

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Self-Reported Food Insecurity in Africa During the Food Price Crisis
Abhimanyu Arora, Jo Swinnen and Marijke Verpoorten (LICOS, KU Leuven, Belgium)
Selected Paper prepared for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguaçu, Brazil, 18-24 August, 2012.
Copyright 2012 by [A. Arora, J. Swinnen and M. Verpoorten]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Abstract

This article analyzes data on self-reported food insecurity of more than 50,000 individuals in 18 Sub-Saharan African countries over the period 2005 to 2008, when global food prices increased dramatically. The average level of self-reported food insecurity was high but remarkably stable, at about 54%. However, this average hides large heterogeneity, both within countries and across countries. In eight of the sample countries, self-reported food security improved, while it worsened in the ten other countries. Our results suggest that heterogeneous effects in self-reported food security are consistent with economic predictions, as they are correlated with net food consumption (both at the household and country level) and economic growth. Specifically, self-reported food security improved on average in rural households, while it worsened in urban households. Improvements in food security were positively correlated with net food exports and GDP per capita growth. We estimate that over the period 2005-2008 between 5 and 12 million people in the 18 SSA countries became more food secure. While the self-reported indicator used in this paper requires further study and one should carefully interpret the results, our findings suggest the need for a critical evaluation of the currently used data in the public debate on the food price crisis, which makes mention of hundreds of millions of additional food insecure.

Keywords: Food policy, food insecurity measurement, Sub-Saharan Africa, food crisis

JEL classification codes: Q18, I32, O55¹

¹ We thank Derek Headey for valuable input. The usual disclaimer applies.

1.Introduction

The dramatic increases in food prices since 2006 have raised many concerns on the impacts on the world's poor. Poor people, who spend a large share of their income on food, are said to suffer severely from food price increases. This, it is argued, is not only the case for poor urban consumers, but also for poor rural households and farmers, many of whom are argued to be net consumers and therefore suffering from higher prices (Barret and Dorosh, 1996; Weber et al., 1988). FAO, USDA and World Bank estimates of the welfare impact of the 2007/2008 global food crisis conclude that somewhere between 75 to 160 million people were thrown into hunger or poverty (de Hoyos and Medvedev, 2009; USDA, 2009). Several studies focusing on Sub-Saharan Africa have also concluded strong negative welfare effects (Arndt et al., 2008; Wodon and Zaman, 2009).

These claims, however, have not gone without challenge. A first critique relates to the apparent inconsistency of these claims with earlier arguments that poor farmers and rural households in developing countries suffered heavily from low global food prices, partly as a consequence of rich countries' agricultural subsidies (Swinnen, 2011). A second critique relates to the fact that other factors than food prices can be more important determinants of food consumption in developing countries (Banerjee and Duflo, 2011). A third critique relates to the actual measurement of hunger and food security which underlies these arguments, and their determinants (Easterly, 2010²; Headey, 2011). A crucial issue with the hunger calculations is that they are typically not based on actual measurement but on simulations. One drawback of the simulation-based studies is that their country

^{2 &}quot;Spot the made-up world hunger numbers" on Aidwatchers, 15th September, 2010 (can be accessed at: http://aidwatchers.com/2010/09/spot-the-made-up-world-hunger-numbers/)

coverage may be limited and possibly not representative, in particular when the models do not include some large countries with many poor people. Another potential drawback is the ceteris paribus nature of the analyses.

While some of these studies have carefully pointed out the limitations of the simulations exercises, many of those who have used the results of these studies in the policy debate have not. For example, Will Martin and Hassan Zaman, in a recent response to Headey on Dani Rodrik's website correctly point out the ceteris paribus nature of studies they and others have been involved in (see e.g. Ivanic and Martin, 2008; Wodon and Zaman, 2009) and they also stress the limitations of looking at hunger or food security as welfare indicators, with poor people making costly adjustments to make up for increasing food prices³. Indeed, it has been extensively demonstrated that, in order to meet their consumption needs, rural households may sell their productive assets such as seeds and livestock, thereby jeopardizing their future earnings prospects (Dercon, 2004; Poulton et al., 2006).

However, in much of the policy debates on the food crisis, the discussions have ignored the ceteris paribus assumption and the complex interactions between food prices and welfare, and have used the numbers from the simulation models as if they were actual changes in food security or poverty (see Swinnen (2011) for a review of statements and public arguments).

In a recent review of the issue, Headey (2011) not only points out important deficiencies but also proposes considering alternative measures which are based on ex-post observations instead of simulating from ex ante data. He analyzes self-

2008-really-a-myth.html

3

³ "Was the food price crisis of 2008 really a myth?", posted by Martin and Zaman on June 16, 2011 can be accessed at http://rodrik.typepad.com/dani_rodriks_weblog/2011/06/was-the-food-price-crisis-of-

reported food insecurity from the Gallup World Poll (GWP), a survey that has covered almost 90% of the developing world population over the period 2005-2010. His findings are strikingly different from those so far claimed. The GWP data suggest that although there was large variation across countries, global self-reported food insecurity fell sharply from 2005 to 2008, with estimates ranging from 60 to 340 million people (Headey, 2011). The discrepancy between this finding and the results of the more commonly used simulation-based approach is likely to be due to the combination of the ceteris paribus assumption and the under-sampling of fast-growing large economies - China, India and Brazil - in the latter approach.

Given the dramatically different conclusions, and the potential implications for food and economic policies, it is important to further investigate this issue. In this paper we follow up on Headey's (2011) approach by using a self-reported food insecurity indicator from a different data source: the Afrobarometer (AB) surveys.⁴ Analyzing a similar indicator from a different source is important to see to what extent these data confirm Headey's GWP data findings, or not.

There is an additional contribution. A limitation of the GWP data used by Headey (2011) is their aggregate nature, i.e. they provide only one figure for each country-year in the sample. This makes it impossible to distinguish between, for example, rural and urban areas, and to control for a number of individual level characteristics that may influence self-reported food insecurity. In contrast to the GWP data, the AB data is available at the individual level. The survey rounds of 2005

_

⁴ Afrobarometer is a research project funded by Institute for Democracy in South Africa, the Ghana Centre for Democratic Development and the Department of Political Science at the Michigan State University. The project seeks to explore public attitudes towards governance and socio-economic scenarios.

and 2008 include observations on approximately 50,000 representative individuals across 18 different Sub-Saharan African (SSA) countries, making it represent 56.3% of the population in SSA.

