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Abstract 
 

A method of stochastic dominance analysis with respect to a function (SDRF) is 
described and illustrated. The method, called stochastic efficiency with respect to a 
function (SERF), partitions a set of risky alternatives in terms of certainty equivalents 
for a specified range of attitudes to risk. It can be applied for any utility function with 
risk attitudes defined by corresponding ranges of absolute, relative or partial risk 
aversion coefficients. SERF involves comparing each alternative with all the other 
alternatives simultaneously, not pairwise as with conventional SDRF. Hence it yields 
a subset of the efficient set found by SDRF. Moreover, the method is readily 
implemented in a simple spreadsheet with no special software needed.  
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1. Introduction 

Risk assessment requires coming to grips with both probabilities and preferences for 

outcomes held by the decision maker (DM). Chances of bad versus good outcomes can only 

be evaluated and compared knowing the DM’s relative preferences for such outcomes. 

According to the subjective expected utility (SEU) hypothesis (Anderson, Dillon, Hardaker 

1977: 66-69), the DM’s utility function for outcomes is needed to assess risky alternatives. 

The SEU hypothesis states that the utility of a risky alternative is the DM’s expected utility for 

that alternative, meaning the probability-weighted average of the utilities of outcomes.  

The shape of the utility function reflects an individual’s attitude to risk. Several 

attempts have been made to elicit such utility functions from relevant DMs in order to put the 

SEU hypothesis to work in the analysis of risky alternatives (Robison et al. 1984; Hardaker et 

al. 1997). Usually the results have been rather unconvincing (King and Robison 1984; 

Anderson and Hardaker 2003). 

Partly to avoid the need to elicit a specific single-valued utility function, methods 

under the heading of stochastic dominance or efficiency criteria have been developed. 

Stochastic dominance criteria are useful in situations involving a single DM whose 

preferences are not known precisely, in situations where more than one DM may be involved, 

and in analysing policy alternatives or extension recommendations for a group of many 

individual DMs. 

A stochastic dominance criterion is a decision rule that provides a partial ordering of 

risky alternatives for DMs whose preferences conform to specified conditions about their 

utility functions (preferences for consequences). There is an important trade-off to be made in 

conducting a stochastic dominance analysis. The fewer restrictions that are placed on the 
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utility function, the more general applicability the results will have, but the less powerful will 

be the criterion in selecting between alternatives. Usually, efficiency analysis will result in 

only a partial ordering of alternatives into efficient and dominated sets. The DM must then 

make the final choice from among the members of the efficient set. Criteria that identify small 

efficient sets usually require more specific information about preferences.  

Hadar and Russell (1969) and Hanoch and Levy (1969) presented the concepts of 

first-degree stochastic dominance (FSD) and second-degree stochastic dominance (SSD). FSD 

is used to partition alternatives for DMs who prefer more wealth to less and have absolute risk 

aversion with respect to wealth, ( )wra , between the bounds ( ) +∞<<∞− wra  (King and 

Robison 1984). SSD requires the additional assumption that DMs are not risk preferring, i.e., 

that absolute risk aversion bounds are ( ) +∞<< wra0 . This means that SSD accounts for DMs 

who possess an absolute risk aversion parameter that is so large that the utility of a small 

difference at the lowest observation is extraordinary important. In empirical work it is often 

found that these two forms of analysis are not discriminating enough to yield useful results, 

meaning that the efficient set can still be too large to be easily manageable (King and Robison 

1981, 1984).1 

More powerful than FSD and SSD is stochastic dominance with respect to a function 

(SDRF), which was introduced by Meyer (1977). For SDRF the absolute risk aversion bounds 

are reduced to ( ) ( ) ( )wrwrwr a 21 ≤≤ , i.e., the criterion is defined for all DMs whose absolute 

risk aversion function lies anywhere between lower and upper bounds ( )wr1  and ( )wr2 . 

