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DOES CONSISTENT AGGREGATION REALLY MATTER? 

 

Abstract 

Consistent aggregation assures that behavioral properties, which apply to disaggregate relationships also, apply 

to aggregate relationships.  The agricultural economics literature is reviewed which has tested for consistent 

aggregation or measured statistical bias and/or inferential errors due to aggregation.  Tests for aggregation bias 

and errors of inference are conducted using indices previously tested for consistent aggregation. Failure to reject 

consistent aggregation in a partition did not entirely mitigate erroneous inference due to aggregation.  However, 

inferential errors due to aggregation were small relative to errors due to incorrect functional form or failure to 

account for time series properties of data.   
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DOES CONSISTENT AGGREGATION REALLY MATTER? 

“[I]t is no longer useful to assume that ‘truth’ exists at some level, and that an analogous system 
may be fitted at another level, followed by an inquiry into the connection between the fitted 
values of the analogous system and the underlying ‘truth.’  A seminal idea . . . suggests that 
there are different ‘truths’ at different levels of aggregation, and that they are connected by both 
the aggregation rules and the properties of the distribution of the microvariables.  I think that 
when we come to know more, we shall find that good monthly and annual models do not really 
look alike, and that there is rhyme and reason for this difference.” (Griliches, 1972, p. 37). 

 

During the last two decades considerable attention has been given to the question of consistent 

aggregation of agricultural data.  The primary goal is to facilitate analysis and inference with aggregate data and 

aggregate models.  Mistakes due to aggregation are to be avoided, and consistent representative agent and/or 

multi-stage choice modeling is to be enabled.  While few have any illusions that the true model structure can ever 

be identified, improved model specification is certainly sought in which the behavioral properties that apply to 

disaggregate relationships also apply to the aggregate relationships. 

While the benefits of using aggregate data are often substantial, the costs can also be high and their 

magnitudes are generally unknown.  One of the reasons the magnitudes are unknown is because of a disconnect 

in the literature.  The literature reporting empirical testing for consistent aggregation with agricultural data has 

generally concentrated on commodity-wise aggregation while the literature focusing on the errors created by 

aggregation has primarily addressed aggregation across firms and individuals.  In addition, the latter has seldom 

differentiated in their measurements between data sets that satisfy sufficient conditions for consistent 

aggregation and those that do not.  Consequently, missing from both sets of literature is an explicit assessment of 

whether consistent aggregation really matters.  What are the effects of inconsistent aggregation on econometric 

results and policy implications?  Is it important whether individuals, firms, inputs, or outputs are grouped in 

ways that are consistent with the implications of empirical test results, whether they are disaggregated, or 

whether they are grouped for convenience or pragmatic reasons?  What are the practical effects of inappropriate 

aggregation on economic inference? 

We seek some preliminary answers to these questions in this paper.  We first proceed by documenting 

the historical attention given to the issues of consistent aggregation, incorrect aggregation, and the problems of 

drawing policy-relevant inferences from analyses with aggregate data.  We then introduce a testing procedure 
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adapted from Lee, Pesaran, and Pierse (1990) to determine whether consistent commodity-wise aggregation 

really matters statistically and economically, conduct tests on U.S. agricultural production data for which 

consistent commodity-wise aggregation tests were previously conducted, draw inferences, and conclude.   

 

Problems Due to Inappropriate Aggregation  

The problem of aggregation has been explored from various viewpoints.  They have included theoretical 

works that identified restrictions on either technology (preferences) or data, which enable the representative agent 

framework to be applied to aggregate commodities.  A few of the prominent authors in this area are Hicks 

(1936), Leontief (1936, 1947), Gorman (1964), Green (1964), Barnett(1979), and more recently Chambers and 

Pope (1996), and Lewbel (1993, 1996).  They have also included a variety of empirical works.  Some of the 

latter tested for satisfaction of the restrictions for consistent aggregation in various data sets.  Others considered 

ways to empirically incorporate heterogeneity across individuals or commodities into the aggregate analysis or 

examine the effects of failing to do so.  Some of the prominent authors pursuing this approach are Theil (1954), 

Grunfield and Griliches (1960), and more recently Stoker (1986), Pesaran, Pierse, and Kumar (1989), 

Hildenbrand (1998), and Just and Pope (1999).  This literature has often split along two different objectives:  

aggregate prediction and aggregate parameter estimation. 

In this section, we first identify sufficient conditions for aggregation that enable consistent multi-stage 

choice with aggregate commodities or representative agent representation of multiple firms or consumers.  We 

then address two sets of empirical literature in agricultural economics.  The first reports test results for consistent 

aggregation.  The second measures mistakes from aggregation generally without regard to whether the 

aggregates provide empirical evidence that they satisfy sufficient conditions for consistent aggregation. 

Theoretical Restrictions Enabling Consistent Aggregation 

Sufficient conditions for commodity-wise aggregation.  Commodity-wise aggregates exist and enable 

consistent two-stage choice models to be optimized if any one of four sufficient conditions is satisfied -- Hicks 

composite commodity theorem, Leontief composite commodity theorem, homothetically separable production or 

utility function, or generalized composite commodity theorem.  The Hicks composite commodity theorem is 

satisfied for a commodity (output and/or input) subset if the prices of all items in the subset move in exact 
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proportion over the data sample.  The Leontief composite commodity theorem is satisfied for a commodity 

subset if the quantity ratios of all items in the subset move in exact proportion over the data sample.  Homothetic 

separability is a structural property of the production (or utility) function and is satisfied for a subset if the 

marginal rate of substitution of all pairs of items within the subset are homogeneous of degree zero in the 

quantities of items within the subset (so the subset is homothetic in its quantities) and also independent of the 

quantities of all items outside the subset.1  The generalized composite commodity theorem recently discovered by 

Lewbel (1996) relaxes the rigid conditions of the Hicks composite commodity theorem.  To be consistent with 

this theorem, the price ratios may vary across observations as long as the distribution of the ratio of the 

commodity price to the group price is independent of the level of the group price.  That is, the relative difference 

between the individual commodity price and the aggregate commodity price must be independent of the 

aggregate commodity price.  The three composite commodity theorems impose alternative restrictions on all 

observations in the data series while homothetic separability imposes restrictions on the technology or utility.  

Satisfaction of any one of the four is a sufficient condition for consistent commodity-wise aggregation. 

Sufficient conditions for agent-wise aggregation.  A number of sufficient conditions exist for 

consistently aggregating across agents (firms, individuals).  Chambers (1988) identifies sufficient conditions for 

both linear and nonlinear aggregation across firms.   

Aggregation across firms is most often sought by linear aggregation such as summing output and/or 

input quantities and averaging prices across the firms.  In this case, the sufficient conditions for consistent 

aggregation are highly restrictive.  Consistent linear aggregation in the long run is assured only if each firm 

produces the same output level using a technology characterized by constant returns to scale.   

Sufficient conditions for consistent nonlinear aggregation across firms are less stringent but still 

demanding.  Each firm’s cost function must be quasi-homothetic.  Marginal cost does not have to be identical 

across firms or independent of firm-level output, but each firm-level production function must be a transform of 

a linear homogeneous function.  Input requirement sets must be parallel across firms.   

                                                
1 The subset is weakly separable if the second condition is satisfied but the first condition is not.  A weakly separable 

production function is sufficient for the existence of a consistent quantity aggregate for the subset, but it does not imply the 
existence of a corresponding price aggregate which would be required to conduct consistent two-stage choice. 
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Identical technologies are treated in some empirical literature as a sufficient condition for consistent 

aggregation across firms.  However, as Chambers notes, that alone is not sufficient for linear aggregation. 