The next section gives an overview of the AB data on self-reported food insecurity in 2005 and 2008. In section 3, we study the change in self-reported food insecurity over this period and discuss the within- and between- country heterogeneity in the results. In section 4, we verify the robustness of these results by means of a multivariate regression analysis. Section 5 provides further discussion on three fronts. First, we assess the economic significance of the changes in self-reported food insecurity by providing estimates on the number of millions falling into or escaping food insecurity over the period under study. Second, we assess the external validity of the results by comparing characteristics of the in-sample SSA countries with the out-of-sample SSA countries. Finally, as a test of the reliability of the AB self-reported food insecurity indicator, it is compared with a similar measure, i.e. the self-reported food insecurity in the GWP data, used in the paper of Headey (2011).

2. The Afrobarometer Data

Figure 1 shows the dramatic change of the real food price over the past decade. The average annual international food price index increased dramatically from its (annual average) baseline level of 100 in 2005 to 167 in 2008. To assess how rising food prices affected self-reported food insecurity in SSA, we use the AB household survey data for the years 2005 and 2008.

Eighteen countries, displayed in Table 1, have nation-wide respondents for these two rounds. Respondents are selected using a random, stratified, multistage, national probability sample representing adult citizens aged 18 years or older. There are between 1,104 and 2,400 respondents for each country-year, allowing inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5% with a confidence level of 95%. In total, across the two survey rounds for the 18 countries, the dataset includes information of 50,710 respondents, of which the majority (62%) resides in the rural sector.

In the AB surveys, the question on food insecurity is formulated as follows: "Over the past year, how often, if ever, have you or anyone in your family gone without enough food to eat? 0=Never, 1=Just once or twice, 2=Several times, 3=Many times, 4=Always"

The exact phrasing of the question is important, an issue that is extensively discussed by Headey (2011). Phrases of interest include "over the past year", "you or anyone in your family", and "enough food to eat". The latter may be subjective, depending on the diet the respondent is accustomed to, which may include meat and other more expensive items for well-off individuals and may consist exclusively out of staple foods for poorer individuals. In principal, the phrase "you or anyone in your family" makes the question sensitive to unequal intra-household distribution of food. Finally, for the purpose of linking the self-reported measure with events that occurred, it is important to take account of the 12 month recall period ("over the past year").

The timing of the interview varied within and across survey rounds. Depending on factors including the size of the country, each survey was implemented in periods ranging from nine days (Cape Verde, May 2008) to 125 days (Nigeria, August-December 2005). In a regression analysis (reported in section 4), we determine for each individual separately the 12-month recall period and the corresponding food price inflation, and find qualitatively the same results as those on the basis of summary statistics across 2005 and 2008 (reported in section 3).

To facilitate reading the data, we derive three binary indicator variables from the categorical answers. *Foodinsecurity1* indicates whether or not the individual experienced food shortages over the past year; it takes the value 1 for the categories 1-4 (1=Just once or twice, 2=Several times, 3=Many times, 4=Always) and zero otherwise, i.e. if the household never experienced hunger. A second indicator, *foodinsecurity2*, takes the value 1 for categories 2-4 and zero otherwise, capturing when individuals had gone without enough food more frequently than "just once or twice". A third indicator variable, *foodinsecurity3*, equals 1 when the households reported having gone without enough food "many times" or "always".

Changes in foodinsecurity1 can be read as changes in the incidence of food insecurity, while increases in *foodinsecurity3* are likely to result from individuals moving from less severe (rather than no food insecurity) to more severe food insecurity. Therefore, to some extent, increases in *foodinsecurity3* can be interpreted as increases in the depth of food insecurity.

3. Self-Reported Food Insecurity, 2005-2008

3.1. General numbers

Table 2 summarizes the frequency distribution of the answers. The descriptive statistics yield several important conclusions. First, in both years, more than half of all the respondents reported having gone without food at least once in the past 12 months prior to the interview and 16% to 17% did "many times" or "always".

Second, food insecurity is considerably larger for rural than for urban respondents. Only 39% - 41% for rural respondents never went without food, compared to 55% - 57% of urban respondents. Furthermore, rural respondents answered "many times" or "always" in approximately 20% of cases compared to only

10% for their urban counterparts. This is consistent with information from other sources indicating that food insecurity is much higher in rural than in urban areas (Weber et al., 1988).

Third, remarkably there are no dramatic shifts during the period of food crisis. Between 2005 and 2008, the share of respondents who were never without food decreased by only two percentage points (from 47.3% to 45.4%). Furthermore, this decrease was almost entirely due to a shift to the category of going without food just once or twice (increasing from 15.8% to 17.3%). In fact, very severe food insecurity slightly declined over the period, with the share of respondents reporting going without food "many times" or "always" decreasing from 17.3% to 16.3%.

Thus, it seems that the incidence of food insecurity increased slightly, while the depth of food insecurity decreased slightly. This is also the pattern that emerges from Table 3, which summarizes the descriptive statistics for the three binary food insecurity variables, in Panel A, B and C, respectively. In line with Table 2, we find that *foodinsecurity1* slightly increased, *foodinsecurity2* remained basically unchanged and *foodinsecurity3* slightly decreased.

There may be several reasons why, in a period with high international food price inflation, we find only a relatively moderate increase (*foodinsecurity1*, *foodinsecurity2*) or even a decrease in the share of food insecure (*foodinsecurity3*). One potential reason is that many poor people are farmers who may have benefited from the high food prices. Another reason may be the influence of other important determinants of food security. Most importantly, as is evident from Table 4, the countries in our sample experienced strong income growth, with above 3% annual average GDP per capita growth over the 2005-2008 period.