                                                 
1 There are third to t-th degree stochastic dominance criteria but they are seldom much more discriminating than 

SSD, and so are not reviewed in this paper. A good review of ordinary stochastic dominance and stochastic 

dominance with respect to a function is given by Zentner et al. (1981). Within the stochastic dominance 

paradigm, Levy (1992) reviewed the theoretical developments and empirical applications in economics, finance 

and statistics. 
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Eliciting from the DMs (or inferring) the bounds on their risk aversion coefficients may be 

simpler than eliciting a complete utility function. For SDRF there is no solution in closed 

form so a numerical evaluation of the optimal control problem is used.  

FSD, SSD and SDRF are all pairwise comparison methods that identify a subset of 

dominated alternatives, leaving the remainder of undominated ones that are described as 

'efficient'. However, convex stochastic dominance (CSD), developed by Fishburn (1974a, 

1974b), can be used to exclude further alternatives from the efficient set by comparing each 

alternative in turn with all possible convex combinations of the others. Convex forms of FSD 

and SSD have been implemented using linear programming, involving formulating and 

solving a different model to test each alternative for possible dominance (e.g., Drynan 1977; 

Bawa et al. 1985) A multiobjective linear programming model has been used to implement 

convex SDRF (Cochran et al. 1985). The rather tedious nature of this analytical task may 

explain why CSD appears to have been rarely used by practitioners. 

The logic of convex stochastic dominance depends of forming probability mixes of 

alternatives, not real mixes as in portfolio analysis. Forming a convex combination of two 

alternatives is equivalent to making a single random drawing from the appropriate probability 

distribution to decide which to use. This then does not require the stochastic dependencies 

between the alternatives to be taken into account because they are not implemented in 

combination. If a real mix or portfolio of risky prospects is possible, individual prospects 

cannot be ordered by stochastic dominance analysis (though properly defined portfolios can 

be). For portfolio selection, stochastic dependencies between portfolio members (such as 

correlations) must be accounted for. Methods typically used for portfolio selection include 

E,V formulations (requiring strong assumptions about the form of the distribution and/or the 

form of the utility function) solved by quadratic programming, or non-linear utility efficient 

programming, solved for discrete states of nature (Patten et al. 1988). Applications of 
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stochastic dominance methods to cases where the risky prospects being evaluated are not 

genuine alternatives are likely to be flawed except in the unlikely case of stochastic 

independence between all the alternatives. 

Some software packages are available for SDRF (e.g., McCarl 1988, 1990; Goh et al. 

1989). It seems that, for many users, SDRF software, if not the concept itself, is somewhat of 

a 'black box'. The available software (except Richardson’s (2003) software) gives users no 

choice of functional form, and most accept input on risk aversion only in terms or absolute 

risk aversion, ar . Therefore we suspect that most of the existing software uses constant 

absolute risk aversion (CARA) functions, although this is not particularly clear in the program 

descriptions. 

In this paper we introduce a more straightforward and more discriminating SDRF 

method, which we call stochastic efficiency with respect to a function (SERF). The name is 

chosen to distinguish it from conventional SDRF and to indicate that the method works by 

selecting utility efficient alternatives, not by finding (a subset of) dominated alternatives. 

SERF partitions alternatives in terms of certainty equivalents as a selected measure of risk 

aversion is varied. SERF can be applied for any utility function based on ranges in the 

absolute, relative, or partial risk aversion coefficient, as appropriate. Since conventional 

SDRF picks only the pairwise dominated alternatives, we can expect that pairwise SDRF will 

not isolate the smallest possible efficient set. By contrast SERF will potentially identify a 

smaller efficient set than SDRF because it picks only the utility efficient alternatives, 

comparing each with all the other alternatives simultaneously. In addition to its important 

advantage of being more discriminating, SERF can easily be implemented in a simple 

spreadsheet with no special software needed. 

The paper is structured as follows: Section 2 describes the SERF method; the 

relationship between conventional SDRF and SERF is discussed in Section 3; some 
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applications of the SERF method are presented in Section 4; Section 5 contains a short 

discussion and some concluding comments. 