Empirical Tests for Consistent Aggregation in Agricultural Data 

Considerable research has been devoted to testing whether any of the sufficient conditions for consistent 

commodity-wise aggregation hold in agricultural data.  A wide variety of outputs and inputs have been included 

in these tests.  Most tests used production data.  Considerably less empirical testing has used food (or 

agricultural) consumption data.  Even less empirical testing has been reported for consistent aggregation across 

agricultural firms or individuals.  

A variety of procedures have also been used.  For consistent commodity-wise aggregation, they include 

parametric and nonparametric testing for weak separability and homothetic separability and time series testing 

for generalized composite commodities. 

Literature surveyed.  A survey of 10 agricultural economics journals since 1984 was conducted to 

identify articles that conducted empirical tests for consistent aggregation.  The journals included Agricultural 

Economics, American Journal of Agricultural Economics, Australian Journal of Agricultural and Resource 

Economics, Canadian Journal of Agricultural Economics, European Review of Agricultural Economics, 

Journal of Agricultural Economics, Journal of Agricultural and Applied Economics, Journal of Agricultural 

and Resource Economics, Review of Agricultural Economics, and Review of Agricultural and Resource 

Economics 

Nineteen articles were found in the survey period that reported such tests.  In addition, we are aware of 

three earlier articles.  All 22 are listed in Table 1.  They included 20 articles that tested for consistent 

commodity-wise aggregation, one that tested for consistent aggregation across units of production (actually 

across already aggregated units of production), and one that tested for both.  Of those that tested for commodity-

wise aggregation, eight tested for weak separability, 11 tested for homothetic separability, and two for 

generalized composite commodities; 17 conducted aggregation tests in agricultural production models and four 

in food demand models; 17 used parametric testing procedures and four used nonparametric procedures.  All 

tests in production models, including those for spatial aggregation, used data that was already highly aggregated 

across firms.  The aggregation tests across production units were conducted using state-level data.  Most of the 
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commodity-wise aggregation studies used state-level or national data.  Only two production studies conducted 

commodity-wise aggregation tests using data aggregated to less than state-level areas.  One demand study 

conducted tests on fully disaggregated individual decision data. 

Commodity-wise aggregation test results.  Of individual studies that conducted several tests of 

consistent aggregation, almost all rejected the hypothesis of consistent aggregation of some categories and failed 

to reject the hypothesis for others.  There was little evidence of a clear pattern concerning the types of categories 

that were not rejected for one data set and those that were not rejected in other data sets.  

Examining the studies collectively, empirical tests of the hypothesis that all outputs could be 

consistently aggregated into a single index were reported with 61 data sets.  Of these tests, 64% rejected the 

hypothesis, 33% failed to reject, and 3% were ambiguous. More than 550 separate empirical tests of the 

hypothesis that a subset of outputs could be consistently aggregated into an index were reported.  Of these tests 

58% rejected the hypothesis, 41% failed to reject, and 1% were ambiguous.  Of 56 tests of the hypothesis that all 

inputs could be consistently aggregated, 46% rejected the hypothesis and 54% failed to reject.  These same 

percentages of rejections and failures to reject also applied to more than 200 tests of the hypothesis that a subset 

of inputs could be consistently aggregated into an index.  Although there were differences in rates of rejection 

among output and input aggregation and among total and subset aggregation, a substantial proportion of 

aggregates were rejected and a substantial proportion were not rejected in each. 

More of a pattern emerged when the evidence was examined relative to test procedure.  Of 132 

parametric tests of weak or homothetic separability, 84% rejected the consistent aggregation hypothesis.  

Unfortunately, the parametric tests also maintained an auxiliary functional form hypothesis.  Consequently, when 

the test rejected the hypothesis, it was not possible to know whether the hypothesis of homothetic separability 

was rejected or whether the specific functional form was rejected.  

Since the nonparametric tests did not maintain specific functional forms, we would expect them to result 

in rejection less frequently.  Our finding was consistent with that expectation.  Of nearly 750 nonparametric tests 

of separability, only 52% rejected the consistent aggregation hypothesis.   

Although we had no a priori basis for expecting a smaller or larger percent of rejections of homothetic 

separability than of the generalized composite commodity theory, the latter resulted in the smallest frequency of 
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rejection.  Of 30 time series tests of the generalized composite commodity theorem (GCCT), none rejected the 

consistent aggregation hypothesis, but only 2/3 of the tests resulted in a clear failure to reject.  The rest of the 

GCCT test results were ambiguous.  Thus, the parametric tests of separability led to the largest proportion of 

rejections, and the time series tests of the GCCT led to the smallest proportion of clear, and even ambiguous, 

rejections. 

Finally, comparing test results for national and world boundaries vs. state and sub-state areas revealed a 

higher level of rejection (59%) for the states and sub-states than for the nations and world (34%).  However, we 

should note that the distribution of tests varied greatly among geographic types.  All of the GCCT tests were 

conducted on national and world data sets.  Although a smaller share of the separability tests was nonparametric 

for national and world data than for state and sub-state data, the share of nonparametric plus GCCT tests was 

slightly larger for national and world data than for state and sub-state data. 

While the percent of rejections varied most by test procedure, they also varied considerably between 

outputs and inputs and between national and state areas.  These empirical findings consistently reflect one 

conclusion -- there is no obvious empirical generalization (or stylized fact) about consistent aggregation of 

agricultural data.  Except for the GCCT tests, all of the above classifications included considerable proportions 

of both rejections and nonrejections of the consistent aggregation hypothesis. 

Agent-wise aggregation results.  Both studies that tested for consistent geographic aggregation 

rejected the hypothesis in each data set.  Although they used different approaches, both tested for consistent 

aggregation across states.  The hypothesis was rejected even for pairs of states. 

Aggregation Mistakes  

Other empirical literature has attempted to measure the mistakes made by aggregation.  It appears that 

few have also conducted tests to determine whether the data satisfied sufficient conditions for consistent 

aggregation.  In this section we note nine such articles from the agricultural and resource economics literature.  

Only one also conducts tests for consistent aggregation.  Most use actual data observations, but a few of the 

applications are based on Monte Carlo simulation. 

Buccola and Sil (1996) found evidence of substantial negative representative-agent aggregation bias in 

productivity growth.  They conducted a Monte Carlo simulation based on data for four food manufacturing 
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industries -- meat processing, dairy, baking, and beverage -- that operated with nonjoint technologies.  Using 

base data, the aggregate estimate of productivity growth underestimated the true growth rate by 28%.  For some 

other scenarios, the underestimate was as high as 88% and never lower than 21%.  

Hellerstein (1995) found that the bias in consumer welfare measures from aggregation within travel cost 

models was frequently less than the bias from distributional errors in limited dependent variable models of travel 

cost which used individual observations.  Like Buccola and Sil, his analysis was based on Monte Carlo 

simulations.  He found that the aggregation bias was generally greatly reduced by including distributional 

information in the aggregate model.  He included the distributional covariance matrix in the modified aggregate 

model such that the variances and covariances were included along with the aggregated means in the set of 

regressors.  

Reed and Riggins (1981) reported that estimation of corn acreage response in Kentucky was improved 

by disaggregating the data into 14 sub-state regions. Statistical fit was greater, and parameter signs were more 

frequently consistent with expectations. 

