather or climate data, one 

has to consider the following issues: (1) the weather or climate data that will be utilized for 

weighting (e.g., the length of the data, the degree of coverage and/or level of aggregation, the 

relationship of such weather to losses, and the availability of weather variables), and (2) the 

development of a procedure to properly weight each year in the short loss data (e.g., categorizing 

each loss data year and creating weights for each year in a manner that is consistent with other 

parts of the rating process). 

 Weather Data Considerations. There is an abundance of weather data available in the US 

that can be used for weather-based weighting of loss experience data. However, there are several 

issues to consider in choosing the weather data to be used. First, one has to consider the length of 

the different climate data series that are available. In the context of weighting insurance data, one 

would like to have the longest series of historical weather data available. This would help ensure 

that different weather outcomes, especially the rare extreme weather events that cause losses, 
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would be adequately represented in the longer data series. Information about the probabilities of 

different weather events will be better captured if one has a very long climate data series. 

However, the need for a long data series must be balanced with the second issue to 

consider – the degree of coverage and level of aggregation. For example, there may be weather 

data that are available for 200 years, but these data sets may only contain data for a particular 

part of the country and/or only at the national level. Crop insurance covers a large portion of the 

US and so weather data covering most or all states are needed. In addition, there is significant 

heterogeneity of the weather events that drive losses at the county level for a particular year. 

There is value in having data at a lower level of aggregation (i.e., county level or 5 x 5 mile 

grids) rather than at the national level only. However, in using weather/climate data at lower 

levels of aggregation, it may be the case that data interpolation methods were involved in the 

construction of the data, especially at the sub-county level where there frequently are no weather 

stations in a particular location. 

 Another factor to consider in choosing the weather or climate data to use in weighting 

loss experience is the availability of different weather variables that can be used. Longer series of 

climate data may be available for some basic variables like temperature or precipitation, but 

variables like drought indexes may not be available for this longer period of time. Climate data at 

lower levels of aggregation and with wider coverage may only be available for certain weather 

variables and may be absent for others. Hence, to have flexibility in determining the weather 

variables that can help to explain losses, the availability of different weather variables in a 

particular climate data set is also an important consideration. 

 Finally, in choosing climate data for weather weighting crop insurance loss cost data, the 

source of the data and the availability of the data in the future are also important considerations. 
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The source of the climate data has to be reliable and must have a good reputation in terms of 

reporting weather/climate data. Moreover, there should be a reasonable expectation that the 

weather/climate data will continue to be available in the future to support updating of weather 

weights as more data become available. 

 Weather Data Choice. There are several datasets that partially meet the four weather data  

considerations above. First, the National Oceanic and Atmospheric Administration (NOAA) 

Climate Prediction Center (CPC) Unified Precipitation Analysis is an interpolation of the 

available point-based precipitation gauge data collected by both NOAA and USGS. It meets the 

second and fifth considerations listed above, but provides only information on precipitation and 

has data only since 1948. Important information on temperature and drought are not provided, 

and these data do not allow for characterization of the relative frequency of known extreme 

drought events in the 1920s and 1930s nor hurricane or flooding events prior to 1948. 

A national analysis of Palmer Drought Severity Index developed by Dai et al. (2004) 

meets some of the considerations listed above, but is not updated regularly and provides drought 

severity information only every 250 kilometers which is insufficient to explain local loss 

experience. 

Another group of data that partially meet the considerations listed above is atmospheric 

model simulations, including NCEP re-analysis and the North American Regional Reanalysis 

(NARR). These products meet criteria second, third, and fourth considerations, but NCEP re-

analysis (and similar) only provide information since 1948 and NARR only since 1979. 

The data collection that best meets all weather data considerations listed above is the 

National Climatic Data Center’s Time Bias Corrected Divisional Temperature-Precipitation-

Drought Index data, also called the Climate Division Data. Climate Division data provide 
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monthly, serially complete information on temperature, precipitation, relative severity of dry and 

wet periods using drought indexes, and degree day metrics of heat and cold accumulation since 

1895 for the continental United States, grouped into 344 divisions. Updates are operationally 

provided each month by NOAA National Climatic Data Center. A nice description of the history 

and current status of climate division data is provided by Guttman and Quayle (1996). More 

technical details on the data and adjustment methods are provided in NCDC (1994) and Karl et 

al. (1996). 