2. The SERF method 

Let ( )wU  be the utility function of a DM with performance criterion w  (wealth).2 We assume 

that the risky alternatives to be compared have uncertain outcomes so that values of w are 

stochastic. Let ( ) ( ) ( )wfwfwf n21 , ... , ,  be the probability density functions (PDFs) describing 

the outcomes for n  risky alternatives. The corresponding cumulative distribution functions 

(CDFs) are denoted by ( ) ( ) ( )wFwFwF n21 , ... , , . The SEU hypothesis is that 

( ) ( ) ( ) ( ) ( ) ( )∫∫ === wdFwUdwwfwUwEUwU , i.e., the utility of any risky alternative is its 

expected value. Since we do not know the exact shape of the utility function or, in other 

words, the DM’s risk aversion, we solve the problem where the absolute, relative or partial 

risk aversion function ( )wr  of the DM lies everywhere between lower and upper bounds 

( )wr1  and ( )wr2 .  

So for each risky alternative and for a chosen form of the utility function, we define 

the function for utility in terms of risk aversion and the stochastic outcome w as: 

 ( )( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )∑∫
=

≤≤==
m

i
ii wrwrwrwPwrwUwdFwrwUwrwU

1
21        ,,,,  (1) 

where the second term in equation 1 represents the continuous case and the continuous case is 

converted to its discrete approximation in the third term for computational purposes. In the 

discrete case ( )iwP  is the probability for states i  and there are m  states for each risky 

                                                 
2 Although we use wealth, w , as the performance criterion in this paper, w  can be replaced by x  (for loss/gain 

or transient income) provided x  is small relative to w  and also provided we measure risk aversion consistently 

with the outcome measure (Anderson and Hardaker 2003). 
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alternative. We are assuming here that we start with CDFs for a set of risky alternatives, 

convert points on the CDF for a set of finite values of w , each of which is converted to its 

utility for selected values of the risk aversion coefficient, then each finite utility is multiplied 

by its associated probability to calculate a weighted average of the utilities of outcomes. In 

this way we can evaluate this discrete function for a sufficient number of discrete points of 

( )wr  to describe the relationship between U  and ( )wr  for that alternative. 

Partial ordering of alternatives by certainty equivalent (CE) will be the same as a 

partial order of them by utility values. However, we chose to convert the utilities to CEs by 

taking the inverse of the utility function: 

 ( )( ) ( )( )wrwUwrw ,,CE 1−=  (2) 

We prefer the CE representation to leaving results in utilities not only because CEs 

are easier to interpret than utility values, but also because this method allows inclusion of 

expected monetary value in cases where ( )( )wrwU ,  is undefined for ( ) 0=wr .  

By this method we end up with a set of CEs for each of the n alternatives calculated 

for a set of ( )wr  values within the bounds ( ) ( ) ( )wrwrwr 21 ≤≤ . For easy interpretation of 

results when the number of alternatives is sufficiently small, we suggest graphing the CEs of 

the alternatives on the vertical axis against risk aversion on the horizontal axis. Such a graph 

allows ready identification of the efficient set and also provides an immediate insight into how 

the method works, as illustrated by the examples to follow. The efficient set contains only the 

alternatives that yield the highest CE for some value of ( )wr  within the range of interest. We 

can partition alternatives using the following rule: 

• Only those alternatives which have the highest (or equal highest) CE for some value in the 

range of ( )wr  are utility efficient. All other alternatives are dominated in the SERF sense. 
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[Figure 1 about here] 

In the example in Figure 1 the SERF method is used to compare three alternatives 

simultaneously for all values in the range of ( )wr1  and ( )wr2 , not pairwise as for SDRF, and 

identifies alternatives 1 and 2 as the utility-efficient set. Because of the simultaneous 

comparisons of all alternatives, the SERF efficient set may be a subset of the efficient set 

found by conventional SDRF. 

The SERF rule can readily be implemented within a spreadsheet application if the 

alternatives are too numerous for graphical analysis. 