Park and Garcia (1994), on the other hand, found little loss in predictive accuracy by modeling Illinois 

corn and soybean acreage response at the state level rather than at the substate, crop reporting district, level.  In 

addition, they observed that the state-level model provided estimates more consistent with expectations. 

Like Park and Garcia, Arnade and Davison (1989) reported little adverse effects from aggregation bias 

in their analysis of U.S. soybean export data.  Their aggregate model included worldwide demand for U.S. 

soybean exports while their disaggregate models were six major importing countries and regions.  Although one 

of the conditions was violated for consistently aggregating the data to a single equation, the distortions from 

aggregation were smaller than the distortions from incorrect simultaneity assumptions. 

Paul (1999) noted that aggregate time-series data told the same story as disaggregate cross-sectional 

data about the reasons for increased concentration in the meat packing industry.  She found little evidence of 

excessive profits being generated by the meat packing plants and firms.  Instead, both analyses revealed that cost 

economies, which were primarily transmitted to suppliers of cattle and demanders of meat products, appeared to 

be the primary cause of increased concentration. 
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Shumway, Saez, and Gottret (1988) also found little impact from aggregation bias in their analysis of 

U.S. agricultural production.  When output supply and input demand estimates for 10 farm production regions 

were aggregated to the national level, few elasticities differed by more than a magnitude of 0.1 from those 

estimated using national data.  

Although not statistically significant, Thomas and Tauer  (1994) found evidence that linear aggregation 

across inputs impacted estimated technical efficiencies of New York dairy farms.  However, their nonparametric 

procedure was considerably more sensitive to the number of input categories included in the analysis than to 

improper aggregation.  

Davis  (1997) found evidence of statistically significant commodity-wise aggregation bias in his study of 

the demand for cigarette leaf tobacco by the U.S. tobacco industry.  The economic implication of the bias was to 

erroneously conclude that domestic and foreign tobaccos were substitutes rather than complements.   

What implications can be drawn from these nine diverse studies?  Of the cited studies, seven focused on 

representative agent or geographic aggregation and two considered commodity-wise aggregation.  One found 

very large mistakes from representative agent aggregation (some of which approached 90 percent).  Another 

found statistically significant evidence of commodity-wise aggregation bias that resulted in an important error of 

economic inference.  A third found that estimation was improved by using agent-wise or geographically 

disaggregated data.  The remaining six either found little error of inference created by the aggregations or they 

found that the error created by other common mispecifications exceeded those from aggregation.  A majority of 

the studies found little inferential error because of the aggregations. 

However, recognizing that some studies found substantial errors due to aggregation, it is important to 

also note the observation of one article that representative agent aggregation bias was generally greatly reduced 

by including distributional information about the individual agents in the aggregate model.  This observation 

echoes earlier findings by Blundell, Pashardes, and Weber (1993), Stoker (1986), Simmons (1980), Blinder 

(1975),  and even a 1937 article by Staehle.  It is also consistent with the recent recommendations by Just and 

Pope (1999) for dealing in a practical way with the seemingly pervasive problem of inconsistent aggregation 

across firms.  They develop theoretical insight as well as a call for minimal improvements in data collection 
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procedures to make feasible the practical recommendation of including “second own- and cross-moments of 

producer characteristics” in aggregate supply and demand specifications. 

Empirical Tests for Aggregation Bias 

We now turn to our own empirical tests.  We first introduce a procedure for testing for the presence of 

commodity-wise aggregation bias.  It is adapted from Lee, Pesaran, and Pierse (1990).  The test is applied to two 

aggregations in a data set that has been extensively tested for consistent aggregation.  One of the aggregates 

received clear and unambiguous empirical support by the previous tests.  The other aggregate was only partially 

(ambiguously) supported. 

Theoretical Framework  

At some low level of aggregation, the tenets of economic theory are presumed to be untainted by 

aggregation.  At that level consider the netput share equations associated with an explicit functional form 

(translog) of the variable profit function, 

(1) 
m n

i io ij j ij jj 1 j 1
y p z i 1, . . ., mi          β β γ ε= == + + + =∑ ∑  

where yi is the variable profit share of netput i (positive for an output, negative for an input), pj is the log of the 

price of netput j, zj is the log of a fixed factor or other exogenous variable, and εj is the disturbance terms with 

conditional expectation zero.  The netputs are indexed by i∈D = {1, 2, … , m}, so there are m disaggregate 

netputs.  By assumption, equation (1) satisfies all the properties coming from a well-behaved translog variable 

profit function.  These include the following restrictions on the parameters, which result from linear homogeneity 

in prices of a twice continuously differentiable profit function: 

. ,0 ,0 ,1 jiijij

m

1iij

m

1iio

m

1i
β=β=γ=β=β ∑∑∑ ===   In addition, equation (1) must be consistent with convexity 

and monotonicity of the profit function in prices.  These latter conditions are only local properties of a translog 

profit function and are dependent on the magnitudes of p and z.  Now the question of interest is what happens to 

this system if a subset of the equations in (1) is aggregated together?  Specifically, what theoretical properties are 

retained?  What econometric results are retained? 

To answer the above questions requires additional notation.  Let there be an aggregate indexing set I = 

{I1, I2, … , IM} ⊆  D, such that Ir ⊆  D for any r = 1, … , M ≤ m.  For example, the I set could be I = {{1,2}, {3,4}} 
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so I1 contains the first two netputs, I2 contains the third and fourth netputs, M = 2, and m =4.  When researchers 

consider aggregating quantities, it is common to also construct an aggregate price index to correspond to the 

aggregate quantity index.  Operationally, what is done, perhaps tacitly, is that equations are aggregated together 

and the individual prices of the aggregate quantity are replaced with the aggregate price index.  Ultimately it does 

not matter the order in which these operations are done, but in our case it is more enlightening for econometric 

reasons to first replace disaggregate prices with their associated aggregate price index and an explicit 

aggregation error and then aggregate over equations. 

Following Lewbel (1993, 1996), let the log of the aggregate price index be Rr, then the deviation of the 

log of the disaggregate price from xj can be defined as ρj = pj – Rr for j∈Ir,  so 

(2) j r jp R p= +  

The term ρj can be considered a measure of price aggregation error.  Note that equation (1) can always be written 

equivalently using (2)  

(3) 
M n

i io ir r ij j ij j ij jr 1 j I j 1 j I
y b R p z i 1,2, ,mi    β β γ βρ ε= ∉ = ∈= + + + + + = …∑ ∑ ∑ ∑  

where ∑ ∈ β=
rIj ijirb , r = 1, 2, … , M.   

There are three ways a subset of the equations in (3) can be aggregated for empirical purposes.  Two of 

these are basically linear aggregation schemes and one is a nonlinear aggregation scheme.  The first linear 

aggregation scheme is to just add together the i∈I equations and carry along the aggregation errors.  This will be 

referred to as the empirically aggregated system procedure and is not based on any underlying theory.  The 

second linear aggregation scheme is to employ the generalized composite commodity theorem (GCCT) of 

Lewbel (1996).  It also involves adding together the i∈I equations in the system (3), but in this case the 

aggregation errors are part of the disturbance term and are well behaved.  This will be referred to as the 

generalized composite commodity system.  The nonlinear aggregation scheme employs the theory of weak 

separability (explicitly homothetic separability) to generate the aggregate system.  As Lewbel discusses, and is 



 11

not difficult to show, the aggregation errors disappear because of the restrictions on the technology.  This system 

will be referred to as the homothetic separability system.2  

Because of their structure and implications for the aggregation error term, all three of the above systems 

can be nested within a generalized version of the empirically aggregated system and recovered by imposing 

certain parameter restrictions.  Aggregating the i∈I equations in system (3) gives this generalized system.   

