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SUMMARY 

In commodity futures markets, contracts with various delivery dates trade 
simultaneously.  Applied researchers typically discard the majority of the data and form a 
single time series by choosing only one price observation per day.  This strategy 
precludes a full understanding of these markets and can induce complicated nonlinear 
dynamics in the data.  In this paper, I introduce the partially overlapping time series 
(POTS) model to model jointly all traded contracts. The POTS model incorporates time-
to-delivery, storability, seasonality, and GARCH effects.  I apply the POTS model to 
corn futures at the Chicago Board of Trade and the results uncover substantial 
inefficiency associated with delivery on corn futures. The results also support two 
theories of commodity pricing: the theory of storage and the Samuelson effect. 
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1. INTRODUCTION 

Futures markets play an integral role in the pricing and distribution of commodities. 

Many observers perceive these markets to be very volatile, but a full portrait of volatility 

patterns has been elusive.  Creating such a portrait requires incorporating the effects of 

the time to delivery on the contract, inventory levels of the commodity, and seasonality. 

Understanding these effects in a unified framework is important in helping firms manage 

risk and minimize transaction costs. A well-specified model of volatility dynamics is also 

imperative for pricing options on futures contracts, which comprise an active and 

growing market. 

For most commodities with futures markets, multiple contracts trade simultaneously. 

These contracts differ by the time to delivery. As time proceeds, some contracts reach 

delivery and cease to exist, while others are born and begin trading. From an econometric 

perspective, a set of futures prices presents a potentially large number of partially 

overlapping time series. Most applied researchers ignore the cross-sectional dimension 

and reduce the data to a single time series. A common method for such a reduction entails 

splicing together the nearby contracts, i.e., when a contract matures, take the next 

observation in the series from the contract that is the next closest to delivery. In many 

markets, ten or more contracts can be trading at a given point in time, so this strategy 

excludes most of the information about the commodity.  

In this paper, I introduce the partially overlapping times series (POTS) model to 

model jointly all contracts trading on a given day. The POTS model is a factor model for 

partially overlapping time series that incorporates time varying conditional 

heteroskedasticity and time and cross-sectional variation in the factor loadings and 
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innovation variances. For commodity futures, this model captures the effects of the time 

to delivery, storability, and seasonality.  

I apply the POTS model to corn futures at the Chicago Board of Trade (CBOT). The 

results reveal the dynamic structure of corn futures prices and uncover substantial 

inefficiency associated with delivery on the contract. The results also corroborate two 

well-known theories of commodity pricing: the theory of storage and the Samuelson 

effect. These theories have been studied extensively in isolation, but not within a fully 

specified dynamic model. 

Finally, my results illustrate the nonstandard dynamics in a time series of spliced 

nearby prices. Erratic price behavior near the delivery month induces complicated 

nonlinear dynamics around the points where the spliced series moves from contract to 

contract.  I suggest a strategy for avoiding these nonstandard dynamics and creating a 

well-behaved single time series for the fundamental commodity price. This strategy 

requires that the contracts be rolled over two to three months before delivery and that one 

of the contracts be avoided entirely. 

The paper proceeds as follows. Section 2 reviews the theory of commodity futures 

pricing to set the stage for the POTS model, which I introduce in Section 3. Section 4 

presents results from the application to CBOT corn, and Section 5 concludes the paper. 

 
2. PRICING AND VOLATILITY IN COMMODITY FUTURES MARKETS 

Futures markets allow economic agents to trade future obligations on commodities. 

These trades enable agents to manage risk, reduce transaction costs, diversify portfolios, 

and speculate. Two strands of research dominate the theory of commodity futures pricing 

(Williams 2001). The first is the risk management perspective, which maintains that risk-
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averse agents use futures markets to hedge price risk and speculators earn a risk premium 

for accepting this risk (Keynes, 1930, Stein, 1986). Risk management models imply that 

futures prices provide a biased forecast of future spot prices. This bias constitutes the risk 

premium. However, there is minimal empirical evidence of a risk premium in commodity 

futures markets (Telser, 1958, Gray, 1961, Kolb, 1992, Bessembinder, 1993), implying 

that futures prices follow a martingale process. 