In the words of Headey and Fan (2008, p. 387) "Essentially, the welfare effect of rising food prices at the urban, rural, or country level depends upon the number of people who are poor and vulnerable (just above the poverty line), whether those people are net buyers or net sellers of food, and whether they are marginal net sellers/buyers or significantly so." Although conceptually very transparent, at the micro-level the difficulty lies in measuring the extent to which rural and urban households are net sellers/buyers of food. This measurement issue, in particular the likely underreporting of household income in rural regions, may explain some contrasting results of recent cross-country poverty simulations. Given these contrasting results, it is useful to further explore the heterogeneity in the change in self-reported data on hunger.

3.2 Heterogeneous results

3.2.1. Rural versus urban areas

The results in Table 3 suggest that rural respondents are on average benefiting from high food prices and experience an improvement in food security, whereas urban households are worse off. The rural-urban difference in the change in self-reported food insecurity is largest for very severe food insecurity (*foodinsecurity3*), for which the figures indicate a decrease of 9.2% in rural areas and an increase of 7.8% in urban areas, suggesting that the depth of food insecurity increased substantially in urban

_

⁵ For example, for two African countries, Ivanic and Martin (2008) find larger increases in rural than in urban poverty upon food price increases. These results are challenged by Aksoy and Isik-Dikmelik (2008), who assume that many of the poorest in rural areas are mostly net food sellers. Several detailed country case studies also reach the conclusion that, while the effect of world food prices is likely to be relatively modest for the country as a whole, the urban poor –rather than the rural poor – may be hardest hit by high food prices (Godsway et al. (2010) for Ghana; Ferreira et al. (2011) for Brazil; Arndt et al. (2008) for Mozambique).

areas while decreasing substantially in rural areas. For *foodinsecurity2*, the difference is smaller, with a drop of -0.2% in rural areas and a rise of 5.2% in urban areas. *Foodinsecurity1* increased in both rural and urban areas, although more so in the latter (4.4% versus 3.4% in rural areas).

Figure 2a visualizes the rural-urban difference in the change in *foodinsecurity1* during the period 2005-2008, depicting the change of *foodinsecurity1* in urban areas on the horizontal and the change in rural areas on the vertical axis. On average, urban food insecurity increased more than rural food insecurity, as is shown by the fitted line which lies below the 45°-line. However, many country data points lie close to the 45°-line, indicating that, in those countries, the proportional change in *foodinsecurity1* was similar across rural and urban areas. Noteworthy exceptions, where food insecurity increased much more in urban areas, are Benin and Senegal (denoted by the ISO-codes BJ and SE respectively).

Figures 2b and 2c depict the rural-urban difference for the change in *foodinsecurity2* and *foodinsecurity3*, respectively. The average result is qualitatively the same as in Figure 2a: the fitted line is flatter than the 45° line indicating that, on average, the depth of food insecurity increased more in urban than in rural areas. Again, the results are very different across countries with some of the country data points lying close to the 45° line, while others (e.g. Senegal and Benin) lying far below the 45° line.

3.2.2. Food importing versus food exporting countries

A second interesting distinction can be made between net food-importing and netfood exporting countries. We classify a country as a net food-importer (-exporter) if the value of annual food imports was larger (smaller) than the value of annual food exports, on average for the period 2005-2008.⁶ Table 3 indicates that, on average, self-reported food insecurity increased considerably for food importers, across all three binary variables, while respondents in food exporting countries reported stable (*foodinsecurity1*) or declining food insecurity (*foodinsecurity2* and *foodinsecurity3*). This pattern is consistent with the intuition of increasing prices benefiting net exporters more (or hurting less) than net importers.

Table 4 shows that, in the sample countries, net food imports as a share of GDP over the 2005-2008 period was on average negative (-1%), but varied between -9.9% in Ghana and 13% for Cape Verde. The importance of food import reliance is depicted in Figure 3a, which shows a strongly positive relationship between the change in *foodinsecurity1* between 2005 and 2008 and the share of net food imports in GDP. The relationship is also positive for *foodinsecurity2* and *foodinsecurity3*, be it less strong (see Figures 3b and 3c).

3.2.3. GDP per capita growth

Table 4 shows that, in our sample of countries, annual GDP per capita growth over 2005-2008 ranged between a low of 0.9% (or -5.3% when including Zimbabwe) and a high of 5.3% for Uganda. Given this heterogeneity across countries, and the presumption that income matters for food insecurity, we expect to find large cross-country variation in the change in self-reported food insecurity.

We indeed find large differences. For instance, Benin, a poor growth performer in the period under study (0.9%), tops the list for the change in *foodinsecurity1* with a 41.7% increase in the share of respondents going without food

⁶ Except for Lesotho for which, due to unavailability of data, we use the figures for the period 2000-2004.

-

at least once. Mozambique, which had a very good growth record (5.2%), displays the largest decrease in *foodinsecurity1* (-22.5%). Figure 4a shows the relationship between GDP per capita growth and the change in food insecurity for all countries in our sample. The relationship is strongly negative, indicating that, on average, *foodinsecurity1* increased in countries with relatively low economic growth. Some country data points lie far above the fitted line, indicating that food insecurity increased much more than predicted based on the average relationship. Not surprisingly, these data points include Senegal, Lesotho and Cape Verde, the three countries with the highest reliance on food imports in our sample.

Figure 4b shows a very similar pattern for the relation between GDP per capita growth and changes in *foodinsecurity2*. However, Figure 4c shows only a very weak correlation between GDP growth and the change in *foodinsecurity3*. This suggests that, at least in the short run, GDP per capita growth is more strongly correlated with the change in the incidence of hunger than with the change in the depth of hunger.

3.2.4. Education level

Educational attainment of the respondent is yet another significant aspect lending heterogeneity to food insecurity. In the absence of income data in the AB, educational attainment provides a useful cue for income as the relation is shown to be strong and highly significant (Griliches and Mason, 1972). About six in ten respondents have completed primary education, while four in ten have received no formal education or only some primary education. Figure 5a compares the change in *foodinsecurity1* by these categories, which are depicted on the horizontal and vertical axis, respectively. Figures 5b and 5c provide the same comparisons but for the subsamples of rural and urban respondents respectively. In all three figures (5a, 5b, 5c) the fitted line lies

below the 45°-line, indicating that self-reported food insecurity increased more among the educated respondents. This pattern is qualitatively the same when looking at *foodinsecurity2* and *foodinsecurity3* (not reported).