Climate Division data are produced using more than 5,000 National Weather Service 

Cooperative observer gauge reports. Climate Division boundaries group stations of similar 

climate into regions that follow state political borders. In most cases, the climate division 

boundaries also follow county boundaries. However, in regions with more complex geography 

(including some states with complex topography and/or shorelines), climate division boundaries 

follow river basins within each state. While climate divisions were originally designed in 1912, 

boundaries were adjusted in the 1940s to align with crop reporting districts or drainage basins. In 

some instances, climate divisions cross or split counties. The Climate Division boundaries and 

consequent assignment of counties to particular Climate Divisions are shown in Figure 1. This 

allocation is based on relative area, geography and other factors. 

There are limitations to using Climate Division data. Climate division boundaries are not 

always delineated for climate homogeneity. Especially in the mountainous terrain of the western 

US, the boundaries follow drainage basins and all locations within those boundaries are not 

likely to have very similar climate characteristics as climate changes quickly with changes in 

elevation. Another weakness is that the station network used for each division calculations is not 

constant. Stations move, cease operation, and new ones are introduced throughout the history of 



 9 

the observing network. This introduces some error with any divisional calculations. Another 

weakness is the accuracy of division level data prior to 1931, when regression equations are used 

to estimate division-level data from statewide average data that were standard during that period. 

Despite these weaknesses, Climate Division data provide the best operationally available climate 

information for crop loss analysis. They provide serially complete national coverage (with no 

missing data) at a geographic scale sufficient to characterize local climate extremes with a period 

of record sufficient to identify the relative frequency of climate events that may be associated 

with loss experience. 

Merged Loss Cost and Weather Data 

The development of the weather weighting procedure starts by merging the climate data set with 

the StatPlan loss experience data. Note that the climate data are observed at the climate division 

level as described above, while the RMA StatPlan data are reported at the county level.3 

Therefore, all counties within a particular climate division have the same weather data and the 

loss data also must be aggregated to the climate division level. This is done by summing the 

indemnities and liabilities of all counties within a climate division level and then calculating loss 

cost ratios based on these summed amounts. The climate division data can then be used to 

generate a weather index that is needed for classifying loss years, while the county data can be 

used in averaging the loss cost data to calculate a county base rate. 

Empirical Approach to Weather Weighting Historical Loss Cost Data 

Weather Index Development 

A critical component in the development of a weather weighting approach is the choice of the 

weather variables that are used to determine the relative weights assigned to each year of loss 

                                                 
3 The county loss data utilized in this study are typically aggregated for all types/practices (with the exception of 
wheat, where the data are separated to identify winter and spring wheat). This type of aggregation is consistent with 
the county level data used in calculating the base county rate (see Coble et al., 2010 p. 38). 
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data. One can use a single weather variable or a combination of different weather variables. 

Based on the literature (Wilhemy, Hubbard and Wilhite 2002) and the expert opinion of the 

climatologist on our study team, we chose to examine a parsimonious set of weather variables – 

the Palmer Drought Severity Index (PDSI) and Cooling Degree Days (CDD). PDSI is a 

particularly good weather variable to examine because it subsumes effects of both precipitation 

and temperature and provides a locally relative scale ranging from very wet to very dry 

conditions. Wilhemy, Hubbard and Wilhite (2002) show that much loss experience is associated 

with drought conditions, but PDSI also allows for very wet (flood) conditions that may also be 

associated with loss. CDD allows for examining heat units for a particular time period that 

affects crop growth. CDD is equivalent to Growing Degree Days (GDD) at base 65F, and allows 

exploration of loss experience that may be associated with extended cold or heat that would not 

be captured in PDSI. 