The second strand of research focuses on the theory of storage, where arbitrage 

relationships primarily determine futures prices (Working, 1948, Working, 1949). A 

dynamic rational expectations model with risk-neutral agents underscores modern 

versions of the theory of storage (Williams, 1987; Routledge et al., 2000). Equilibrium 

occurs in such models when the marginal expected profit from storing an extra unit 

equals the marginal value of consuming that unit. Therefore, the difference between a 

futures price and the spot price equals the cost storing the commodity. Such a cost is 

often referred to as the cost of carry, and it includes warehouse fees and foregone 

interest. The potential to arbitrage the physical commodity against the futures contract 

enforces a tight link between spot and futures prices.  

Under the theory of storage, equilibrium implies that futures prices are in contango, 

i.e., more distant futures prices exceed nearby prices. However, when inventory of the 

commodity is low, nearby prices can exceed distant futures prices. This phenomenon is 

known as backwardation; it arises when the marginal value of current consumption 

exceeds the marginal value of storage, but it is impossible to reach equilibrium by 

consuming more because inventory must be nonnegative. Until inventory is restored, 

demand shocks will affect only nearby prices. Thus, the theory of storage implies that a 
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break in the link between nearby and distant futures prices is associated with low 

inventory and negative cost of carry. Fama and French (1988) and Ng and Pirrong (1994) 

provide empirical evidence supporting this theory. 

A break in the link between nearby and distant prices is resolved when new inventory 

arrives through a new harvest. For many agricultural commodities, the harvest is seasonal 

and subject to weather shocks. Because weather shocks typically have a greater effect on 

intra-year prices than do demand shocks, much of the annual price discovery occurs 

around harvest time. Consequently, harvest time produces the highest volatility for all 

contracts (Anderson, 1985). This seasonality in futures price volatility confounds the 

relationship between volatility and time to maturity. The Samuelson effect (Samuelson, 

1965) asserts that volatility should increase as the delivery date approaches. However, if 

shocks are heteroskedastic, much of the price discovery can occur months before delivery 

(Anderson and Danthine, 1983). Nonetheless, the Samuelson effect may exist conditional 

on season if, on a given date, nearby contracts are more volatile than distant ones. 

The Samuelson effect should be most pronounced when inventory is low and the link 

between pre-harvest (i.e., old-crop) and post-harvest (i.e., new-crop) futures prices is 

broken. In this case, the broken link means that current demand shocks only affect nearby 

prices, implying that nearby prices are more volatile (Streeter and Tomek, 1992). When 

stocks are plentiful, spot and futures prices move together and the effect is less evident.  

Previous studies of futures market volatility have typically concentrated only on a 

specific contract and rolled it over upon expiration. Many use the nearby contract, which 

results in frequent rollovers. However, Goodwin and Schnepf (2000) study the December 

contract for corn and the September contract for wheat, rolling each one over to the next 



 5

year in the delivery month. Streeter and Tomek (1992) go one step further and model 

jointly the November and March contracts for Soybeans, rolling over to the next year’s 

contract upon maturity. In the following section, I propose an econometric model for all 

contracts that trade on a given commodity. 

 
3. PARTIALLY OVERLAPPING TIME SERIES (POTS) MODEL 

I begin this section by discussing some features of CBOT corn futures. This 

discussion serves to motivate the POTS model, which follows in Section 3.1. Contracts 

on corn at the CBOT mature five times per year: March, May, July, September, and 

December. The contracts typically start trading a year and a half to two years before 

delivery, but the start date varies across contracts. Consequently, seven to nine contracts 

are typically trading on a given day, each with different delivery dates up to two years 

into the future. The exact number of contracts trading is time varying, but deterministic; it 

can be treated as exogenous. Thus, CBOT corn futures present a sequence of partially 

overlapping time series of length 18 months to two years.  

State-level data on corn inventory exist only at the quarterly frequency, so they are 

uninformative about daily volatility. Nonetheless, because inventory only matters to the 

extent that it ties old-crop and new-crop prices together, the relationship between old-

crop and new-crop prices contains all of the relevant information on inventory. Thus, the 

POTS model includes two common factors for futures prices: one for old-crop contracts 

and one for new-crop contracts. When inventory is high, the two factors move together, 

but when inventory is low, the link between them breaks. To elucidate this two-factor 

structure, Figure 1 shows the structure of the partially overlapping time series for CBOT 

corn over a three-year period from 1991-1993.  Each horizontal line in the figure 
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indicates a different contract and the span over which it trades.  For example, contract 11 

begins trading in September 1991 and reaches delivery in March 1993.  

