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Abstract As the key technology of extracting remote sensing information, the classification of remote sensing images has always been the re-

search focus in the field of remote sensing. The paper introduces the classification process and system of remote sensing images. According to

the recent research status of domestic and international remote sensing classification methods, the new study dynamics of remote sensing classi-

fication, such as artificial neural networks, support vector machine, active learning and ensemble multi-classifiers, were introduced, providing

references for the automatic and intelligent development of remote sensing images classification.
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The extraction of remote sensing ( RS) information has always
been a tough problem. With the increasing amount of high spatial
resolution RS data, it has become a scientific issue about how to
comprehensively use various information extraction techniques and
integrate the results of multi-scale information extraction for the
better and quantitative information extraction from RS data'' >’
The key of RS information extraction lies in the classification and
identification of image objects.

The classification of RS images means to classify the pixels
by certain rules or algorithms according to their spectral signa-
tures, spatial structure or other information’. The classification
results are influenced by the complexity of ground studied, the RS
data selected, as well as the image processing and classification
methods. Affected by various factors, the RS classification has al-
ways received much attention of researchers™®’ | who have carried
out lots of studies on the techniques and evaluation of classification

performance’’ ™"’

1 Introduction to the classification of RS images
The classification of RS images is a complicated process, which

practically involves several steps as shown in Fig. 1.
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Fig.1 The classification process of RS images
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During the data processing, the classification can’t be suc-
cessful without an appropriate classification method. The classifi-
cation methods belong to different classification systems, which
are briefly described by Lu: the classification systems can be clas-
sified into supervised and unsupervised systems based on their
needs for training samples or not. The supervised classification
system includes the methods of linear discriminant, maximum
likelihood classifier, minimum distance, artificial neural network ,
Mahalanobis distance, and Parallelepiped; while the unsupervised
system includes the methods of ISODATA and K-Means cluster;
According to their use of parameters, the classification methods
are classified into the parameter classification and non-parameter
classification, the former includes the methods of linear discrimi-
nant and maximum likelihood ; while the latter includes the meth-
ods of artificial neural network, decision tree, support vector ma-
chine and expert system; According to which kind of pixel infor-
mation is used, the classification methods are divided into the pix-
el-based, sub-pixel-based and object-based types, the pixel-based
classification methods include the maximum likelihood, the mini-
mum distance, artificial neural network, decision tree and SVM;
while the sub-pixel-based classification methods include the fuzzy
set, mixed spectral classification, the object-based classification is
adopted in the eCognition software; Based on whether output is a
definitive decision or not, the methods are categorized into the
hard classification and soft classification, the former one refers to
the maximum likelihood, the minimum distance, artificial neural
network , decision tree and SVM; while the latter one refers to the

fuzzy set classification and mixed spectral classification*.

2 New techniques of RS images classification

2.1 Neural network classifier With the development of artifi-
cial neural network theory, the neural network technique has be-
come an effective means to process RS images. Various forms of

neural networks have been developed by the researchers both at
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home and abroad, including the back-propagation network, fuzzy
neural network, multi-layer perception network, Kohonen self-or-
ganizing feature map, Hybrid learning vector hierarchial network,
Hopfield network and ART ( Adaptive Resonance Theory) model ,
and so on. The neural network has been widely adopted in the
classification of RS images'® ™. Given that the RS classification
by neural network relies on both the quality and quantity of train-
ing samples, it has several problems, such as the slow conver-
gence speed, falling into local minima and unstable network mem-
ory. Qian Yao adopted the genetic algorithm to optimize LVQ neu-
ral network for RS classification’” ; Xue Wan employed the im-
proved RFB neural network algorithm to the classification of high
resolution RS images'""'. The research of ANN focuses on the se-
lection of appropriate network structure (the optimal number of
hidden layers and hidden nodes) and training rules, so as to ob-
tain better classification results. Nowadays, the combination of
ANN with other theories and techniques, including expert system,
fuzzy mathematics, evolutionary algorithm, images fusion tech-
nique, and geoscience knowledge, has become one of the focus of