One explanation may be that there are more net-food consumers among the relatively well educated, while net-food producers make up the majority of the uneducated. However, this explanation can only apply to the rural areas, not to the urban areas, where basically everybody – both educated and uneducated – are net-food consumers. Another explanation may relate to the subjective nature of the measure of self-reported food insecurity, i.e. the educated may be more likely to self-report a change in food insecurity, for reasons related to behavior and social norms, or because their consumption basket consists of more traded food items.

3.2.5. Gender

Finally, we study heterogeneity across the gender of the respondent. A recent study by Kumar and Quisumbing (2011) on the gendered impact of the 2007-08 food price crisis on poverty perception and consumption by Ethiopian households finds that female-headed households are more vulnerable to food price changes and are more likely to have experienced a food price shock in 2007–08, mainly because they have fewer resources, have fewer years of schooling, and have smaller networks. Our findings from the self-reported food insecurity measure are in line with their study. Figure 6 demonstrates that the change in food insecurity during the period 2005-8 for all severity levels was greater for female headed than for male headed households.

4. Regression analysis

We check whether the above results hold in a multivariate analysis as well as when properly accounting for the 12-month recall period.

As explained above, the question on food insecurity was asked with respect to "the past year", and the timing of the interviews varied within each survey round. We now account for the 12-month recall period, by determining for each individual the exact survey date, 12-month recall period and the corresponding mean food prices. In a probit model, we regress self-reported food insecurity on the average food price index over the past year from the date of interview. Table 5, Panel A displays the results of this regression, which confirms our previously reported descriptive statistics. In particular, the coefficient on the 12-month average price index is significantly positive when explaining *foodinsecurity1* and significantly negative when explaining *foodinsecurity2* and *foodinsecurity3*. For example, a 1% increase in the mean price level of the past year decreases the probability of a respondent being severely food insecure by 0.05%.

In panel B of Table 5, we check the robustness of our rural-versus-urban result when controlling for the fact that urban households have a higher educational attainment (which may result in them reporting more easily a change in food insecurity). In particular, the regression analysis controls for whether the respondent is urban or rural, the respondent's education category as well as the interaction terms of these two variables with the 12-month average of the food price index. We indeed find confirmation that urban respondents are more vulnerable to an increase in food prices. In particular, the interaction term between the urban indicator variable and the

-

⁷ This effect is the average marginal effect (over all countries) derived from changes in the z-score of the probit regressions.

food price index indicates that, for a 1% increase in the food price level the probability of becoming food insecure (foodinsecurity1) is on average 3% higher for an urban respondent than for a rural respondent⁸. For foodinsecurity2 and foodinsecurity3 this difference in probability is 5.3% and 7.3%, respectively. These regression results are in line with our descriptive results, and it tilts the balance in favor of the claims that rural respondents on average benefited (suffered less) from the food crisis, even though they might be worse off in level terms to begin with.

Finally, since the country-level covariates, i.e. real GDP per capita growth and the share of net food imports as percentage of GDP, are positively correlated (with a correlation coefficient of 0.15), we check the robustness of our results with respect to these variables by including them jointly as explanatory variables, as well as their interaction terms with the food price index. The results displayed in Panel C of Table 5 are in line with our claims above, i.e. growth in income moderates the increases in food insecurity upon a rise in food prices, whereas a higher dependence on food imports of a country increases the chances of its respondent becoming more food insecure, on average, with rising prices.

We also perform a joint regression in which we include all the regressors from Panel B and C of Table 5. Our conclusions remain valid (results not reported).

⁸ Due to the estimation model being non-linear, the effect of the interaction term (of being in an urban region with the mean price over the past year) may differ in sign and magnitude across observations (Ai and Norton, 2003). Here the minimum over all observations is positive and significant for all severity levels of food insecurity.

5. Discussion

5.1 Accounting for population size

How can we translate these figures in numbers of people falling into or escaping food insecurity? Table 4 shows that the sample countries are very different in terms of population size, varying from less than one million for Cape Verde to more than 140 million inhabitants in Nigeria. In the above individual-based analyses, the size of the respondent's country, in terms of population, is disregarded. In order to assess the numbers of people falling into or escaping food insecurity, we need to account for population size.

First, we repeat the same analysis as above - calculating the proportional change in self-reported food insecurity – but now using population-weights that give a higher weight to more populous countries. Second, we estimate the changes in terms of absolute numbers of people falling into (or escaping) food insecurity, both when assuming zero population growth, and when taking population growth between 2005 and 2008 into account.⁹

The results are given in Table 6. The first column gives the proportional change in food insecurity for the unweighted data, repeating the results reported in the last column of Table 3. The second column gives the population-weighted proportional change in food insecurity. The results are very different. The population-weighted data show a much stronger decrease in food insecurity than the unweighted data: Weighting by population leads to a proportional decrease of 2.3%, 6.8% and

[.]

⁹ The population weights used reflect the number of people residing in a country in 2005. The calculations for the urban and rural subsamples make use of information on the size of the urban and rural population of the country, taken from the WDI 2010.

17.3%, compared to a proportional increase of 3.6% and 1.4% and decrease of 5.2% for *foodinsecurity1*, *foodinsecurity2* and *foodinsecurity3*, respectively. This results from the fact that especially countries with a large population experienced an improvement in food security. For instance, Nigeria weighs heavily in our sample with its 140 million inhabitants, and experienced a strong reduction in all three binary food insecurity indicators (-4.9%, -9.2%, -19.3%).

The population-weighted results imply that several millions of people escaped food insecurity: -5.62 million, -10.60 million and -12.20 million for *foodinsecurity1*, *foodinsecurity2* and *foodinsecurity3* respectively. These figures, reported in the third column of Table 6, are obtained by multiplying the population-weighted relative changes of column 2 by the 2005 population in our sample countries.

5.2 Accounting for population growth

So far, in our calculation – as in other studies estimating the effect of price changes on food security — we have assumed constant population over the period 2005-8. In reality, population grew on average by 2.2% annually across our sample countries. To account for population growth, we take the difference between the share of food insecure in 2008 (derived using population weights) times the population in 2008 and the corresponding term but for the year 2005. The results are reported in column four.