 
(4.1) 

M n
s so sr r sj j sj j sj jr 1 j I j 1 j I

Y b B R b p z s 1,2, ,Ms   E       Γ δρ= ∉ = ∈= + + + + + = …∑ ∑ ∑ ∑  

(4.2) 
M n

k ko kr r kj j kj j kj j kr 1 j I j 1 j I
y b R p z             k I= ∉ = ∈=β + + β + γ + δρ + ε ∉∑ ∑ ∑ ∑ .  

The empirically aggregated system is obtained from (4.1) and (4.2) by imposing the following restrictions:  

s s s r s
sj sj kj kj sj ij sr ir ij sj iji I i I i I j I i I

=b , b ,b , B b , and .∈ ∈ ∈ ∈ ∈δ δ = = β = = β Γ = γ∑ ∑ ∑ ∑ ∑   Of course, Es = 
s

ii I
.∈ ε∑   

The generalized composite commodity theorem is based on the idea that the aggregation errors are well 

behaved and do not affect the parameter estimates, so the aggregation errors can either be included in the model 

or absorbed into the error term and the estimated parameters should not change significantly.  Stated 

alternatively, this means that imposing the restrictions δsj = 0 and δkj = 0 or δsj = bsj and δkj = bkj will have no 

significant impact on the other parameters of the model.  As is well known, this is true if the omitted variables 

are independent of the other variables in the system, which is what the GCCT requires.  Here the generalized 

composite commodity system will be considered the system (4) with δsj = 0 and δkj = 0, and the empirically  

aggregated system is considered the system where δsj = bsj and δkj = bkj.  As an aside, if one is interested in the 

components of the aggregate parameters within the empirically aggregated system, they can be determined from 

the aggregation error parameters, bsj and bkj.  This is not the case when the restrictions δsj = bsj and δkj = bkj are 

not imposed or the aggregation errors are omitted. 

                                                
2 The implicit assumption made throughout is that the underlying translog profit is a second order flexible 

approximation to the true profit function.  As is well established by Blackorby, Primont, and Russell, and Denny and Fuss, if this 
function is homothetically separable then this imposes certain (linear and/or nonlinear) restrictions on the profit function and 
hence net share functions.  In particular, the profit function must either be a Cobb-Douglas of translog aggregates or a translog of 
Cobb-Douglas aggregates.   
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The aggregation errors do not appear under weak separability.  Thus, as indicated by Lewbel, a test for 

weak separability using only aggregate data and the aggregation errors is a test of the joint restrictions δsj = 0 and 

δkj = 0.  Consequently, the homothetic separability system is equivalent to imposing these restrictions in (4.1) 

and (4.2) and is observationally equivalent to the generalized composite commodity system.  For this reason, the 

system with the restrictions δsj = 0 and δkj = 0 imposed will be referred to as the theoretically consistent 

aggregate system. 

Equation (1) above possesses the properties of symmetry and homogeneity.  These properties also carry 

over to all three aggregate systems, as shown by Lewbel (1993, 1996).   

Theorem (Lewbel 1993 and 1996):  If the disaggregate system (3) satisfies symmetry (βij = βji) and 

homogeneity ( )m m m
io ij iji=1 i=1 i=1

ß =1, ß =0, and ? =0∑ ∑ ∑ , then the aggregate system (4) will also satisfy symmetry 

and homogeneity:  
M

rs sr rj jr ij ji so ios=1 i I
B = B , b = b , ß =ß , b + b =1,  ∉∑ ∑  

M M M
sr ir sj ij sj ijs=1 i I s=1 i I s=1 i I

B + b =0, b + ß =0, G + ? =0.  ∈ ∉ ∉∑ ∑ ∑ ∑ ∑ ∑  

Proof:  The proofs are straightforward applications of the definitions of brj and Brs using the rules of multiple 

summation and so are omitted here.   

Econometric Estimation and Testing Procedure 

The theory presented in the previous section is deterministic and the relationship between the aggregate 

parameters Bsr, bsj, and the disaggregate parameters βij are very simple linear functions.  However, as Theil 

(1954) demonstrated in his seminal work on aggregation, the relationships between the estimated parameters are 

not the same as between the deterministic parameters.  In this section the relationship between the estimators of 

the aggregate and disaggregate parameter estimates is presented in a framework similar to Theil, and the 

significance of aggregation bias in estimating aggregate parameters is tested using procedures developed by Lee, 

Pesaran, and Pierse (1990). 

Using standard econometric notation, let the disaggregate system of share equations corresponding to 

equation (3) be written as 

(5) yd = Xd βd + ed 
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where yd is a (N⋅m × 1) vector, Xd = (Im⊗ X) is a (N⋅m × m⋅kd) matrix, Im is an (m × m) identity matrix, X is a (N 

× kd) matrix of regressors including a vector of ones.  The matrix X is the same in all equations and may be 

partitioned as X = (1, p, z, ρ) with 1 being a (N × 1) vector of ones, p the sub-matrix of prices, z the sub-matrix 

of other variables, and ρ the sub-matrix of aggregation errors.  The parameter vector ),,( d
m

d
2

d
1d ββββ =  is the 

(m⋅kd  ×1) vector of disaggregate parameter vectors d
iβ=(βio, bir, βij, γij, βij) associated with the m equations, and 

ed is the (T⋅m × 1) vector of error terms. 

The empirically aggregated system based on equation (4) is just a linear transformation of (5) and a 

redefining of the aggregation error parameters (i.e., bsj = δsj and bkj = δkj).  The aggregate system can therefore be 

obtained by multiplying both sides of (5) by the transformation matrix ϕ, which must be designed according to 

which equations are to be aggregated together.  For example, if m = 3 and the first two equations were to be 

added together, leaving the last in disaggregate form, then  

ϕ = 







NNN

NNN

IOO
OII

  

where IN is the (N × N) identity matrix and ON is a (N × N) matrix of zeros.  So the empirically aggregated 

system becomes yA = ϕ yd = ϕ Xdβd + ϕ ed.  However, because the X matrix is the same for all equations and has 

been written in terms of aggregate prices and aggregation errors, an equivalent representation of the model ϕ 

Xdβd is to define XA = (X ⊗ IM), with IM the (M × M) identity matrix and define a parameter aggregating matrix 

A such that ϕ Xdβd = XAAβd.  This is the matrix equivalent of writing an expression such as wa + wb as w(a + b) 

and amounts to collecting like terms.  In the m = 3 example, where the first two equations are to be aggregated 

together, A would be defined as 

A = 







ddd

ddd

IOO
OII

  

where Id is a (kd × kd) identity matrix and Od is a (kd × kd) matrix of zeros.  Therefore, the empirically 

aggregated system can be written as  

(6)  yA = XAβA + eA. 
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Based on the economic theory and deterministic aggregation, then βA = Aβd.  This suggest that there are 

two ways to estimate βA: a deterministic approach that just uses the matrix A and an estimate of the disaggregate 

vector, say dA
ˆAb β= , and an econometric approach that estimates βA directly.  As previously indicated, 

including the aggregation errors in the design matrix allows the components of the aggregate parameters to be 

identified but only if the identification restrictions are imposed in the estimation.  In this context an appropriate 

econometric estimator of βA is the restricted seemingly unrelated regression estimator, or  

(7)    − −= Ω + βr T 1 T T 1
E E A E A E E E E E E Ab C X y C R [R C R ]  (q - R )  

where 1
A

1
E

T
AE )X(XC −−= Ω  is the M⋅kd parameter covariance matrix, RE is the J x M⋅kd restriction matrix, q is 

the M⋅kd x 1 restriction vector which for this paper is always zero, and the subscript E refers to the empirically 

aggregated system which explicitly includes the aggregation errors ρ.  Assuming the disaggregate model is true, 

standard regularity conditions of the design matrix apply, and E(eA) = 0, it is easy to show that the expectation of 

r
Eb is 

  ( )(8)     E E[
1r T T

E d E E E E E E d(b A C R R C R R A ]) β β
−

= − . 