 For the PDSI, we created two variables to represent positive PDSI and negative PDSI 

values. Positive PDSI values represent wet spells (i.e., larger positive numbers indicate more 

moisture) and negative PDSI values represent drought conditions (i.e., larger negative numbers 

represent more severe drought conditions). In addition, the positive and negative PDSIs we use 

are limited to the May-June and July-August periods (i.e., average May-June and average July-

August PDSIs are utilized in the study). In summary, four PDSI measures are examined in the 

development of our weather index – May-June PDSI for positive values (mj_pdsi_p), May-June 

PDSI for negative values (mj_pdsi_n), July-August PDSI for positive values (ja_pdsi_p), and 

July-August PDSI for negative values (ja_pdsi_n). The CDD variables used in developing the 

weather index are total season CDD (from May to September) (total_cdd) and June-July total 
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CDD (jaj_cdd). The June-July periods are periods in which crop growth is frequently adversely 

affected by heat units.4 

 Based on these six weather variables, an index is created by estimating a fractional logit 

regression model (at the climate division level) where the dependent variable is the climate 

division adjusted loss cost ratio and the independent variables are the six weather variables 

discussed above (See Papke and Wooldridge 1994). Fractional logit regression is used to account 

for the proportional nature of the data and censoring of loss costs at zero and one. This approach 

ensures that predicted values do not fall below zero or above one.5 Based on our investigation of 

the degree of censoring of the data at zero, we believe that using the fractional logit is 

appropriate in this case. The degree of zero censoring in the data ranges from 6-11% for corn and 

soybeans, to about 30% for barley and potatoes. On the other hand, the degree of censoring at 

one is significantly lower in the data and it is below 1% for most crops (the exception is apples 

with censoring at one of about 1.1%. 

 To have an even more parsimonious model specification, an out-of-sample competition 

for each state is conducted to determine which combination among the six initial weather 

variables best predicts losses (i.e., in this case which combination best predicts adjusted loss cost 

out-of-sample). A minimum mean square error (MSE) criterion is used to evaluate the model 

with best out-of-sample predictions: 
                                                 
4 These six weather variables apply to all crops except winter and spring wheat. For winter wheat, the following 
variables are used: Sept./Oct average PDSI (positive and negative), April /May average PDSI (positive and 
negative), September to May total season CDD, and March to April total CDD. For spring wheat, the following 
variables are used: April/May average PDS (positive and negative), June/July PDSI (positive and negative), April to 
August total season CDD, and May to June total CDD. Further note that durum wheat type has been aggregated with 
spring wheat. 
5 Note that ordinary least squares (OLS) regression can also be used to estimate the index. The disadvantage of OLS 
is that predictions are not constrained to lie on the [0,1] interval. Nevertheless, one can argue that the predicted loss 
costs here are only used as a “tool” to rank the years in terms of having “good” vs. “bad” weather (i.e., one could 
interpret negative values as indicating good weather years). The magnitudes of the predictions are not used ‘per se’. 
Using the OLS model to estimate the model did not result in significantly different classifications of the loss years 
(relative to the fractional logit model). However, we recommend using the fractional logit given the degree of 
censoring in the data and the intuitive concept of limiting predicted loss costs between zero and one. 
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(2)     2

1

1 n

i
i

MSE e
n =

 =  
 
∑ , 

where ie  is the difference between the actual adjusted loss cost and a predicted adjusted loss cost 

(out of sample) based on the fractional logit regression model. 

 A lower MSE means that there is a smaller discrepancy between the actual and predicted 

adjusted loss cost ratios and one would prefer the combinations of weather variables that produce 

the lowest MSE values. Note that we run independent regressions for each climate division 

within the state (i.e., climate divisions do not cross state lines), but undertake the out-of-sample 

competition to find the best combination of weather variables for the entire state. This implies 

that each regression model is estimated independently but a common specification, in terms of 

the weather variables included in the regression model, is applied for all climate divisions within 

a state for each individual crop. In other words, for a crop in a state, the same weather variables 

are used in the loss-cost regression though parameters on weather variables may differ across 

climate divisions. 