McCarl (1988) suggested that instead of just partitioning the set of risky alternatives 

for a range of risk aversion, one should solve to find the risk aversion coefficient where the 

preference between a pair of efficient alternatives changes. He called the value of the risk 

aversion coefficient at which the preference changes the breakeven risk root, BRAC. For 

values of the risk aversion coefficient less than BRAC one alternative is preferred and for 

values greater than the BRAC the other is preferred. In SERF it is simple to identify where the 

CE curves cross or, for large data sets, to use, e.g., Solver in Excel to find this crossover for 

( )wr , by varying ( )wr  to minimise the difference between two CEs. 

The results of a SDRF analysis may depend on the choice of utility function. The 

SERF method can be applied for any utility function3, although we suggest it will usually be 

best to adopt the CARA function (negative exponential) as a reasonable approximation of the 

actual but presumably unknown utility function. Such an approximation will be appropriate 

provided that the risky alternatives being compared are small relative to the DM's wealth. The 

main advantage of the CARA function is that, as Anderson and Hardaker (2003) show, 

coefficients of absolute risk aversion can be validly applied to consequences measured in 
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terms of wealth, losses and gains, or (transient) income. These authors point out some traps in 

deriving relative or partial risk aversion measures needed for other functional forms if the 

consequences are not measured in terms of wealth.  

3. Relations between SERF and SDRF 

The conventional SDRF method is sequentially to select a risk-averse utility function, ( )wU , 

which has  

 ( ) ( ) ( )wrwrwr 2a1 ≤≤ ,  (3) 

and then discover for which of these values of ( )wra  equation 4 

 ( ) ( )[ ] ( )dwwUwFwF 12 ′−∫   (4) 

is minimised for all values of w , where the cumulative density functions ( )wF1  and ( )wF2  

represent two risky alternatives. If, for a given class of decision makers (or attitudes to risk), 

the minimum of the above expression is positive, then alternative ( )wF1  is preferred to 

( )wF2 . That means that the utility (or CE) of ( )wF1  is greater than the utility (CE) of ( )wF2  

for all values of ( )wra  in the set for the particular form of ( )wU  used. If the minimum is zero, 

some DM within the group may be indifferent between the two alternatives. Thus the two 

alternatives cannot be ranked. If the minimum is negative, ( )wF2  could be preferred to ( )wF1 . 

To check, the difference ( ) ( )wFwF 21 −  is introduced in the square brackets term in equation 4 

and the evaluation procedure is repeated. 

                                                                                                                                                         
3 Examples of different utility functions are given in, e.g., Hardaker et al. (1997) and Lin and Chiang (1978). 
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If we look closely at equation 4 we observe that it is equivalent to measuring the 

difference between utilities of distributions ( )wF1  and ( )wF2 . To show this let the difference 

in utility between ( )wF1  and ( )wF2  be 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]∫∫∫ −=− dwwfwfwUdwwfwUdwwfwU 2121  (5)  

Applying the change-in-variable technique to integrate, let ( ) ( )wfwfdv 21 −= , 

( ) ( )wFwFv 21 −= , and ( )wUu = . Then, recalling ∫−= +∞

∞−
udvvuudv , we write (Robison 

and Barry 1987: 55-56) 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( )[ ] ( )

( ) ( )[ ] ( )∫
∫∫

′−=

′−+−=−
+∞

∞−

dwwUwFwF

dwwUwFwFwFwFwUdwwfwfwU

12

122121

                                        
 (6) 

In other words, this method orders the utility of alternatives 1F ( ) ( )( )∫ dwwfwU 1  and 

2F ( ) ( )( )∫ dwwfwU 2  within defined bounds of ( )wra . By comparing this method with SERF 

as described in Section 2 we can see we are making the same comparison, though more 

directly and informatively than with conventional SDRF. 

4. Application 

In this section, as an example of its application, the SERF method outlined above is used and 

compared with the SDRF method on two constructed examples.  