If the restrictions are true, then the last term will be zero and the aggregate estimator will be unbiased.  If the 

restrictions are not true, then the bias will be the last term. 

In the generalized composite commodity system and the homothetic separability system  

the aggregation errors are not carried along and are omitted in the estimation, though they could be included in 

the generalized composite commodity system.  This leads first to a lack of identification of some of the 

disaggregate parameters and second to a different design matrix that is a subset of XA.  An easy way to handle 

the problem within the same estimation framework is to just redefine the restriction matrix R appropriately to 

include the zero restrictions on the aggregation error terms.  In this case let r
Tb  be the restricted estimator for the 

theoretically aggregated system.  In a similar fashion to equation (8), then the expected value of r
Tb  is 

( )(9)     E E[
1r T T

T d T T T T T T d(b A C R R C R R A ]) β β
−

= −    
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where the T subscript refers to the theoretically aggregated system, and CT and RT are appropriately redefined.  

As before, if the restrictions are true then the estimator is unbiased. 

To test whether there is aggregation bias associated with either r
T

r
E bor  b , the framework of Lee, 

Pesaran, and Pierse (1990) is trivially extended to the restricted systems estimator.  Assuming the disaggregate 

model is correct, the null hypothesis is 0r
o i i AH b - b     i E T: , ,δ= = =  with dA ßAb ˆ=  being the aggregate 

parameter vector constructed from the disaggregate parameter estimates.  The relevant test statistic is then 

(10)  2
kM

a

i
1

i
T
i d⋅

− →Ψ χδδ  

 and Ψ  is the covariance of δi (Domowitz and White, 1982, Theorem 2).  This is a generalized Durbin-Hausman 

test and the general formula for the covariance is given in the appendix. As is common for this type test, a 

generalized inverse must be computed. 

Data 

The annual price and quantity data used in the analysis are for the period 1950-1992.  They come from 

Ball (1996).  Research expenditure and price data for the period 1920-1992 are from Huffman and Evenson 

(1993) and Huffman (1999).  Except for an additional observation at the end of the series replacing two at the 

beginning, these are the same data used by Lim and Shumway (1997), and the research expenditure stock 

variables are constructed in the same way as in their paper.  The disaggregate model consists of two outputs 

(livestock and crops), three inputs (hired labor, capital, and other purchased inputs), and four fixed factors (self-

employed labor, real estate, private research expenditures, and public research expenditures).  While we refer to 

this specification as the disaggregate model, it is admittedly already a highly aggregated model.  However, the 

commodity-wise aggregations in this model are entirely consistent with the results of prior tests for consistent 

aggregation. Aggregation is accomplished using the Tornqvist index.  The variable names and their definitions 

are given in table 2.   

Estimation 

Two aggregate models are considered.  Based on work by Williams and Shumway (1998b) and Davis, 

Lin, and Shumway (2000), there is only partial (ambiguous) empirical support for aggregating the two outputs 

into one output based on the generalized composite commodity theorem tests while there is clear empirical 
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support for aggregating all inputs into one input based on homothetic separability tests.  The first aggregate 

model combines the two outputs from the disaggregate model into one output but leaves all other variables as in 

the disaggregate model.  The second aggregate model combines the three variable inputs into one input and 

leaves all other variables as in the disaggregate model.  Variable profit share equations of outputs and variable 

inputs are estimated for each model with one share equation omitted to avoid the singularity problem.  

Estimation is accomplished using the iterative seemingly unrelated regression method to achieve maximum 

likelihood estimates (assuming normally distributed error terms) with invariance to the equation deleted from the 

system.  Symmetry and homogeneity are maintained in the estimation.  Because the aggregate parameter 

estimates constructed from the disaggregate parameter estimates (i.e., bA = Aβ̂d) are the primary concern, the 

disaggregate parameter estimates are not reported here but are available from the authors on request. 

Results from Aggregating Outputs  

Table 3 gives the parameter estimates associated with the aggregate output system constructed from the 

disaggregate model parameter estimates (i.e., bA = Aβ̂d)) along with the corresponding price elasticities matrix.  

As can be seen, 26 of the 36 parameters are significant at the 10% level or less.  The main parameters that are 

insignificant are those associated with public and private research expenditures and self-employed labor.  Nearly 

all other parameters and all the price elasticities are significant.  All signs on the price elasticities appeal to 

intuition but their magnitudes are not consistent with a convex variable profit function in prices.  Of course, a 

convex profit function is an implication of competitive behavior only for individual firms and not for an 

aggregate of firms. 

Table 4 gives the parameters estimated from the empirically aggregated system, r
Eb , (i.e., it includes 

the aggregation errors) along with the corresponding price elasticity matrix.  Overall, the parameter estimates are 

similar to those constructed from the disaggregate model.  All have the same sign and similar magnitudes to 

those constructed from the disaggregate model.  Of the 36 parameters, 23 are significant at the 10% level or less, 

which is three fewer than in the estimates from the disaggregate parameters. Most of the additional insignificant 

parameters are associated with the aggregation error of the livestock price.  
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The Chi-squared test statistic for aggregation bias, equation (10), is a quadratic form.  The summary 

statistics on the square of the components of the difference vector )bb( A
r
EE −=δ indicate that the average 

squared difference between the estimated aggregate parameters from the empirically aggregated system and the 

aggregate estimates based on the disaggregate parameters is .15, and the test statistic is 3.11.  As is rather well 

known for this type of test, a generalized inverse must be used because the covariance matrix may not be of full 

rank and positive semi-definite.  This in turn affects the degrees of freedom used in conducting the Chi-squared 

test.  If the covariance matrix were of full rank, then the degrees of freedom would equal the number of 

parameters -- 36.  In the present case the rank of the matrix and number of degrees of freedom is 27.  Using 

degrees of freedom less than the desired degrees of freedom has the affect of reducing the size of the test, ceteris 

paribus.  However, because the test statistic is so small in the present case, the p-value of the test statistic is 1.00 

regardless of whether the degrees of freedom are 36 or 27, so the null of no aggregation bias clearly cannot be 

rejected.  Thus, there is no statistically significant aggregation effect associated with aggregating together 

livestock and crops into one single aggregate and including the aggregation errors in the estimation.  

With regard to the economic importance of using aggregate data in a completely specified aggregate 

model, consider the aggregate price elasticity matrices, tables 3b and 4b.  The aggregate price elasticities in table 

4b are very similar to those obtained by aggregating the disaggregate parameters.  There are no sign changes 

between the two sets of elasticities, and only three of 16 elasticities differ by more than 10 percent.  In addition, 

all elasticities in both tables are statistically significant.  