]

RS classification study'”’. The fuzzy set theory and fuzzy neural

network realize the effective classification and recognition of RS

[13]

images objects ~'. ANN is combined with geoscience knowledge

and images fusion technique to improve the precision and speed of
[14]

RS classification' ™. Xusheng Liu well classified the RS images of

forest vegetation by the BP neural network with the Landsat 7 ETM
+ RS data and forest resources distribution map'"’.
2.2 SVM As a type of machine learning algorithm based on
statistical learning theory, the SVM seeks to find out the optimal
separating hyperplane from the high-dimension feature space so as
to solve the classification problems of complex data. The SVM
technique has been widely used in the classification of RS images
because of its convenience , stability and high precision'®’. SVM,
in comparison with the maximum likelihood method, neural net-
work and decision tree, is much more stable in its precision and
can use smaller training data set and high-dimension space da-
ta'”’. Based on the traditional classification, Zhong Chen pro-
posed a multiple classifier system with a mixed combining rule for
decision not a single rule to improve the classification accuracy,
and applied SVM to the high resolution RS images classifica-
tion. ')
One of the key factors influencing the performance of SVM
method lies in the selection of kernel functions, which determine
different non-linear transformation and feature spaces, as well as
influence the classification accuracy. Thus, the kernel functions
should be reasonably selected, improved and optimized, and they
are now commonly selected and optimized by the genetic algorithm
and immune genetic algorithm in practical application.

SVM itself can only be used for binary classification, and the
common multi-classification methods include the OAO, OAA and
DAG methods. The studies about SVM multiclass classification

strategies are now in progress. Hsu proposed a "one-shot" strate-

gy, which searches to solve the problem of complex optimization

and integrate multiclass classification into one SVM''. Melgani
used two multiclass strategies of BHT-BB and BHT-OAA based on
the binary tree, and improved the speed of multiclass classification
but reduced the cumulative error of integrating multiclass classifi-
) Chen introduced the dual decision tree into the SVM
and proposed that the solving time of new multiclass strategy was
(N -=1), while that of OAO was N(N —1)/2. The times of cal-

culation is reduced and the efficiency is improved'’.

cation

According to the multisensor and multi-temporal data, as well
as the high-dimensional space classification of SVM, the studies
on the combination of data infusion and SVM have achieved great
process. Waske integrated the SAR, Landsat TM and SPOT data
for the decision classification of SVMs, and gained a classification
result which had higher accuracy than that of any single data
source'™!. The classification of high space resolution RS images
based on the multi-source information integration of SVM'> has a-
chieved good result. Lingmin He studied the selection of support
vector machine in RS images classification model, including the
selection of multiclass model and kernel functions; she also com-
bined the geography-aided data with the vegetation index and
spectral data, which was proven by results to have greatly im-
proved the accuracy of multi-source land use/cover classification
based on support vector machine™.

The researchers put their focus on improving both the accura-
cy and speed of SVM classification, and new SVM classification
algorithms keep arising. According to Bayesian minimum error de-
cision method, Mantero introduced the SVM into the estimation of
probability density and proposed to apply it to the classification of

51 Bruzzon intro-

RS images under limited ground reference data
duced the transductive learning into the SVM RS images classifica-
tion, and incorporated both labeled and unlabeled samples in the
training phase. In the experiment of TM images classification, the
results had higher precision than that of traditional SVM classifica-
tion™'. Castillo proposed Boostrapped SVM, and removed the in-
accurate training samples from the training set, and then redis-
tributed the new labels and added them into the next loop of train-
ing set'™. Demir classified the high-spectral RS images by the re-
lated vector machine, which reduced the calculation amount and
improved the classification speed™’. In addition, the studies ai-
ming at decreasing sample data and improving the reliability of
training have also received much attention™’ .