Logically, both the absolute number of food secure and the absolute number of food insecure people increased, as both groups increased with population growth. However, despite population growth, we find that the number of people who experienced regular food shortages (measured by *foodinsecurity2* and *foodinsecurity3*) was lower in 2008 than in 2005 – with -0.75 million and -8.4 million respectively. For *foodinsecurity1*, we find that the number of food insecure increased

with 9.99 million. However, the absolute number of food secure increased by even more, given their increasing share in the population and the fact that they make up almost half of the population. Hence the net effect was negative, as reflected in the declining share.

5.3 External validity of the results

Another important question is how representative these results are for the whole of SSA? Sub-Saharan Africa counts 47 countries, totaling a population of 759 million (on average in 2005-2008). The AB sample across the 18 countries is representative for a population of 427 million, or around 56% of the SSA total population. 10 To gauge whether this is a particular subsample of the SSA population, we compare a number of relevant characteristics of the included and excluded countries.

Table 7 shows that the sample represents SSA to a good extent in the relevant economic characteristics: GDP per capita, GDP per capita growth, malnutrition prevalence and depth of hunger. 11 However, the in-sample countries had higher inflation and were on average relying more heavily on food imports than the out-ofsample SSA countries, suggesting that the in-sample countries may have suffered more (benefited less) from the food price crisis than the out-of-sample countries. On the other hand, the latter had on average a much larger number of conflict events over the period, which are likely to have negatively affected food security. This might explain why they were not surveyed in the first place.

¹⁰ All population figures are calculated from WDI indicators (World Bank, 2008)

¹¹ Depth of hunger indicates how much food-deprived people fall short of minimum food needs in terms of dietary energy. The food deficit, in kilocalories per person per day, is measured by comparing the average amount of dietary energy that undernourished people get from the foods they eat with the minimum amount of dietary energy they need to maintain body weight and undertake light activity

5.4 Comparison with Gallup World Poll (GWP) data

The results above show that the changes of the self-reported indicators between countries (e.g. food importing - food exporting) and within countries (e.g. urban-rural) are consistent with intuition. As a further test of the reliability of our self-reported food insecurity indicators, the AB self-reported food insecurity measure is compared with a similar measure, i.e. the self-reported food insecurity in the GWP data, used by Headey (2011). The 2005 GWP data does not include information for SSA countries, but the 2008 GWP provides aggregate country-level data for 15 SSA countries that are also included in the AB.

The food insecurity question included in the 2008 GWP is very similar to the one in the AB survey (Headey, 2011): "Have there had been times in the past 12 months when you did not have enough money to buy the food that you or your family needed?" A simple yes/no answer is recorded. We compare this measure with the foodinsecurity1 indicator derived from the 2008 AB.

The comparison results in very similar figures of average food insecurity across both data sources, with on average 56% of respondents reporting being food insecure in the 2008 AB sample and 59% in the 2008 GWP sample. The correlation coefficient between the AB and GWP country figures of self-reported food insecurity is as high as 0.78. Figure 7 illustrates the strong relationship between both measures with a plot of the AB and GWP country-level data points.

In summary, the comparison shows that the indicators from both surveys are very similar and thus provides some support to the reliability of a self-reported food security measure.

6. Conclusion

This paper has studied the evolution of self-reported food insecurity in SSA across the period 2005-2008, a period with a dramatic global rise in food prices. Despite a strong increase of the food price index we have found only a small increase in the incidence of food insecurity (as measured by *foodinsecurity1*), and even decreases in the depth of food insecurity (as measured by *foodinsecurity3*).

This finding does not support the widely advocated view that the food price spikes of recent years have led to strongly increased food insecurity in developing countries. In particular, food security apparently improved for net food-producers in our sample, both at the micro-level (among the rural households) and macro-level (among the net food exporting countries). Although rural respondents report much higher food insecurity than urban respondents in all three survey years, the rural-urban gap became narrower over the period 2005-2008, as urban food insecurity increased and rural food insecurity declined on average.

We also find that it is highly likely that strong GDP growth over the recent years has improved food security in a large number of SSA countries, compensating a possible negative impact of food price increases even on net food consuming households.

This paper may raise more questions than it answers. There is uncertainty on the quality and accuracy of our key indicator of food security. This needs further analysis. However, the fact that our analysis suggests that food security did not increase (dramatically) - even in very poor African countries - supports the argument that there is need for a careful re-evaluation of existing measures and methodologies, and of the use of the results of various approaches in the public debate.

To precisely identify the contributions of various factors (food prices, income growth, energy prices, etc.) on food security in the world, one probably needs a combination of various methodologies. The advantage of simulation models is that it allows showing the mechanism of how various factors affect food security, welfare and poverty. The advantage of survey based approaches is that they allow to measure actual changes in food security levels. Both have their role and should be used appropriately.

References

Aksoy, A.M., Isik-Dikmelik, A., 2008. Are Low Food Prices Pro-Poor? Net Food Buyers and Sellers in Low-Income Countries. Policy Research Working Paper Series 4642. World Bank, Washington, DC.

Ai, Chunrong, Norton, E. C., 2003. Interaction terms in logit and probit models. Economic Letters 80, 123-129.

Arndt, C., Benfica, R., Maximiano, N., Nucifora, A.M.D., Thurlow, J., 2008. Higher fuel

and food prices: impacts and responses for Mozambique. Agricultural Economics 39, 497–511.

Banjeree, A., Duflo, E., 2011. Poor Economics: A Radical Rethinking of the Way to Fight Global poverty, first ed. MIT press, Cambridge, MA.

Barrett, C.D., Dorosh, P.A., 1996. Farmers' Welfare and Changing Food Prices: Nonparametric Evidence from Rice in Madagascar. American Journal of Agricultural Economics 78(3), 656–69.

Chen, S., Ravallion, M., 2004. How Have the World's Poorest Fared Since the Early 1980s? Policy Research Working Paper Series 3341, The World Bank, Washington DC.