Table 5a gives the aggregate parameters estimated from the theoretically aggregated system, that is, the 

model that ignores aggregation errors in the specification.  Based on Williams and Shumway’s (1998b) rejection 

of homothetic separability for this partition and Davis, Lin, and Shumway’s (2000) finding of ambiguity with 

regard to the generalized composite commodity theorem, no clear support was previously found for consistent 

aggregation of all outputs into a single index.  Thus, one might anticipate considerable difference in the 

parameter estimates.  However, little difference is evident.  These parameter estimates also appear similar to 

those constructed from the disaggregate model.  All have the same sign and similar magnitudes to those 

constructed from the disaggregate model.  Of the 30 estimated parameters (remember zero restrictions are 
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imposed on the aggregation error terms), 21 are significant at the 10% level or less. The difference vector is 

)bb( A
r
TT −=δ and the average of the squared components of the difference vector is about twice as large as 

before, .27.  However, the null hypothesis of no aggregation bias is still not rejected at any reasonable level 

because the test statistic is 32.69, which with 31 degrees of freedom (the rank of the covariance matrix) has a p-

value of .38. With 36 degrees of freedom, the p-value is .62. Thus, there is no statistically significant aggregation 

effect associated with aggregating livestock and crops into one single aggregate and ignoring aggregation errors 

in the estimation.  This result would tend to suggest that the ambiguous result found by Davis, Lin, and 

Shumway (2000) for aggregating the two outputs into one output is of no concern for estimating aggregate 

parameters.  

Table 5b gives the aggregate price elasticities based on parameter estimates obtained from the 

theoretically aggregated system.  They are again very similar to those obtained by aggregating the disaggregate 

parameters.  None change sign and again only three elasticities differ by more than 10 percent.  In addition, all 

elasticities are statistically significant.  

Results from Aggregating Inputs 

Table 6 gives the parameter estimates associated with the aggregate input system constructed from the 

disaggregate model parameter estimates (i.e., bA = Aβ̂d), with the aggregating matrix A redefined appropriately) 

along with the corresponding price elasticities matrix.  Sixteen of the 24 parameters are significant at the 10% 

level or less.  The main parameters that are insignificant are again those associated with public and private 

research expenditures, self-employed labor, and the aggregation errors in the crop equation.  Other parameters 

are significant, including all the price elasticities.  As with the aggregate output system, all signs of price 

elasticities in the aggregate input system appeal to intuition but magnitudes are not consistent with a convex 

variable profit function. 

Table 7 gives the parameters estimated from the empirically aggregated system (i.e., including the 

aggregation errors) along with the corresponding price elasticity matrix.  There are much larger discrepancies 

between the parameter estimates in tables 7a and 6a than between the corresponding parameters for the output 

aggregate system.  Many of the parameter estimates have clear differences in terms of signs and magnitudes.  Of 
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the 24 parameter estimates, only nine are significant.  The main difference is that none of the price parameters 

are significant in the estimated aggregate model while all are significant when computed from the estimated 

disaggregate system. Although only one parameter that changes sign is significant in both systems, more than 

half of the parameters have a different sign in the aggregate model than when derived from the disaggregate 

system.  However, all but one price elasticities are significant and have the same signs as in table 6b.   

The difference vector is defined as before, )bb( A
r
EE −=δ , and the average squared difference of the 

components is large -- 46.75.  Most of this difference is due to different estimates of the intercepts.  The Chi-

squared statistic for aggregation bias is 36.16.  The rank of the covariance matrix is 20.  However, regardless of 

whether one uses the correct degrees of freedom or the desired 24, the null hypothesis of no aggregation bias is 

rejected at the 5% level.  The p-values are .01 and .05 for 20 and 24 degrees of freedom respectively.  Thus, 

there is a statistically significant aggregation effect associated with aggregating hired labor, capital, and other 

purchased inputs together into one input aggregate, even if the aggregation error is left in the model. 

 With regard to the economic importance of using aggregate data in a completely specified aggregate 

model, the price elasticities all have the same sign and all but one are significant.  However, their magnitudes 

differ substantially from those derived from the disaggregate system.  There is no obvious pattern.  Some 

elasticity estimates are more elastic while some are less elastic.  All differ by more than 10% and some by more 

than 100%.  All except the livestock own-price elasticity are significant in table 7b.  

Table 8a gives the aggregate parameters estimated from the theoretically aggregated system, which 

ignores the aggregation errors in the specification, and table 8b gives the corresponding price elasticity matrix.  

Based on Williams and Shumway’s (1998b) clear failure to reject homothetic separability in this input partition 

and Davis, Lin, and Shumway’s (2000) clear failure to reject the generalized composite commodity theorem in 

this output partition, one might not anticipate much difference in the parameter estimates.  Indeed there is much 

less of a discrepancy between the parameter estimates in tables 8a and 6a than between tables 7a and 6a. Overall 

the parameter estimates appear similar to those constructed from the disaggregate model.  All have the same sign 

and similar magnitudes to those constructed from the disaggregate model.  Of the common estimated parameters 

(remember zero restrictions are imposed on the aggregation error terms), nearly as many are significant at the 
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10% level or less in this model as in the input aggregate system derived from disaggregate model estimates.  All 

of the price parameters are significant.   

Again, the difference vector is )bb( A
r
TT −=δ and not surprisingly, the average squared difference of 

the components is small (.65) relative to the empirically aggregated model, which was 46.75.  The Chi-squared 

statistic for aggregation bias from the theoretically aggregated model is 29.70.  With 22 (24) degrees of freedom 

the p-value of the statistic is .13 (.19), so the null hypothesis of no aggregation bias is not rejected at any 

reasonable level of significance.  The fact that the empirically aggregated model is rejected while the theoretically 

aggregated model is not rejected highlights an important aspect of consistent aggregation.  Recall in estimating 

the empirically aggregated model, it explicitly included the aggregation errors and allowed for the identification 

and imposition of some within- and cross-equation restrictions which cannot be imposed in the theoretically 

aggregated model.  What these results tend to suggest is that the implicit zero restrictions associated with the 

empirically aggregated model may be less binding than the restrictions associated with the theoretically 

aggregated model.    

With regard to economic implications, all price elasticities in table 8b have the expected signs and are 

statistically significant.  All have the same signs as those constructed from the disaggregated model parameters, 

and most are closer to the elasticity estimates constructed from the disaggregate parameters than were the 

empirically aggregated model elasticities.  However, only two are within 10% of the magnitudes of those 

elasticities.  

Assessment of Empirical Findings 

 Aggregating all outputs from two output categories or all variable inputs from three input categories 

failed to produce statistically significant aggregation bias when aggregation errors were not explicitly included in 

the model.  Thus, the statistical tests for aggregation bias also failed to reject the hypothesis that outputs and 

inputs could be consistently aggregated to such a high level of aggregation.  On the output side these results 

indicate that the ambiguous finding of Davis, Lin, and Shumway (2000) in terms of aggregating all outputs into 

one output is not problematic.  It also indicates that the negative nonparametric test results for homothetic 

separability in outputs found by Williams and Shumway have little impact on parameters estimated based on the 
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assumption of separability.  However, these results complement previous findings of Williams and Shumway 

(1998b) based on nonparametric tests of homothetic separability in inputs and the cointegration tests for 

generalized composite commodities conducted by Davis, Lin, and Shumway (2000) on outputs.  Thus, there is 

not full consistency between the tests for the existence of aggregates and the degree of parameter aggregation 

bias associated with the rejection or acceptance of the existence tests. 