The SVM study has always focused on the construction of ker-
nel functions, the selection of parameters, the multiclass strategies,
the optimization of algorithm and the improvement of SVM con-
straints, while the further study of these issues will also be benefi-
cial to effectively transform the RS data into useful information ™.
2.3 Active learning With the very few labeled training sam-
ples and a number of unlabeled data in the classification of RS im-
ages, it has become a hot topic about how to use the large amount
of unlabeled samples for learning and improve the classification
performance.

The traditional supervised learning is based on the labeled
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sample set and induces a model for separation. In practical appli-
cation, it is quite difficult and time-consuming to label samples.
While the active learning, as a new method of sample training, is
completely different from the passive learning method based on
randomly selected samples, its learner selects and then labels
some representative data as training samples. The method is
guided respectively by the learning and selection acting, which
gradually improves the performance of base classifier after several
times of loop'™"'. The active learning has received a wide attention

[32-34] Jian-

because of its applicability in RS images classification
jie Chen proposed a new active learning method based on the mul-
ticlass Classification SVM, which, based on the initial training set
with few labeled samples, finds out the best samples for SVM clas-
sifier as the support vector by the means of iterative active learn-
ingngJ .

The semi-supervised classification technique, as a present re-
search focus of machine learning, is the mainstream learning

method exploiting the unlabeled samples™ .

By introducing a
large number of unlabeled samples, the accuracy of classification
is greatly improved, and thus the objects can be much more easily

13031 " Based on self-training, co-training and low-den-

recognized
sity separation, Wei Yang built initial classifiers using labeled
samples, then improved themselves using unlabeled samples re-
cursively. The results showed that it could get higher accuracy
than that based on supervised learning™’. Considering the SAR
images with limited quantity of labeled samples, Rong Chen pro-
posed a method Best vs second-best (BvSB) active learning to ex-
plore examples that are the most valuable to current classifier mod-
el for labeling, built a better initial training set, and carried out
semi-supervised training by the constrained self-training (CST) ,
which effectively reduced the quantity of labeled samples needed
for classifier training, and gained higher accuracy and better ro-
bustness'””’

2.4 Multi-classifier ensemble The studies have proven that
there is no one best classifier for all classification problems, thus
it is difficult to find the best classifier, and the classification per-
formance of single classifier cannot be effectively upgraded”™’'. The
existing classification algorithms are combined together with appro-
priate methods to improve the classification precision of RS images
by the complement of different classifiers. The research and appli-
cation of ensemble learning technique has become one of the re-
search focus of current RS classification. As a model of machine
learning, the ensemble learning can obtain different types of clas-
sifiers and then combine them together according to certain rules to
solve one problem, which can effectively improve the generaliza-
tion of the learning system. Three steps are involved in the design
of the ensemble learning method: first, the generation of base
classifiers. The different base classifiers are trained on different
training data subset which are produced through the processing of
original data set. Second, the selection of base classifiers. The
optimal classifiers are selected according to certain rules for en-

semble classification. Third, the ensemble of base classifiers.

The present studies of multi-classifier ensemble mainly focus
on above three aspects. Boosting and Bagging are the most com-
monly used ensemble methods. Hatami trained the different classi-
fiers by the Boosting method and combined the classifiers by the
Stacking method, which greatly improved the classification accura-
cy'™’. However, the over-emphasis of samples will lead to the sit-
uation of over-fitting and the sensitivity to noise. Random Forest
(RF), a classification and prediction model proposed by Breiman
in 2001, is composed of several decision trees, which jointly de-
termine the classification results. Several samples are extracted
out from the original samples by bootstrap method, and a model is
built for the decision tree of every bootstrap sample subset, and fi-
nally the results of several decision trees are integrated using vot-
ing to obtain the final classification. The RF has achieved high ac-
curacy of classification in application of RS image'™ ™.

