Economic Feasibility of Bio-Butanol on Marginal Agricultural Lands in Western Colorado

Catherine Keske1
Andrew Brandess2
Dana Hoag2
Calvin Pearson1

1Department of Soil and Crop Science, Colorado State University
2Department of Agricultural and Resource Economics, Colorado State University

Copyright 2012 by Catherine Keske, Andrew Brandess, Dana Hoag, and Calvin Pearson. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Economic Feasibility of Bio-Butanol on Marginal Agricultural Lands in Western Colorado

Catherine Keske\(^1\), Andrew Brandess\(^2\), Dana Hoag\(^2\), and Calvin Pearson\(^1\)

\(^1\) Department of Soil and Crop Science, Colorado State University
\(^2\) Department of Agricultural and Resource Economics, Colorado State University

The authors extend appreciation to USDA AFRI-NIFA for supporting this project through Grant#2009-02813, "Interdisciplinary Graduate Research for the Production and Marketing of Oilseed Biofuel Products".

Introduction

As is the case with most rural agricultural communities, western Colorado is dependent on fossil fuels transported from distant sources. This results in vulnerability to fuel supply disruptions and price shocks (Ederington et al., 2011; Yu, Wang, and Lai, 2008). A predictable and locally derived fuel source may provide stability to the agricultural production supply chain as well as to local commerce (Tareen, Wetstein, and Duffield, 2000; Western Organization of Research Counsels, 2009). This research project evaluates the economic feasibility of bio-butanol as a locally grown biofuel in western Colorado as a means to encourage farm-level and regional energy sovereignty.

Objectives

The primary objective of this study is to develop a budgeting tool that can be used to determine the most economically advantageous feedstock for bio-butanol processing. Choosing the most economical feedstock is the first step in a regional feasibility study aimed towards answering the question, “Does it make sense economically to develop a bio-butanol industry in western Colorado?” This can be accomplished with the implementation of the budgeting tool.

Methods

The tool allows for cost comparisons between four feedstock scenarios in the establishment phase of a perennial cropping system. The scenarios include switchgrass, tall fescue, a “native mix scenario” (mainly wheatgrass species), and an “introduced mix (including alfalfa) scenario.” Each production scenario is customizable and can be tuned to reflect fertilizer quantity, number of cuttings, and other variable costs.

Results

The native mix, introduced mix, and tall fescue crop scenarios are all cost competitive at various input parameters. Without factoring in variations in processing conversion rates, only switchgrass presents a significantly higher break-even cost as a Colorado-grown feedstock. The performance of these species may change as additional years of production occur.

Conclusions

The evaluation tool is a step towards implementing a regional feasibility study. The tool is specific to western Colorado, but can be changed to match the agronomic needs of any region. Assuming constant yields, the tool identifies that switchgrass is more costly to grow than other bio-butanol feedstocks. Otherwise, there is little economic difference between the other scenarios.

References and Author Contact

Author Contact: Catherine.Keske@colostate.edu