Consider the nine contracts trading on November 8, 1991 (indicated by a vertical line 

in Figure 1). The next four contracts to reach delivery after November 8 are the 

December, March, May, and July contracts (numbers 5-8 in Figure 1). Each of these four 

contracts must deliver from the current set of inventory, because the next U.S. corn 

harvest does not begin until September 1992.  Consequently, these four contracts are all 

priced by the old-crop common factor.  In contrast, the December, March, May, and July 

contracts for the 1992-93 crop year (numbers 10-13 in Figure 1) all deliver after the 1992 

harvest and are therefore priced by the new-crop common factor.   

The appropriate classification of the September contract on November 8 (number 9 in 

Figure 1) is less clear because it comes to delivery after the harvest has started. 

According to U.S. Department of Agriculture data, approximately five percent of the crop 

is harvested by mid September, so some new-crop corn could potentially be delivered on 

the September contract.  However, sufficient corn is unlikely to have been harvested by 

the delivery deadline to sufficiently replenish inventory, so a mix of the old-crop and 

new-crop factors could determine the September price. In summary, on November 8, 

1991, four contracts are priced by the old-crop factor (solid line in Figure 1), four 

contracts are priced by the new-crop factor (dotted line in Figure 1) and one contract is 

affected by a mix of the two factors. The switch from new-crop to old-crop status occurs 

on October 1, the first month after the last contract on the previous crop ceases trading. 

The price change on a particular contract is a linear combination of the common 

factors and an idiosyncratic term.  As discussed in Section 2, serial correlation in futures 
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price changes is nonexistent because there is no risk premium. Nevertheless, the response 

of prices to news shocks may vary stochastically and deterministically. I model the 

stochastic component using a GARCH model (Engle, 1982, Bollerslev, 1986).1 The 

deterministic component of volatility arises because news is likely to cause a greater 

price change if it arrives close to harvest than if it arrives at another time. In addition, the 

factors may affect distant contracts less than the nearby contracts because of the 

Samuelson effect.  Thus, the POTS model is a factor model where the factor loading 

depends on the season and the time to delivery. Finally, the proportion of the variance 

explained by the common factors may not be constant. For example, institutional frictions 

regarding delivery may cause contracts to have a higher idiosyncratic component close to 

delivery. Consequently, I allow the variance of the idiosyncratic term to also depend on 

the season and the time to delivery.  

 
3.1  The POTS model  

Given the above discussion, the POTS model possesses the following four features: 

(i) two common factors, (ii) time varying conditional heteroskedasticity, (iii) both time-

to-delivery and cross-sectional variation in the factor loadings, and (iv) both time-to-

delivery and cross-sectional variation in the innovation variances. 

I index the price of a futures contract, F, with two subscripts; d represents the number 

of trading days until the first day of the delivery month and t represents the date on which 

a particular price observation occurs. This (d, t) pair is sufficient to identify any price 

observation in the sample. The model is 

                                                 
1 See, for example, Goodwin and Schnepf (2000) and Baillie and Myers (1991) for applications of GARCH 
models to futures markets. 
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 tdtdttdtdtd ucF ,,,,, λεθ +′=∆ ,               (1) 

where 1,1,, −+−=∆ tdtdtd FFF  and θd,t and λd,t represent the factor loading and innovation 

standard deviation, which are deterministic functions of d and t. The 2×1 vector εt 

denotes the factors and the vector cd,t selects which factor, or linear combination of 

factors, applies to the contract defined by (d, t).  

For identification, assume 
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1,, =Ω′ tdtd cc , 0)( , =ε tdsuE , and 1)( 2
, =tduE  for all s, d, t. In addition, assume that 

0)( ,, =′ tdtd uuE  for dd ′≠ . These assumptions imply that the factor loadings and the 

innovation variances determine the scale of tdF ,∆ , i.e., 2
,

2
,

2
, )( tdtdtdFE λθ +=∆ .  Based on 

the documented lack of a risk premium in commodity futures prices, I assume 

0)|( 1
, =ℑ∆ −t
tdFE , where 1−ℑt  denotes the information set, which contains past prices.2 

This assumption implies that the variance of long-horizon changes in futures prices can 

be calculated directly from (1) as 

 ∑ +=−
−

=
−+−+−+

1

0

2
,

2
,

2
,, )()(

k

i
itiditidktkdtd FFE λθ . 