 To facilitate the out-of-sample competition for each state, we limit the number of weather 

variable combinations to be considered to seven: (1) May-June PDSI positive and May-June 

PDSI negative, (2) July-August PDSI positive and July-August PDSI negative, (3) total season 

CDD and June-July total CDD, (4) May-June PDSI positive, May-June PDSI negative, July-

August PDSI positive, and July-August PDSI negative, (5) May-June PDSI positive, May-June 

PDSI negative, total season CDD, and June-July total CDD, (6) July-August PDSI positive, July-

August PDSI negative, total season CDD, and June-July total CDD, and (7) May-June PDSI 

positive, May-June PDSI negative, July-August PDSI positive, July-August PDSI negative, total 

season CDD, and June-July total CDD. Limiting the combinations to these seven choices and 

estimating the model for each crop, covering all states allows for less of a computational burden. 
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 Once the optimal combination of weather variables is chosen for a particular crop and 

state, this combination of weather variables is used to produce a weather index for all of the 

climate divisions within the state producing the crop. Essentially, the predicted values of the 

“best” regression model specification are used as the weather index for each year of weather 

data. Using predicted values (i.e., predicted loss costs in this case), makes it possible to 

“backcast” a weather index for each year in which weather data are available (e.g., from 1895 

onwards) even when there are no available loss experience data for the pre-crop insurance years. 

The relative probability of an extreme weather event (or an extreme loss event) can therefore be 

assessed over a 116 year time span (1895-2010) based on the predicted values. For example, the 

weather index for 1988 can be compared to other years from 1895 onward to determine the 

relative probability of this weather event occurring in the larger sample. 

 A concern with using the predicted values is that there may be cases when even the 

“best” combination of weather variables does not produce a statistically significant model that 

explains losses over time. For example, in some climate divisions, the Pearson chi-square test of 

overall model fit for the preferred model specification is not statistically significant and the 

correlation of the predicted values with the actual loss costs is actually negative. This means that 

the weather variables we considered do not have enough power to explain the pattern of losses 

observed over time and that there is no significant positive correlation between the model 

predictions and the actual loss costs. We flag these cases, and the weighting methods based on 

the weather index developed are not applied. 

Approaches to Loss Year Classification and Weight Assignment 

Using the predicted loss cost values from the regression model, each year needs to be classified 

and assigned a weight that represents its likelihood as indicated by the longer weather series. 
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There are a number of ways to classify a year and assign a weight. One approach is to generate a 

histogram with equal bin widths and variable probabilities (or frequencies) (see Coble et al., 

2010, p. 85 and Figure 2).6 The bins or groupings with equal widths can then be used to classify 

each year of the loss experience (i.e. which bin does the loss year belong to given the actual 

experience) and the probability associated with the bin assigned to the year will serve as the 

weather weight. An alternative to the histogram approach is to develop variable bin (or grouping) 

widths with equal probabilities associated with each bin (See Figure 3). The bins or groupings 

will again be used to classify each year, but since these are variable width bins with equal 

probability, there is no need to have differential weights for each actual year of experience.  

In both of these loss classification procedures, one has to evaluate the number of bins to 

be used and make sure that all bins are represented in the shorter loss data used in averaging the 

loss costs (i.e., the empty bin problem). If not, the weighted average may not fully reflect the 

available historical experience. In addition, the complexity of the procedure and the ease of 

implementation should also be a considered in choosing the approach to classify and assign 

weights to the actual loss years. With these considerations in mind, we believe this variable bin 

width approach may be better than a standard histogram approach because this mitigates the 

“empty bin” issue described above. That is, the likelihood of having empty bins for the years 

with loss data (1980-2009) is smaller under this approach as compared to a histogram approach 

with equal bin widths and variable probabilities. The number of bins in the variable bin width 

with an equal probability approach tends to be greater than if we used the histogram approach. 

Moreover, the variable bin width with equal probability approach is a fairly straightforward 

                                                 
6 Alternative methods such as generating kernel densities or fitting parametric distributions can also be used instead 
of histograms. However, one should recognize that these more complex procedures may have implications for 
implementation. One has to weigh the relative benefits of more complex approaches against the efficiency and ease 
of more simple approaches (like using a histogram). 
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method compared to the approach of using kernel densities or parametric distributions. This 

“simplicity” facilitates the practical implementation of this procedure for multiple crops and for 

nationwide coverage. 

Description of Variable Bin Width Approach to Weather Weighting 

The variable bin width approach to weather weighting is implemented by first determining the 

number of bins or percentiles and assigning the predicted loss costs to the appropriate bin or 

percentile cut-off. For example, assuming that we are interested in 10 bins we would like to find 

the predicted loss costs in the long history of weather data that correspond to the 10th, 20th, 30th, 

40th, 50th, 60th, 70th, 80th, 90th percentile, in addition to the minimum and maximum values. In 

this case, we have variable width bins, since the ranges of the loss cost values used to delineate 

the bins are not equal across bins, but the probability of falling into each bin is always equal to 

10%. If the predicted values are normally distributed, the tails (at both ends of the distribution) 

tend to have wider bin ranges since only a few observations fall in these areas, but the middle 

bins tend to have smaller widths because a lot of observations fall in these middle bins. 