Yanchen Bo carried out a study of RS classification by using
the multi-classifier ensemble method based on multiple stand-
ards'®). Zhenglin Peng selected the three classifiers of Mahalano-
bis distance, SVM and Maximum Likelihood as the sub-classifi-
ers, and combined them with the simple voting, maximum proba-
bility classification method and fuzzy integral method according to
custom rules, which greatly improved the overall classification ac-
curacy™’. Chungan Li proposed three multiclassifier combination
methods, include voting rule, Bayesian mean and fuzzy fusion
rule, a new fusion approach named voting-fuzzy rule was devel-
oped, which synthesized conservative voting rule and fuzzy fusion
rule, whose classification results are greatly improved than that of

]

single classifier®’. Yongcong Ma designed two multi-classifier

[46]

ensemble models by the genetic algorithm Haibo Yang pro-
posed a hybrid multi-classification algorithm based on the optimal
subclassifier, Bagging algorithm and maximum confidence inter-
val*" .

The multi-classifier combination refers to improve the recog-
nition performance with large quantity of base classifiers and still
has several problems, for example, firstly, the use of many classi-
fiers will result in large costs of calculation and storage ; secondly,
the difference among the classifiers will be decreased with the in-
creasing number of base classifiers. Thus, how to select the opti-
mal one from so many classifiers has become a tough problem, and
the researchers should study the diversity measurement of classifi-
ers® ™1 Tt is hoped to find out the associated metrics of certain
classifiers to ensemble the multi-classifier system.

2.5 Contextual classifications The classification based on the
contextual information means to improve the classification results
based on the spatial information between pixels by the Markov
Random Fields (MRF) , spatial statistics, fuzzy logics and neural
network technique™’. The method added the contextual informa-
tion into traditional classification method as additional waveband.
The contextual classifiers based on MRF model is commonly used,
which can effectively enhance the classification accuracy”™’'. Hui
Zhou proposed to ensemble the multi-layer contextual information

for the classification of high-resolution RS images, and the contex-
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tual information was used at three stages from simple part to com-
plex global, which gradually improved the classification results
and realized the high-resolution objects classification™ .

The existing classifiers are mostly proposed for the classifica-
tion of pixels, while the pixels and objects are different in both
their size and contents, especially in their information, so how to
construct a high-efficient semantic classifier with the contextual in-

formation still needs to be further studied.

3 Research trend of RS images classification methods
The classification of RS images is not only a key technique of RS
images interpretation, but also an important research direction in
the field of remote sensing. In recent years, the RS classification
mainly develops in two directions. Firstly, new RS classification
methods, such as neural network, support vector machine, fuzzy
set theory, immune algorithm'™’, etc. , are proposed and con-
structed; secondly, diverse classifiers are integrated and com-
bined. Nowadays, the research of RS images classification meth-
ods mainly focuses on the following aspects: firstly, the machine
learning algorithm is combined with the RS classification, active
learning, semi-supervised learning, ensemble learning technique
and traditional RS classification methods, and the existing algo-
rithm or related new algorithms are continuously improved so as to
improve the classification efficiency, learning speed and generali-
zation of RS images classification; secondly, according to practical
application, the geographical information, together with the GIS
and multi-source RS data combination, should be carefully studied
so as to realize the classification of high-resolution images; third-
ly, the ensemble of multi-classifier has achieved good classifica-
tion results through the ensemble learning technique and the com-
plementary information of each base classifier. But how to obtain
the base classifiers with great difference, and evaluate their differ-
ence as well as the ensemble of each base classifiers still need to
be further studied.

4 Conclusion

As the sensor technique, aeronautic and astronautic technique,
and data communication technique develop rapidly, modern RS
technology has been uplifted to a new stage of dynamic, rapid,
multi-platform, multi-phase and high-resolution earth observation.
The application of RS technology has been further expanded, the
RS information is becoming richer and richer, and the require-
ments for the precision of RS classification are gradually impro-
ving, thus, the traditional classification method cannot meet the
requirements for classification accuracy. The theory and methods
of artificial intelligent, pattern recognition and machine learning
are improved, and new methods and technology continue to arise,
which all provide a wide space for the research of intelligent and

high-resolution RS classification methods.
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