Furthermore, the martingale difference sequence assumption on tdF ,∆  implies that 

ktkdF −+ ,  is the mean-square optimal forecast of Fd,t given information at time t–k; the 

forecast error variance from any other forecast of Fd,t exceeds ∑ +−
= −+−+

1
0

2
,

2
, )(k

i itiditid λθ . 

This implication underlies traditional tests of futures market efficiency. 

                                                 
2 Note that, because tdF ,∆  is a martingale difference sequence, the change in the log futures price has a 
negative (and possibly time varying) conditional mean. Thus, it is cleaner to directly model the level price 
change than the log price change. 
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For most contracts, it is obvious which factor is relevant on a given day. In such cases 

cd,t has one element equal to one and the other element equal to zero. However, when the 

appropriate factor is unknown, such as for the September contract on CBOT corn, cd,t 

must be estimated under the constraint 1,, =Ω′ tdtd cc .  To clarify this constraint, define 

)( 21, ′≡ δδtdc  where δ1≥0 and δ2≥0, so that 1,, =Ω′ tdtd cc  implies 12 2
221

2
1 =++ δδρδδ . 

Thus, one free parameter δ1 is to be estimated and the constraint residually determines δ2. 

The term 2
1δ  represents the proportion of the variance due to the first factor, 2

2δ  denotes 

the proportion of the variance due to the second factor, and the remainder of the variance 

is common to both factors. Future extensions of the POTS model could allow δ1 and δ2 to 

be flexible functions of d and t, rather than holding them constant. 

By stacking all observations on a given day, the model in (1) can be written as   

  tttttt ucF λεθ +=∆ , 

where θt and λt denote diagonal matrices containing the factor loading and innovation 

standard deviation terms and ct is a nt×2 vector, where nt denotes the number of contracts 

trading on date t. Note that, unlike typical factor models, these data comprise an 

unbalanced panel. 

The common factors exhibit time varying conditional volatility, denoted by 

t
t

tt HE =ℑ′ − )|( 1εε , where I model Ht using a BEKK-type GARCH model (Engle and 

Kroner, 1985). The model is 

  αεεαββω ′ℑ′+′+= −
−−− )|( 1
111

t
tttt EHH ,            (2) 

where ω, α, and β denote 2×2 parameter matrices. Because the unconditional variance of 

each factor equals one, the matrix ω contains only one free parameter. This parameter ρ 
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measures the correlation between the factors. Assuming that Ht is stationary, it follows 

that ω depends on ρ, α, and β according to the formula ααββω ′Ω−′Ω−Ω= . 

Like the latent factor ARCH model of Diebold and Nerlove (1989), equation (2) 

specifies the conditional variance as measurable- 1−ℑt  to preserve a recursive relation for 

Ht. If the latent variable εt were included in (2), then new data would bring information 

about past values of Ht and the dynamic structure would be substantially more 

complicated. Specifying the conditional volatility as a function of observed data 

simplifies forecasting and estimation. The measurable- 1−ℑt  innovation term in (2) is 

1|11|11|1
1

11 )|( −−−−−−
−

−− +′=ℑ′ tttttt
t

tt PE εεεε , 

where )|( 1
11|1

−
−−− ℑ≡ t

ttt E εε  and ( )1
1|111|111|1 |))(( −
−−−−−−−− ℑ′−−≡ t

tttttttt EP εεεε . Expressions 

for 1|1 −− ttε  and 1|1 −− ttP  can be obtained from the Kalman filter (Hamilton 1994, Diebold 

and Nerlove 1989). Defining 21)|( tttttt
t

ttt cHcFFE λθθ +′=ℑ′∆∆≡Σ −  and assuming 

normality, the Kalman filter yields 

 ttttttt FcH ∆Σ′= −1
| θε  

 tttttttttt HccHHP θθ 1
|

−Σ′−= . 