Once the variable width bins are delineated, the predicted loss cost value for each year 

(from 1895 onward) can be classified and assigned to the bin in which it falls. Using the above 

example, if the bin width for the 10th bin (from the 90th percentile to the maximum) is, say, 

from 0.09 to 0.15 and the year 1988 predicted loss cost is 0.13 (i.e., one of the high loss years), 

then year 1988 is in the 10th bin. Each year is similarly classified using predictions from the 

fractional logit regression models. Since the probability of each bin is equal in this approach, 

there is no need to assign a specific differential weight to each bin. 

As mentioned above, one issue that needs to be addressed is the number of bins to 

assume and the possible existence of empty bins during the years with loss cost data (from 1980 
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till 2009). Once the years from 1895 onward are classified based on the weather index, the 

RMA’s actual adjusted loss cost data from 1980 till 2009 are utilized to calculate the average 

loss cost for a county. Hence, it is possible that years from 1980 to 2009 do not contain a 

dispersion of data such that each bin has one or more loss costs (i.e., not all bins are represented 

in the 1980-2009 period). For example, it may be that no year in the 1980 to 2009 period is 

classified as falling into bin 9. This will have adverse implications for the calculation of the 

average loss costs if not all bins are represented in the 1980-2009 period (i.e., not all bin 

probabilities are represented). In particular, a range of observed weather history is not being 

captured in the weighting of loss costs. Therefore, to address the issue of empty bins and, at the 

same time, determine the appropriate number of bins, the approach we pursue is to first look at 

15 bins and then move down one bin at a time (i.e., from 15 till 2 bins) to establish the largest 

number of bins for which there are no cases of empty bins in the years with loss data (1980-

2009). This is done for each climate division, and so the number of bins may vary for each 

climate division within a state. 

A hypothetical example of bin classification results for soybeans in Mississippi is 

presented in Table 1. In this example, the number of bins is 10 and this assures that there are no 

“empty bins” from 1980-2009. All bin classifications are represented in the 1980-2009 data. We 

also show in this table that the model insignificance flag and state proxy flag are both equal to 

zero, which means that the model fit results for this climate division is significant and the 

number of observations used in the estimation is at least 10. 

Loss Cost Averaging Procedure  

After each year is classified into a particular bin at the climate division level (for all 116 years), 

the classified data for each year and the insignificance flags (based on regression model) are then 
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merged back with the original county level loss data. Since the regressions and year 

classifications based on the weather indexes are done at the climate division level, all counties 

within a particular climate division will have the same year classification and insignificance 

flags. 

 The average loss costs are next calculated using the 1980-2009 data where there are 

available actual loss cost values in the StatPlan data. We first calculate the aggregate loss cost for 

each county, which is the current procedure used for computing the county base rate. Then we do 

a “weather weighting” average of loss costs for each county. This weather weighting is done by 

first taking the average loss cost within each of the defined bins and then taking the “average of 

the average loss costs” across the bins. For example, if there are 9 bins within a county, we first 

calculate a simple average of the loss costs within each of these 9 bins (i.e., one average loss cost 

for each bin that results in 9 “average” observations). Then, we take the average of the 9 average 

loss costs for the 9 bins (i.e., “average of the average loss costs”). Since the bins are constructed 

to have equal probabilities, there is no need for taking a “weighted average of the average loss 

costs”.  

Note that in the approach described above, a “recency weighting” procedure can be 

applied when taking the average loss cost within a bin. That is, more recent years of data can be 

given more weight relative to older years within each bin. Alternatively, the procedure above can 

be easily implemented with less than the 30 years in the 1980-2009 data series (say, for example, 

using data from 1990-2009 only, if the older loss data’s loss environment is sufficiently different 

than the more recent time period.  The procedure above also allows for consistency with the 

current catastrophic loading procedure. In this case, we also calculate the unweighted and 

weather weighted average loss costs where the adjusted loss cost data are censored at the 80th 
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percentile. A similar calculation can be done where the censoring is done at the 90th percentile 

(since there was a recent recommendation to increase the censoring for catastrophic loading to 

this level). 

