EMPIRICAL ANALYSIS OF BIOMASS AND ENERGY PRICE VOLATILITY

Christa Kristöfel¹, Christoph Strasser¹, Ulrich Morawetz²
and Erwin Schmid²

¹BIOENERGY 2020+ GmbH, Gewerbepark Haag 3, 3250 Wieselburg-Land, Austria; corresponding author: christa.kristoefel@bioenergy2020.eu

²Institute for Sustainable Economic Development, University of Natural Resources and Life Sciences, Feistmantelstrasse 4, 1180 Vienna, Austria

Poster anlässlich der 53. Jahrestagung der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V. „Wie viel Markt und wie viel Regulierung braucht eine nachhaltige Agrarentwicklung?“

Berlin, 25.-27. September 2013

Copyright 2013 by authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
EMPIRICAL ANALYSIS OF BIOMASS AND ENERGY PRICE VOLATILITY

Introduction
High price volatility increases costs along the supply chain and detains investments and sectoral development.

Factors and linkages in the timber and bioenergy market influencing price volatility:
- Implementation of RES policies
- Increase in biomass trade
- Fossil fuel prices
- Calamities like windfalls

Objectives
- Compute and empirically analyze historic price volatility of woody biomass.
- Analyze structural changes in price volatility to answer the question if biomass price volatility has increased over time.
- Compare the price volatility of woody biomass and fossil fuels.

Data & Method
Times series of nominal monthly prices (excl. VAT) of roundwood commodities, sawmill by-products and crude oil were analyzed.

- Detecting structural changes by using the supFtest.
- Using Mann-Whitney non-parametric rank based test to test log-differences to compare commodity price volatilities.
- Compute historic price volatility by using the standard deviation of the monthly log price differences.

Results: Historic commodity price volatility
In all analyzed times the volatility changed over time. The price volatility of firewood, log wood and pulpwod remains below 6% (Figure 1).

The volatility of firewood prices decreased in the last years; the price volatility of log wood and pulpwod increased significantly in recent years.

Conclusion
Forest owners can profit from low volatile biomass prices since they can plan the wood harvest with more certainty.

Due to the lower price volatility of woody biomass plant operators can reduce costs along the supply chain.

Future price volatility of woody biomass may be particularly affected by supply shortages. Therefore the importance of long-term supply contracts and storage of biomass will increase.

Acknowledgements
We gratefully acknowledge the financial support by BIOENERGY 2020+ in the frame of the IFSP-2 project.