De Hoyos, R. E., Medvedev, D., 2009. Poverty Effects of Higher Food Prices: A Global Perspective. Policy Research Working Paper Series 4887, The World Bank, Washington DC.

Dercon, S., 2004. Insurance against poverty, first ed., Oxford University Press. New York

Dessus, S., Herrera, S., de Hoyos, R., 2008. The impact of food inflation on urban poverty and its monetary cost: some back of the envelope calculations. Agricultural Economics 39s1, 417–429.

Ferreira, F. H. G., Fruttero, A., Leite, P., Lucchetti, L., 2011. Rising food prices and household welfare: evidence from Brazil in 2008. Policy Research Working Paper Series 5652, The World Bank, Washington DC.

Godsway, C., Breisinger C., Diao, X., 2010. Local impacts of a global crisis: Food price transmission, consumer welfare and poverty in Ghana. Food Policy, 35(4), 294–302

Griliches, Zvi and William M. Mason. 1972. "Education, Income, and Ability", The Journal of Political Economy, 80(3), Part 2: Investment in Education: The Equity-Efficiency Quandary (May - Jun., 1972), pp. S74–S103.

Headey, D., Fan, S., 2008. Anatomy of a crisis: the causes and consequences of surging food prices. Agricultural Economics, 39(1), 375–391

Headey, D., 2011. Was the Global Food Crisis really a Crisis? Simulations versus Self-Reporting. IFPRI Discussion Paper No. 01087. International Food Policy Reasearch Institute (IFPRI), Washington D.C.

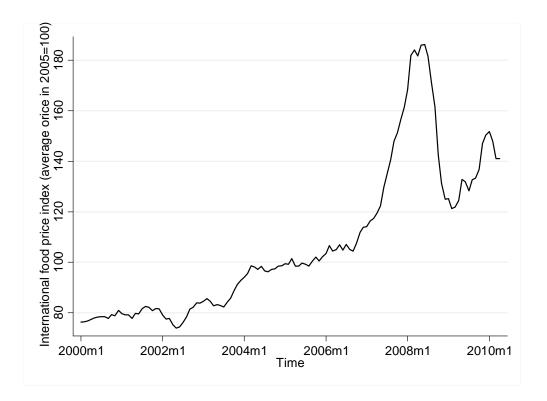
Ivanic, M., Martin, W., 2008. Implications of higher global food prices for poverty in low-income countries, Policy Research Working Paper Series 4594, The World Bank, Washington DC.

Ivanic, M., Martin, W., Zaman, H., 2011. Estimating the short-run poverty impacts of the 2010-11 surge in food prices. Policy Research Working Paper Series 5633, The World Bank, Washington DC.

Kumar, N., Quisumbing, A. R., 2011. Gendered Impacts of the 2007–08 Food Price Crisis: Evidence Using Panel Data from Rural Ethiopia. Policy Research Working Paper Series

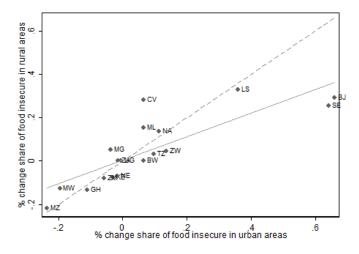
01093, The World Bank, Washington DC.

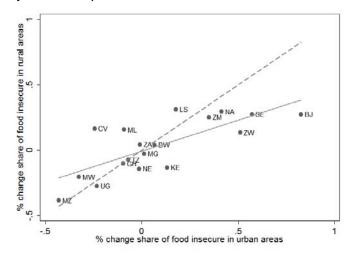
Poulton, C., J. Kydd, S. Wiggins, Dorward, A., 2006.State Interventions for Food Price Stabilization in Africa: Can it Work? Food Policy 31, 342–56.


Swinnen, Johan F.M., 2011. The Right Price of Food. Development Policy Review. Forthcoming.

USDA, 2009. Food Security Assessment, 2008-09 Washington DC: United States Department of Agriculture (USDA) Economic Research Service (ERS).

Weber, M.T., Staatz J.M., Holtzman J.S., Crawford E.W., Bernsten R.H., 1988. Informing Food Security Decisions in Africa: Empirical Analysis and Policy Dialogue. American Journal of Agricultural Economics 70, 1044–52. December.


Wodon, Q., Zaman, H., 2010. Higher Food Prices in Sub-Saharan Africa: Poverty Impact and Policy Responses. World Bank Research Observer 25(1), 157–76.


Figure 1. The real international food price

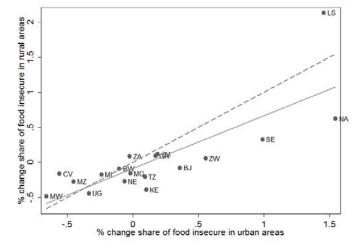
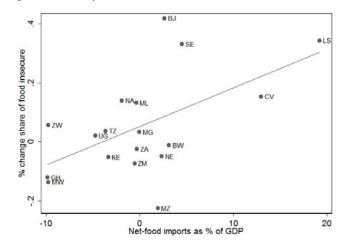
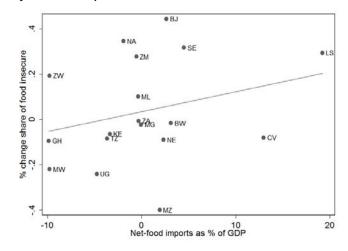

Notes: The food price data is obtained from the FAO Food Price Index database. In calculating the FAO food price index, the FAO classifies 55 commodity quotations into 5 groups-meat, dairy, cereals, oil & fat and sugar and takes the average of these indices, weighting them by their average export shares over 2002-2004.