Example 1 

The first example is a hypothetical one using four constructed risky alternatives, A to D 

(Table 1).  

[Table 1 about here] 
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The means of the alternatives vary from about 122 for alternative D to about 154 for 

alternative B. The overall range of outcomes is from 50 to 230. Both extremes are associated 

with alternative B. Alternative A has the largest minimum outcome of 100. Figure 2 shows the 

graphs of CDFs for each of the four alternatives. 

[Figure 2 about here] 

A relevant range of ( )wra  is assumed be from 0.0006667 to 0.0266666 (which 

approximately corresponds to a ( )wrr  in the range 0.1 to 4, given an average wealth of about 

150). The software computer programme developed by Goh et al. (1989) was used for the 

computational task of ranking the alternatives using the SDRF approach. Implementation of 

this SDRF approach involves using a negative exponential utility function. The result of the 

analysis is a risk-efficient set with three members, alternatives A, B and C (Table 2). 

[Table 2 about here] 

Our SERF approach, when using a negative exponential utility function and the same 

range for ( )wra  as in the SDRF analysis, gave the CE-graph shown in Figure 3. 

[Figure 3 about here] 

With the SERF approach the efficient set is alternatives A and B only. The value of 

( )wra  where CE curves for alternative A and B cross is ( ) 0085.0=wra  (i.e., where 

( ) 27.1≈wrr ). As a check, McCarl’s (1988) software named RISKROOT was used on the 

same dataset. This program estimated the crossover to be at ( ) 0085.0=wra  between 

alternatives A and B, exactly the same as we found with the SERF method.  
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This hypothetical example was constructed to illustrate our claim that the efficient set 

with the SERF approach can be a subset of the efficient set found by conventional SDRF. 

We also did an experiment with the SERF approach with a constant relative risk 

aversion (CRRA) power function on the same hypothetical example data. The efficient set 

was identical to that described above and the implied value of ( )wra  where CE curves for 

alternative A and B cross over was almost identical ( ) )13.1( =wrr  to that found using the 

negative exponential function (1.27).  

Example 2 

A second hypothetical example represents net returns from six risky arable rotation 

alternatives, F to K (Table 3). 

[Table 3 about here]  

The means of these alternatives vary from about 296 for alternative F to about 446 

for alternative I. The overall range of outcomes is from 45 to 905. Alternative K and I have 

the most extreme values. Alternative H has the largest minimum outcome of 180. Figure 4 

shows the graphs of CDFs for each of the six alternatives. 

[Figure 4 about here] 

Use of the Goh et al. (1989) software on these alternatives shows both the SSD set 

and the SDRF set with ( )wra  within the bounds 01.0 and  0  is I, J and K. Figure 5 shows the 

results with the SERF approach, using a negative exponential utility function and the same 

range for ( )wra . 

[Figure 5 about here] 
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With the SERF approach the efficient set is rotation alternatives I and J. The BRAC 

where CE curves for rotation I and J cross over is ( ) 0033.0=wra , which is exactly the same 

as we found with the RISKROOT software. As in the previous example, in this example the 

efficient set is smaller with the SERF method than with the SDRF method. 

5. Discussion and concluding comments 

The main advantage of SERF over SDRF is that the utility efficient set is obtained directly, 

and is potentially smaller than the SDRF efficient set. SDRF would produce the same, 

potentially smaller, efficient set only if that method is extended to include convex dominance. 

Otherwise, whether conventional SDRF and SERF applied using the same form of 

utility function will give comparable results will depend on differences in data handling. 

There are many different ways one might approach the discrete approximation of continuous 

functions as may be needed for a stochastic dominance analysis. Using the SDRF approach, it 

is generally only possible to process the risky alternatives specified for the same set of fractile 

values. That may require some pre-processing of data to get them into this format. There is an 

issue of how many fractiles to take and how to get them. In deriving fractile values from data 

(abundant or sparse) one faces a choice between using the raw data or smoothing a CDF and 

then deriving fractile values. While we would normally advise that smoothing is best, there is 

the related issue of how specialist SDRF software processes the fractile values entered, 

particularly whether any interpolation or further smoothing is done. We suspect that some of 

these issues could be as important as choice of functional form in influencing results at the 

margin, i.e., in comparing risky alternatives that have very close expected utilities. 