Results and Discussion 

An example case where county level loss costs are merged with the bin classification data can be 

seen in Table 2 for corn in Dewitt County, IL. The unweighted and weather weighted average 

loss costs at the county level can be calculated using the data presented in Table 4.3. The bin 

classification column allows us to conduct the weather weighting procedure described above. If 

the insignificance flag for model fit is equal to one in any county, we do not recommend using 

weather weighting for the county (i.e., we do not report a weather weighted average in this case). 

 Examples of unweighted and weather weighted average loss costs for several counties in 

Iowa are presented in Table 3. Note that we calculate six loss costs averages (i.e. six weighting 

types) per county where: Weighting type = 1 if the average loss cost is calculated with no 

weather weighting; Weighting type =2 if the average loss cost is calculated with weather 

weighting; Weighting type = 3 if the average loss cost is calculated with censoring at the 80th 

percentile and no weather weighting; Weighting type = 4 if the average loss cost is calculated 

with censoring at the 80th percentile and with weather weighting; Weighting type = 5 if the 

average loss cost is calculated with censoring at the 90th percentile and no weather weighting; 

Weighting type = 6 if the average loss cost is calculated with censoring at the 90th percentile and 

with weather weighting. In the example in Table 4.8, it can be seen that the weather weighted 

average loss cost tends to be smaller than the unweighted average loss cost. However, this is not 

a pattern observed in every county-crop combination. There are cases where the weather 

weighted average loss costs are higher than the unweighted average loss costs. 



 19 

 Table 4 presents the national average of the calculated unweighted and weighted loss 

costs for all crops we examined. This is the liability weighted average across counties (i.e., the 

liability weighted average (not simple average) of the average county level loss costs based on 

the 2009 liability of each county). For apples, barley, cotton, potatoes, rice, and spring/winter 

wheat, the weather weighted average loss costs (at the national level) tend to be smaller than the 

unweighted loss costs. However, for corn, cotton, sorghum, and soybeans the weather weighted 

average loss costs (at the national level) tend to be larger. A map showing the pattern of the 

difference between unweighted and weighted average loss costs for corn is presented in Figure 

4.5. Around 51% of the counties have weather weighted average loss costs lower than the 

unweighted loss costs. 

Conclusions and Implications 

This article develops a procedure for weighting the historical loss cost experience used in 

calculating crop insurance premium rates. The idea is to utilize longer time-series information 

about weather variables to augment the shorter historical county loss cost data used for crop 

insurance rating, thereby improving statistical validity of premium rates. In developing the 

weighting methodology, the following factors were explicitly considered: statistical validity, 

feasibility, sustainability, and a balance of improvement versus complexity. 

 Our evaluation suggests that the National Climatic Data Center’s Time Bias Corrected 

Divisional Temperature-Precipitation-Drought Index data, also call the Climate Division Data, is 

the most appropriate data set to use in weather weighting historical loss cost data. Fractional logit 

models can be used to relate loss cost experience to weather variables like the Palmer Drought 

Severity Index (PDSI) and Cooling Degree Days (CDD). Out-of-sample forecasting competition 

can then be used to select the specific weather variables the best explains weather experience for 
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each particular climate division. This process creates a weather index from 1895 to the present, 

which allows one to better assess the likelihood of the loss experienced in each year using a 

longer series of weather data. A variable width, equal probability “binning” approach can then be 

implemented on the historical, county level loss experience data to more properly calculate the 

expected (or average) loss cost used in estimating a county base rate. 

 Results of this study showed that a weather weighting approach is indeed feasible within 

the context of US crop insurance rating and the approach developed in this study provides a way 

to capture “longer” term weather experience to augment “shorter” historical loss cost data used 

in estimating premium rates. Given that previous studies have provided evidence that 

asymmetric information problems are prevalent in the US crop insurance program due to the 

inability to estimate premium rates commensurate with the actual level of risk (Goodwin and 

Smith, 1995), the weather weighting approach developed here may be viewed as another step in 

more accurately estimating premiums and hopefully reducing asymmetric information problems 

such as adverse selection and moral hazard. In this case, “hidden” weather probability 

information, which is not captured in the shorter historical loss cost data used for calculating 

base rates, can now be utilized to better assess county level weather risk and improve the 

estimation of county base rates, which in turn can reduce asymmetric information problems in 

the long-run.     
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Table 1. Hypothetical Example of Bin Classification: Soybeans in Mississippi (State=28) climate 
division 1 (1980-2009). 