Figure 2. The change in urban and rural food insecurity over 2005-2008 a. *foodinsecurity1*




c. foodinsecurity3

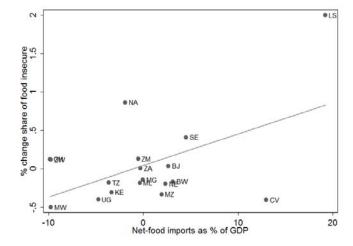
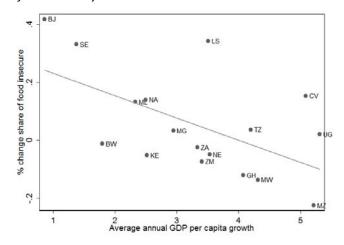
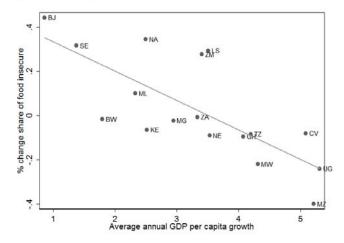

Note: The ISO-codes, listed in Table 4, are used to label the country data points; the dashed line is the 45° degree line.

Figure 3. The share of net food imports in GDP and the 2005-2008 change in food insecurity a. *foodinsecurity1*




c. foodinsecurity3

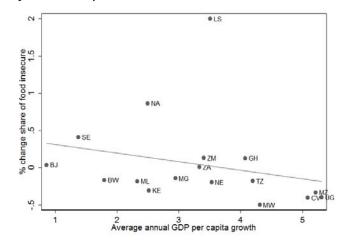
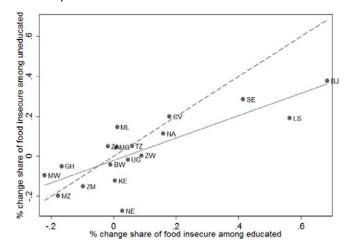

Note: The ISO-codes, listed in Table 4, are used to label the country data points; the dashed line is the 45° degree line. Net food imports are defined as in Table 4.

Figure 4. GDP per capita growth and the 2005-2008 change in food insecurity a. *foodinsecurity1*


c. foodinsecurity3

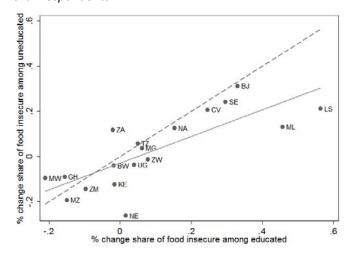
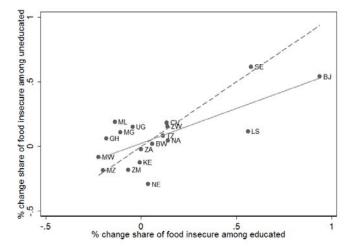
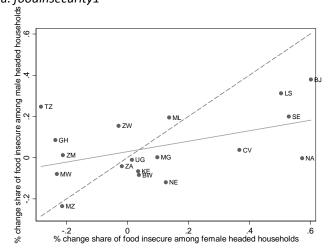
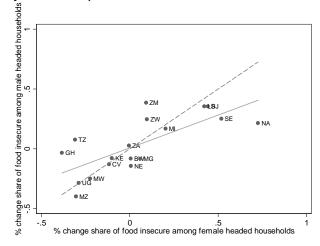

Note: The ISO-codes, listed in Table 4, are used to label the country data points; the dashed line is the 45° degree line. Zimbabwe is left out because it has data available only for 2005.

Figure 5. Change across 2005-2008 in food insecurity (foodinsecurity1) by education


a. Total sample

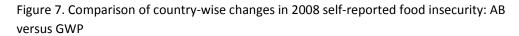
b. Rural Respondents




c. Urban Respondents

Note: The ISO-codes, listed in Table 4, are used to label the country data points; the dashed line is the 45° degree line. The category "uneducated" include those with no, informal or incomplete primary education.

Figure 6. Change in food insecurity across 2005-2008 by gender of the household head a. *foodinsecurity1*



d. foodinsecurity3

Note: The ISO-codes, listed in Table 4, are used to label the country data points; the dashed line is the 45° degree line



Table 1. Afrobarometer sample observations across country-years

	20	2005		100
	20			800
	obs	% rural	obs	% rural
Benin	1,198	0.58	1,200	0.59
Botswana	1,200	0.57	1,200	0.45
Cape Verde	1,256	0.53	1,264	0.4
Ghana	1,197	0.53	1,200	0.55
Kenya	1,278	0.71	1,104	0.78
Lesotho	1,161	0.66	1,200	0.74
Madagascar	1,350	0.76	1,350	0.76
Malawi	1,200	0.86	1,200	0.85
Mali	1,244	0.73	1,232	0.73
Mozambique	1,198	0.57	1,200	0.68
Namibia	1,200	0.6	1,200	0.64
Nigeria	2,363	0.51	2,324	0.51
Senegal	1,200	0.59	1,200	0.55
South Africa	2,400	0.39	2,400	0.34
Tanzania	1,304	0.77	1,208	0.74
Uganda	2,400	0.7	2,431	0.8
Zambia	1,200	0.63	1,200	0.63
Zimbabwe	1,048	0.68	1,200	0.63
Total	25,397	0.62	25,313	0.62

Table 2. Share of respondents reporting having gone without enough food

	Total	sample	Rural		Urban	
%	2005	2008	2005	2008	2005	2008
Never	47.3	45.4	41.3	39.3	57.1	55.2
Just once or twice	15.8	17.3	15.6	17.7	16.2	16.6
Several times	19.6	21	21.4	23.3	16.6	17.3
Many times	12.8	12.7	15.9	15.4	7.7	8.4
Always	4.5	3.6	5.8	4.3	2.4	2.6
Obs	25,342	25,254	15,676	15,635	9,666	9,619
Column %	100	100	100	100	100	100

Table 3. Self-reported food insecurity, binary variables

			%		
	2005	2008	change		
Panel A: food insecurity 1 (at least once)					
Total	0.53	0.55	3.6%		
Urban	0.43	0.45	4.4%		
Rural	0.59	0.61	3.4%		
Net food imports > 0% GDP	0.49	0.53	9.9%		
Net food imports < 0% GDP	0.55	0.55	0.4%		
Panel B: food insecurity 2 (at leas	st several times)				
Total	0.37	0.37	1.4%		
Urban	0.27	0.28	5.2%		
Rural	0.43	0.43	-0.2%		
Net food imports > 0% GDP	0.34	0.36	4.7%		
Net food imports < 0% GDP	0.39	0.38	-0.3%		
Panel C: food insecurity 3 (at least many times or always)					
Total	0.17	0.16	-5.2%		
Urban	0.10	0.11	7.8%		
Rural	0.22	0.20	-9.2%		
Net food imports > 0% GDP	0.14	0.16	11.4%		
Net food imports < 0% GDP	0.19	0.17	-13.0%		