With the SERF method there is no need to define the same probability intervals for 

all alternatives. The method works both with the same intervals on w  for all alternatives with 
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different probabilities, or it could have both values of w  and of ( )wP  uniquely defined for 

each alternative. That is another advantage with the SERF method.  

In cases where the risky prospects to be analysed not are genuine alternatives (as 

assumed in this paper) but are members of a portfolio, the stochastic dependency between the 

real mix of prospects needs to be accounted for. This problem can also be solved comparing 

CEs for a bounded range of risk aversion by using a utility-efficient programming approach 

(Patten et al. 1988).  

There is nothing particularly novel in SERF. It depends on concepts such as certainty 

equivalents and measures of risk aversion that will be understood by most people who are 

familiar with the basics of decision analysis. The basic idea is so simple that it is surprising 

that it has not been widely adopted. There may be more, but the only application we have 

found in searching the agricultural economics literature is in the decision analysis software of 

Richardson (2003). He illustrates the method without noting its particular advantages. 

Conventional SDRF has been widely used in applied work, yet the underlying 

concept of SDRF and its implementation are not easy to understand. The SERF method 

illustrated in this paper includes all the advantages of SDRF yet is much more transparent, is 

easier to implement and has a stronger discriminating power. These seem to be powerful 

advantages which suggest that it is time for the more widespread use of this simpler method. 
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Table 1  A hypothetical example with four alternatives specified for the same set of fractiles 

values. 

 W 
F[w] Alternative A Alternative B Alternative C Alternative D 
0.0 100 50 83 78 
0.1 125 100 113 102 
0.2 135 128 130 111 
0.3 142 145 140 117 
0.4 147 152 147 121 
0.5 150 157 151 123 
0.6 153 162 155 125 
0.7 158 171 161 129 
0.8 163 183 170 133 
0.9 175 207 186 144 
1.0 195 230 214 163 

 

 

 

 

Table 2  Pairwise comparison matrixa to investigate SDRF for a set of bounds for the 

hypothetical example (range: ( ) 0266666.00006667.0 ≤≤ wra ). 

Alternative A B C D 
A - ? ? 1 
B ? - ? 1 
C ? ? - 1 
D 0 0 0 - 
a Comparison by row, across columns   
? = no dominance of the alternative in this row 
1 = row item dominates the respective column item 
0 = row item is dominated by the respective column item. 
Efficient set consists of rows with no 0 indicators. 
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Table 3  A hypothetical example with net returns from six rotation alternatives specified for 

the same set of fractiles values. 

 Rotation alternative 
F[w] F G H  I  J K 
0.0 45 80 180 110 165 170 
0.1 158 186 232 252 278 239 
0.2 205 230 257 311 325 282 
0.3 241 264 281 356 361 322 
0.4 272 294 305 394 392 365 
0.5 299 326 332 432 421 412 
0.6 324 361 361 474 455 464 
0.7 353 401 395 522 492 523 
0.8 387 449 434 578 537 593 
0.9 432 511 486 657 595 685 
1.0 540 660 610 850 735 905 
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Figure 1  The principles of the SERF method illustrated. In this example three risky 

alternatives are considered simultaneously. Partial ordering of the risky alternatives is done in 

terms on certainty equivalents (CEs) for all values of risk attitudes in the range of ( )wr1  and 

( )wr2 . 
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Figure 2  Cumulative probability distributions for alternatives A to D.  

 

Figure 3  CE-graph for the constructed example. 
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Figure 4  Cumulative probability distributions for rotation alternatives F to K. 

Figure 5  CE-graph for the constructed rotation example, when using a negative exponential 

utility function.  
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