State 
Climate 

Division Year 

State proxy 
flag=1 if used 
state predicted 

values Bin Classification 

No of Bins for 
the Climate 

Division 
Flag =1 if 

insignificant 

28 1 1980 0 4 10 0 

28 1 1981 0 8 10 0 

28 1 1982 0 2 10 0 

28 1 1983 0 5 10 0 

28 1 1984 0 4 10 0 

28 1 1985 0 8 10 0 

28 1 1986 0 9 10 0 

28 1 1987 0 1 10 0 

28 1 1988 0 10 10 0 

28 1 1989 0 8 10 0 

28 1 1990 0 4 10 0 

28 1 1991 0 6 10 0 

28 1 1992 0 5 10 0 

28 1 1993 0 2 10 0 

28 1 1994 0 4 10 0 

28 1 1995 0 1 10 0 

28 1 1996 0 1 10 0 

28 1 1997 0 5 10 0 

28 1 1998 0 10 10 0 

28 1 1999 0 5 10 0 

28 1 2000 0 8 10 0 

28 1 2001 0 5 10 0 

28 1 2002 0 4 10 0 

28 1 2003 0 5 10 0 

28 1 2004 0 3 10 0 

28 1 2005 0 7 10 0 

28 1 2006 0 9 10 0 

28 1 2007 0 8 10 0 

28 1 2008 0 6 10 0 

28 1 2009 0 4 10 0 

28 1 2010 0 10 10 0 

Note: The state proxy flag is equal to 1 if there are not enough observations (n>10) in the climate 
divisions to run a credible fractional regression model and calculate a predicted loss cost 
(weather index). 
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Table 2. Hypothetical Example County-level Data used for Calculating Weather Weighted 
Average Loss Costs for De Witt county (County=39), IL (State=17): Corn. 

State County 
Climate 

Division Year 
Actual Adjusted 

loss costs 
Bin 

Classification No. of Bins 
Flag =1 if 

insignificant 

17 39 4 1980 0.1237103 10 11 0 

17 39 4 1981 0.0083081 3 11 0 

17 39 4 1982 0.0040853 2 11 0 

17 39 4 1983 0.1285333 11 11 0 

17 39 4 1984 0.0081736 5 11 0 

17 39 4 1985 0 2 11 0 

17 39 4 1986 0 5 11 0 

17 39 4 1987 0 9 11 0 

17 39 4 1988 0.1321881 10 11 0 

17 39 4 1989 0.0007658 2 11 0 

17 39 4 1990 0.0031037 3 11 0 

17 39 4 1991 0.0008012 10 11 0 

17 39 4 1992 0.0006445 1 11 0 

17 39 4 1993 0.0004054 3 11 0 

17 39 4 1994 0 3 11 0 

17 39 4 1995 0.0185295 8 11 0 

17 39 4 1996 0 2 11 0 

17 39 4 1997 4.105E-05 2 11 0 

17 39 4 1998 0.0009253 8 11 0 

17 39 4 1999 0.0004244 6 11 0 

17 39 4 2000 0 4 11 0 

17 39 4 2001 0.0007537 4 11 0 

17 39 4 2002 0.0125182 9 11 0 

17 39 4 2003 9.802E-05 3 11 0 

17 39 4 2004 0.0011999 1 11 0 

17 39 4 2005 0.0031927 10 11 0 

17 39 4 2006 0.0006764 7 11 0 

17 39 4 2007 0.0020617 9 11 0 

17 39 4 2008 0.0008186 3 11 0 

17 39 4 2009 0.0026792 1 11 0 
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Table 3. Hypothetical Example of Unweighted and Weather Weighted Loss Costs at the County-
level for Boone County (county=15), Dallas County (county=49), and Grundy County 
(county=75), IA (State=19).  