Table 4. Characteristics of sample countries

	Average annual GDP per capita growth 05-08 (%)	Net food imports as percent of GDP (average across 05-08)	Total population in 2005 (millions)	Average annual population growth 05-08(%)	ISO code
Benin	0.9	2.6	7.87	3.2	BJ
Botswana	1.8	3.1	1.84	1.4	BW
Cape Verde	5.1	13.0	0.48	1.5	CV
Ghana	4.1	-9.9	21.92	2.1	GH
Kenya	2.5	-3.4	35.82	2.6	KE
Lesotho	3.5	19.2 ^c	2.00	0.9	LS
Madagascar	2.9	0.0	17.61	2.7	MG
Malawi	4.3	-9.8	13.65	2.8	MW
Mali	2.3	-0.4	11.83	2.4	ML
Mozambique	5.2	1.9	20.83	2.4	MZ
Namibia	2.5	-1.9	2.01	1.9	NA
Nigeria	3.5	2.3	140.88	2.4	NG
Senegal	1.4	4.5	11.28	2.6	SN
South Africa	3.3	-0.3	46.89	1.2	ZA
Tanzania	4.2	-3.6	39.01	2.8	TZ
Uganda	5.3	-4.8	28.70	3.3	UG
Zambia	3.4	-0.6	11.74	2.4	ZM
Zimbabwe	-5.2 ^a	-9.8	12.48	-0.1	ZW
Average	3.3 ^b	-1.0	23.71	2.2	

Notes: The country level variables are calculated using World Bank's WDI indicators.

^aData available only for 2005

^bZimbabwe excluded

^cData available only for 2000-04

Table 5: Regression analysis

	(1)	(2)	(3)
Dependent variable:	foodinsecurity1	foodinsecurity2	foodinsecurity3
Panel A: Accounting for individual-level 12-month re	call period		
Mean (log) price past year	0.0691** (0.0278)	-0.0576** (0.0283)	-0.196*** (0.0331)
Constant	Yes	Yes	Yes
Observations	50,596	50,596	50,596
Panel B: Analyzing the differential impact on urban o	and rural responder	nts	
Mean log price past year	0.137*** (0.0488)	-0.102** (0.0478)	-0.322*** (0.0526)
Urban	-0.611** (0.295)	-0.992*** (0.307)	-1.652*** (0.377)
Urban X Mean log price past year	0.0737 (0.0607)	0.150** (0.0632)	0.284*** (0.0776)
At least primary	-0.322 (0.296)	-0.957*** (0.297)	-1.452*** (0.346)
At least primary X Mean log price past year	-0.0150 (0.0608)	0.109* (0.0611)	0.217*** (0.0712)
Constant	Yes	Yes	Yes
Country fixed effects	Yes	Yes	Yes
Observations	50,470	50,470	50,470
Panel C: Analyzing the effect of relevant country-leve	el variables		
Mean log price past year	0.345*** (0.127)	0.771*** (0.128)	-0.109 (0.147)
Net food imports/GDP (%)	-0.184*** (0.0632)	-0.146** (0.0643)	-0.149** (0.0754)
Mean log price past year X Net food imports/GDP (%)	0.0391*** (0.0122)	0.0310** (0.0124)	0.0335** (0.0145)
Per capita GDP growth	0.476** (0.189)	1.337*** (0.191)	0.155 (0.221)
Mean log price past year X Per capita GDP growth	-0.0968** (0.0381)	-0.275*** (0.0386)	-0.0389 (0.0447)
Constant	Yes	Yes	Yes
Country-fixed effects	Yes	Yes	Yes
Observations	41,014	41,014	41,014

Notes: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1

Table 6. Changes in food insecurity over the period 2005-2008, taking population into account

	Proportional change (%)		Changes in abs	olute numbers		
Population weighted	No	Yes	Yes	Yes		
Population growth taken into account	No	No	No	Yes		
Panel A: food insecurity 1 (at leas	st once)					
Total	3.6	-2.3	-5,620,035	9,990,000		
Urban	4.4	0.2	-84,856	7,930,000		
Rural	3.4	-2.9	-4,758,582	2,140,000		
Panel B: food insecurity 2 (at leas	st several times)					
Total	1.4	-6.8	-10,600,000	-752,000		
Urban	5.2	0.6	120,645	4,890,000		
Rural	-0.2	-9.0	-10,209,799	-5,770,000		
Panel C: food insecurity 3 (at least many times or always)						
Total	-5.2	-17.3	-12,200,000	-8,450,000		
Urban	7.8	-0.9	-176,667	1,480,000		
Rural	-9.2	-21.5	-11,653,631	-9,930,000		

Notes: In the scenario where population growth is assumed to be zero (column 3), the change in the population-weighted fraction of food insecure is multiplied by the corresponding population in 2005 (total, urban or rural) and summed over all countries. When population growth is taken into account on the other hand, we take the difference between the share of food insecure in 2008 (derived using population weights) times the population in 2008 (total, urban or rural) and the corresponding term but for the year 2005.

Table 7. Comparison of country characteristics

Average, 2002-2008 (unless otherwise indicated)	In-sample SSA countries	Out-of-sample SSA countries
Real GDP/capita (constant 2000 US\$)	928.9	987.2
GDP per capita growth (Annual %)	2.62	2.05
Inflation, GDP deflator (Annual %)	18.04	10.07
Net food imports/GDP (in percentage terms)	0.2	1.6
Number of years of civil war 2002-2008	7	37
Population (2005, in million)	427	332
Malnutrition prevalence, height for age (% of children under 5)	43.96	41.50
Malnutrition prevalence, weight for age (% of children under 5)	21.96	26.85
Depth of hunger (kilocalories per person per day) ^a	234.72	269.62
Number of countries	18	29
Number of low income countries	9	17

^a Mean of 2002 and 2006 (2007 & 2008 missing)