 The economic significance of aggregation errors was not trivial and also did not reflect a high level of 

consistency with the statistical and related tests.  Previous tests found less empirical support for aggregating all 

outputs than for aggregating all variable inputs.  However, aggregating data for all outputs prior to estimation 

did not have an appreciable impact on price elasticities while aggregating data for all inputs prior to estimation 

had a very important impact.  In the former case only two of 16 pairs of elasticities differed by more than 10 

percent (and the largest differences were about 30 percent).  In the latter case only two of nine pairs of elasticities 

differed by less than 10 percent and some differed by more than 100 percent.   

As one possible explanation for this difference, it seems reasonable to conjecture that the more 

commodities that are aggregated together the more likely there will be significant differences due to aggregation. 

 This would not be surprising and is just a corollary of Griliches’ observation that there are “different truths at 

different levels of aggregation, and they are connected by both the aggregation rules and the properties of the 

distribution of the microvariable.”  The mixture distribution of the macrovariable, formed from aggregating the 

microvariables, will likely continue to lose its resemblance to any subset of microvariable distributions as more 

and more microvariables are aggregated together.  This suggests there probably exists a neighborhood 

aggregation invariance principle that is a decreasing function of the number of commodities aggregated 

together.  Since more input categories than output categories were aggregated here into individual indices, it is 

possible that the larger number of input categories included in the aggregate adversely affected the economic 

consistency of relationships between the macro model and the macro system constructed from micro model 

parameter estimates. 

  Even when considerable empirical support exists for consistent aggregation, it is apparent that 

aggregating data can lead to serious errors in policy recommendations.  Thus, one might appropriately ask how 

such errors compare with other types of specification error.  For comparison, consider two other common 
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specification errors – incorrect choice of functional form and failure to properly account for time series 

properties of the data.  Considering three functional forms in their analysis of Canadian consumer demands, 

Berndt, Darrough, and Diewert (1977) found that own-price elasticities varied by 15-50 percent when symmetry 

was maintained in their models and up to several thousand percent with frequent sign changes when symmetry 

was not maintained.  Shumway and Lim (1993) also found similarly large differences among elasticities and 

among policy inferences as well as sign changes in elasticities when they estimated three functional forms for 

U.S. agricultural production.  In both studies, all functional forms were second-order Taylor series expansions 

and seemingly equally suitable a priori for the analysis of production or consumption relationships.  Lim and 

Shumway (1997) found that failure to properly account for the time series properties of the data in their analysis 

of U.S. agricultural production produced differences in the magnitudes and signs of estimated price elasticities 

comparable to those observed among functional forms.  Consequently, the elasticity differences observed here 

from a possible input aggregation specification error are small relative to the differences previously observed 

from specification errors due to incorrect choice of functional form or failure to account for the time series 

properties of data. 

 

Conclusions 

Few have any illusions that the “true” model structure can ever be identified.  Nevertheless, improved 

model specification is sought in this as well as other papers to assure that behavioral properties which apply to 

disaggregate relationships also apply to the aggregate relationships.  We have documented a wide variety of 

commodity-wise aggregation test conclusions in the empirical agricultural economics literature.  We have also 

documented considerable variation in measured errors of inference in related literature because of inappropriate 

or imprecise aggregation. Through our own empirical testing with two aggregations and alternative model 

specifications, we determined that failure to empirically reject consistent aggregation in a partition was 

insufficient to totally mitigate erroneous inference due to the aggregation.  In one of the cases, considerable 

elasticity differences were observed when aggregate data were used in analysis.  However, the elasticity 

differences observed here from the possible aggregation specification error were small relative to the differences 
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previously observed from specification errors due to incorrect choice of functional form or failure to account for 

the time series properties of data.   

It is also important to emphasize and warn that any effort to decrease specific ation error cannot be taken 

to an extreme.  It is useful here to think in terms of a “neighborhood aggregation invariance principle” because 

the level of aggregation ultimately should be dictated by the question of interest.  Even if some inferential error s 

occur because of aggregation, one cannot expect very disaggregate firm level data or commodity categories to be 

useful in analyzing what are often industry level concerns such as supply and demand.   

We conclude with an excerpt from Davis (1999, pp. 478 -79) a statement based on Mill (1844): 

“The theory of the firm is an inductive theory that came from observing the behavior of many firms and 
distilling from those observations the basic elements common to all of those firms.  It does not actually 
describe the objective function and constraints of any particular firm, but only what all firms have in 
common as a ‘tendency.’ . . .  A theory is like an inductive causal averaging procedure that ignores 
individual differences and concentrates only on similar tendencies.  While highlighting a few common 
factors many more individual idiosyncrasies and factors are ignored. It is a theory of ‘the’ firm —  the 
abstract firm.  It is not a theory of ‘a’ firm, an individual firm.  This simple but important distinction 
means the theory of the firm cannot be taken off the economics theory shelf and directly applied to some 
industry or firms without modification. A theory must be tailored to the market under study. A theory 
only provides a foundation for developing a more real istic account of the firm or industry under 
consideration.  Thus when a researcher prepares to study a particular firm, adjustments, additions, and 
allowances must be made to the theory to take into account what Mill calls “disturbing causes.” 
Alternatively stated, chopping off relevant aspects of markets (firms) or stretching other irrelevant 
aspects of markets (firms) so that they fit the Procrustean bed of a theory is poor applied economics.”  
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Table 1. Articles in Ten Agricultural Economics Journals Reporting Tests for Consistent  
Aggregation, 1984-99 
 

Author(s) Year Hypothesized Aggregates 
 

Test 

Weaver 1977 Production outputs and inputs Homothetic separability 
Ray 1982 Production outputs and inputs  Homothetic separability 
Shumway 1983 Production outputs and inputs  Homothetic separability 
Capalbo and Denny 1986 Production inputs Separability 
Pope and Hallam 1988 Production inputs Homothetic separability 
Chavas and Cox 1988 Production outputs and inputs  Nonparametric weak separability 
Eales and Unnevehr 1988 Consumption goods Weak separability 
Kuroda 1988 Production outputs and inputs  Homothetic separability 
Ball 1988 Production outputs  Weak separability 
Bonnieux 1989 Production inputs Weak separability 
Jegasothy, Shumway, and Lim 1990 Production inputs Homothetic separability 

Production outputs and inputs  Homothetic separability Polson and Shumway 1990 
States Identical technologies 

Chambers and Pope 1991 States Laspeyres-form aggregation 
Lim and Shumway 1992 Production outputs and inputs  Nonparametric weak separability 
Villezca and Shumway 1992 Production outputs  Homothetic separability 
Nayga and Capps 1994 Consumption goods Weak separability 
Sckokai and Moro  1996 Production outputs and inputs  Direct weak separability 
Sellen and Goddard 1997 Consumption goods Homothetic separability 
Williams and Shumway 1998a Production outputs and inputs  Nonparametric homothetic separability 
Williams and Shumway 1998b Production outputs and inputs  Nonparametric homothetic separability 
Ashe, Bremnes, and Wessells 1999 Consumption goods Generalized composite commodity  
Davis, Lin, and Shumway 2000 Production outputs  Generalized composite commodity  
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Table 2. Variable Names and Definitions 
 