State 
Climate 

Division County 
County Average loss 

costs 
Flag =1 if 

insignificant 
Weighting 

Type 

19 5 15 0.0096378 0 1 

19 5 15 0.0076921 0 2 

19 5 15 0.0028386 0 3 

19 5 15 0.0027737 0 4 

19 5 15 0.0035587 0 5 

19 5 15 0.0033862 0 6 

19 5 49 0.0100697 0 1 

19 5 49 0.0097928 0 2 

19 5 49 0.0058953 0 3 

19 5 49 0.0058029 0 4 

19 5 49 0.007514 0 5 

19 5 49 0.0075715 0 6 

19 5 75 0.0091694 0 1 

19 5 75 0.0051299 0 2 

19 5 75 0.001323 0 3 

19 5 75 0.0010593 0 4 

19 5 75 0.0044935 0 5 

19 5 75 0.0032308 0 6 
Note: Weighting type = 1 if the average loss cost is calculated with no weather weighting and no 
censoring; Weighting type =2 if the average loss cost is calculated with weather weighting but no 
censoring; Weighting type = 3 if the average loss cost is calculated with censoring at the 80th 
percentile and no weather weighting; Weighting type = 4 if the average loss cost is calculated 
with censoring at the 80th percentile and with weather weighting; Weighting type = 5 if the 
average loss cost is calculated with censoring at the 90th percentile and no weather weighting; 
Weighting type = 6 if the average loss cost is calculated with censoring at the 90th percentile and 
with weather weighting. 
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Table 4. Liability Weighted National Average (across counties) of Unweighted and Weather 
Weighted Average Loss Costs for Apples, Barley, Corn, Cotton, Potatoes, Rice, Sorghum, 
Soybeans, Spring Wheat and Winter Wheat. – table 4.9  

Crop 
No. of 

Counties 

Unweighted 
loss costs 

(no 
censoring) 

Weather 
weighted 
loss costs 

(no 
censoring) 

Unweighted 
loss costs  
(censoring 
at 80th) 

Weather 
weighted 
loss costs 
(censoring 
at 80th) 

Unweighted 
loss costs  
(censoring 
at 90th) 

Weather 
weighted 
loss costs 
(censoring 
at 90th) 

apples 140 0.1839529 0.1756118 0.1509251 0.1458255 0.1722479 0.1649113 

barley 646 0.1033683 0.0952631 0.071994 0.0677116 0.088203 0.0820236 

corn 1930 0.0505333 0.0525652 0.028726 0.0293841 0.0394102 0.0409063 

cotton 437 0.143511 0.1459077 0.1103868 0.1110684 0.1292813 0.1305584 

potatoes 128 0.083174 0.0807186 0.0659818 0.0646853 0.0752233 0.0730846 

rice 84 0.0263574 0.0251909 0.015527 0.0148564 0.0203618 0.0193536 

sorghum 750 0.1208383 0.1317581 0.0887164 0.09226 0.1079448 0.1140653 

soybeans 1523 0.0542112 0.0538458 0.0384229 0.0379807 0.0467105 0.0460899 

spring wheat 244 0.1218715 0.1171909 0.0887732 0.0872793 0.1094074 0.1063092 

winter wheat 951 0.0982152 0.0852073 0.0719574 0.065563 0.0851164 0.0759965 

 Note: These are the national average loss costs across all counties (i.e., liability weighted 
average) where the insignificance flags and state proxy flags are not equal to one. All weighted 
and unweighted loss costs for each county is available from the authors upon request. 
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Figure 1. Climate Division Boundaries and County Assignment within Climate Divisions 
 
 



 27 

 
 
 
 
 
 
 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

5

10

15

20

25

30

35

P
e
r
c
e
n
t

plcr2

 
 

Figure 2. Example Histogram with Equal Bin Widths and Variable Probabilities for Each Bin 
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Figure 3. Example of Variable Width Bins with Equal Probability for each Bin 
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Figure 4. Map of the Difference between the Unweighted Average Loss Cost and the Weather 
Weighted Loss Costs for Corn [Note: negative difference (e.g., weather weighted < unweighted) 

is in blue (0) and positive difference (e.g., weather weighted > unweighted) is in red (1).] 
 
 
 

  
  