Variable Name Definition 
q1 Livestock quantity  
q2 Crop quantity  
q3 Hired labor quantity  
q4 Capital quantity  
q5 Other purchased input quantity  
Q Aggregate netput (output o r input) quantity 
  
y1 Livestock share of profit 
y2 Crop share of profit 
y3 Hired labor share of profit 
y4 Capital share of profit 
y5 Other purchased input share of profit 
Y Aggregate netput (output or input) share of profit  
  
p1 Log of livestock price  
p2 Log of crop price  
p3 Log of hired labor price  
p4 Log of capital price  
p5 Log of other purchased input price  
P Log of aggregate netput (output or input) price  
  
z1 Log of public research expenditures  
z2 Log of private research expend itures  
z3 Log of self-employed labor quantity  
z4 Log of real estate quantity  
z5 Dummy variable (1 for 1983, 0 otherwise) 

 
 
 



Table 3a. Output Aggregation Model Parameters Constructed from Disaggregate Parameter Estimatesa 

 

Share intercept P p3 p4 p5 z1 z2 z3 z4 z5 

Y -141.49 -3.33 .28 .63 2.42 .36 -.95 -1.07 14.06 6.83 

y3 8.88 .28 -.18 .05 -.15 -.05 .19 .10 -.95 -.51 

y4 49.74 .62 .05 -.59 -.08 -.26 -.12 -.33 -3.97 -1.85 

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
 
Table 3b. Output Aggregation Price Elasticities Constructed from Disaggregate Parameter  
Estimatesa  
 

Netput P p3 p4 p5 

Q 1.48 -.16 -.31 -1.01 

q3 2.28 -.48 -.69 -1.11 

q4 2.19 -.34 -.31 -1.54 

q5 2.04 -.16 -.45 -3.99 

aAll numbers in bold are significant at the 10% level or smaller.  Elasticities evaluated at  
sample means.

31 



 

Table 4a. Empirically Aggregated Output Aggregation Model Parameter Estimatesa 

 

Share Intercept 
 

P p3 p4 p5 z1 z2 z3 z4 z5 ρ1 

Y -140.19 -2.95 .26 .57 2.12 .13 -1.01 -1.49 14.49 6.81 -.29

y3 8.71 .26 -.18 .06 -.13 -.02 .19 .14 -.99 -.51 .03

y4 48.67 .57 .06 -.54 -.08 -.18 -.07 -.17 -4.09 -1.84 .08

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
 
 
Table 4b. Empirically Aggregated Output Aggregation Price Elasticitiesa 

 

Netput P p3 p4 p5 

 

Q 1.59 -.17 -.33 -1.10 

q3 2.38 -.48 -.74 -1.16 

q4 2.30 -.36 -.40 -1.88 

q5 2.21 -.16 -.54 -3.83 
aAll numbers in bold are significant at the 10% level or smaller. Elasticities evaluated at  
sample means. 
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Table 5a. Theoretically Aggregated Output Aggregation Model Parameter Estimatesa 

 

Share intercept P p3 p4 p5 z1 z2 z3 z4 z5 

 

ρ1 

Y -139.96 -3.26 .27 .65 2.33 .25 -.88 -1.03 13.93 6.83 0

y3 8.76 .27 -.19 .05 -.14 -.04 .18 .10 -.95 -.51 0

y4 48.56 .65 .05 -.55 -.16 -.21 -.09 -.25 -3.99 -1.84 0

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
Table 5b. Theoretically Aggregated Output Aggregation Price Elasticitiesa 

 

Netput P p3 p4 
p5 

 

Q 1.51 -.16 -.31 -1.04 

q3 2.30 -.47 -.71 -1.12 

q4 2.13 -.34 -.39 -2.03 

q5 2.09 -.16 -.59 -3.89 
 

aAll numbers in bold are significant at the 10% level or smaller. Elasticities evaluated at  
sample means. 
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Table 6a. Input Aggregation Model Parameters Constructed from Disaggregate Parameter Estimatesa 

 

Share intercept p1 p2 P z1 z2 z3 z4 z5 ρ3 ρ4 

 

y2 -105.87 -1.15 -.79 1.95 .57 -.41 -.48 9.86 3.84 .15 .23

Y 142.49 1.38 1.95 -3.33 -.36 .95 1.07 -14.07 -6.83 -.28 -.62

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
Table 6b. Input Aggregation Price Elasticities Constructed from  
Disaggregate Parameter Estimatesa  
 

Netput p1 p2 P 

q1 .38 1.16 -4.63 

q2 2.55 .51 -1.43 

Q .96 1.12 -2.09 

aAll numbers in bold are significant at the 10% level or smaller. Elasticities  
evaluated at sample means. 
 

34 



 

Table 7a. Empirically Aggregated Input Aggregation Model Parameter Estimatesa 

 

Share intercept p1 p2 P z1 z2 z3 z4 z5 ρ3 ρ4 

 

y2 -82.18 -.16 .42 -.26 -.25 .44 -.62 8.03 3.63 -.83 1.39

Y 120.56 -.46 -.26 .72 .72 -.53 .89 -12.00 -6.62 .97 -2.50

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
 
Table 7b. Empirically Aggregated Input Aggregration Price Elasticitiesa  
 

Netput p1 p2 P 
 

q1 .12 1.82 -2.75 
 

q2 1.44 1.14 -2.58 
 

Q 1.72 2.03 -3.74 
 

aAll numbers in bold are significant at the 10% level or smaller. Elasticities  
evaluated at sample means. 
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Table 8a. Theoretically Aggregated Input Aggregation Model Parameter Estimatesa 

 

Share intercept p1 p2 P z1 z2 z3 z4 z5 ρ3 ρ4 

 

y2 -105.87 -1.13 -.48 1.62 .55 -.33 -.43 9.79 3.85 0 0

Y 139.97 1.54 1.62 -3.16 -.36 .96 1.10 -13.87 -6.85 0 0

aAll numbers in bold are significant at the 10% level or smaller. 
 
 
 
Table 8b. Theoretically Aggregated Input Aggregation Price Elasticitiesa  
 

Netput p1 p2 P 
q1 .79 1.18 -1.44 

q2 .94 .67 -1.61 

Q .89 1.26 -2.61 

aAll numbers in bold are significant at the 10% level or smaller. Elasticities  
evaluated at sample means. 
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Appendix 
 

The covariance of r r
i i A i db b b A )ˆ( ) (δ β= − = −  is denoted by ψ i. The general covariance and its asymptotic 

properties can be found in several places (see Turner and Rockel, or within a GMM framework see Domowitz and 

White).  The derivations for the restricted seemingly unrelated regression estimator a re rather tedious but 

straightforward and only the results are given here.    The r superscript will be dropped here for simplicity.  The 

general formula for the covariance is  

(A.1) ψ i = Cov(bi) + Cov(bA) – Cov(bi, bA) – Cov(bi, bA)T. 

The components of this general formula in the restricted seemingly unrelated regression case are as follows.  

Define in general the matrices Mi = Ii – Ci Ri
T(RiCiRi

T)-1Ri and Ci = (Xi
TΩ i

-1Xi)-1 and the residual vector ei.  By 

altering the i subscript, these matrices will alter accordingly as in the text where all matrices except Ω i are defined.  

The matrix Ω i is the covariance distribution for the system disturbance vector ei. Using this notation, it can be shown 

that the components of (A.1) are  

(A.2)    Cov(bi)  = E[MiCi] 

(A.3) Cov(bA) = E[AMiCiAT] 

(A.4) Cov(bi, bA) = E[(MiCiXA
TΩ i

-1ei)( AMdCdXd
TΩd

-1ed)T]. 

As is standard practice, the residuals are used to estimate Ω i and the formulas (A.2), (A.3), and (A.4) are used 

without the expectation sign in (A.1) to form the covariance ψ i, which is used in the test statistic given by equation 

(10) in the text. 