Considerable scope exists for extensions to the model in (2). For example, one could 

allow volatility to react differently to positive shocks than to negative shocks; news about 

reduced supply or increased demand may affect volatility more or less than news about 

increased supply or reduced demand. Extending the dynamic specification to allow for 

long memory or a second lag could also be fruitful. Such extensions will be easiest if the 

recursive nature of the model is preserved by specifying innovations in Ht as functions of 

the conditional moments )|( it
ititE −

−− ℑ′εε  and )|( it
itE −

− ℑε . 
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3.2  Modeling the factor loadings 

To model the factor loadings and innovation standard deviations, I use cubic spline 

functions with a small set of nodes as in Engle and Russell (1998). This type of spline is a 

flexible parametric model that consists of a sequence of connected cubic polynomial 

functions.  These cubics connect at the nodes, which are chosen a priori and are typically 

spaced evenly across the domain of the function. At each node, the adjoining cubic 

functions are constrained to have equal value and slope.  In the POTS model, the spline 

functions capture deterministic effects of the season and the time to delivery and are 

linear in their parameters, which enables standard inference conditional on the nodes.  

Commodity futures typically reach delivery only a few times each year and typically 

only a few contracts trade on any particular day. Therefore, given a date t, the 

corresponding value of d will be one of a small number of values determined by the 

contracts trading on date t. It follows that all of the data lie on a small number of lines on 

the (d, t) plane and not throughout the (d, t) plane. Thus, I do not attempt to model the 

factor loadings and innovation variances throughout the entire (d, t) plane. Rather, I fit 

the spline functions only to the observed combinations of  (d, t). To this end, I estimate a 

separate spline for each delivery month. For example, for CBOT corn this strategy 

requires estimating five different splines; one each for the March, May, July, September, 

and December contracts. These splines also capture seasonality because the delivery 

month and time to delivery uniquely determine the date of a particular price observation.  

For a given delivery month, the factor loading and innovation standard deviation 

spline functions take the form 

 ( )∑ −+−+−+=
=

−−−

K

j
jtjtjjtjjtjjtd Ikdkdkd

1

3
13

2
12110, )()()( φφφφθ , 
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 ( ) jt

K

j
jtjjtjjtjjtd Ikdkdkd∑ −+−+−+=

=
−−−

1

3
13

2
12110, )()()( γγγγλ , 

where )(1 1 jtjjt kdkI ≤≤= −  denotes an indicator function and φij and γij denote 

parameters. The variable dt denotes the time to delivery on date t for the contract of 

interest, and the nodes k0, k1, …, kK are chosen a priori.3 The spline constrains the value 

and slope of adjoining cubics to be equal at the nodes. For example, for the θ spline 

   3
13

2
1211010 )()()( −−−+ −+−+−+= jjjjjjjjjjj kkkkkk φφφφφ  

   2
1312111 )(3)(2 −−+ −+−+= jjjjjjjj kkkk φφφφ , 

for all j = 1, 2, …, K–1. Two final constraints are that the slope equals zero at the end 

points, i.e., 011 =φ  and 0)(3)(2 2
13121 =−+−+ −− KKKKKKK kkkk φφφ . Each spline is a 

linear combination of 2K free parameters. Thus, given asymptotic normality of the 

parameter estimates, asymptotic confidence intervals for the splines follow directly. 

 
3.3  Estimation 

To estimate the POTS model, I maximize the Gaussian likelihood function. 

Conditional on past prices, the first two moments of ∆Ft are 0)|( 1 =ℑ∆ −t
tFE  and 

21)|( ttttttt
t

tt cHcFFE λθθ +′=Σ≡ℑ′∆∆ − , so the likelihood function is 

 ∑ ℑ∆=
=

−
T

t

t
tFfL

1

1)|(log  

    ∑∑
=

−

=
∆Σ′∆−Σ−−=

T

t
ttt

T

t
t FFTn

1

1

1 2
1||log

2
1)2log(

2
π ,        (4) 

where ∑ =
−= T

t tnTn 1
1 . This function can be maximized numerically.  

                                                 
3 Choosing the number of node points, K, is analogous to choosing the bandwidth in nonparametric 
analysis; it exhibits the same bias-efficiency tradeoff and the same difficulty in consistent estimation. 
Conditional on the number of nodes, however, the exact location of the node points has little influence on 
the properties of the estimator in the same way that, conditional on bandwidth, the choice of kernel is not 
usually important in nonparametric analysis.  
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The likelihood function in (4) is highly nonlinear because the spline parameters 

appear in the GARCH equation through εt|t and Pt|t. For this reason, analytic expressions 

for the gradient and hessian are infeasible. This complication coupled with the potentially 

large number of spline parameters can make numerical optimization very slow. However, 

conditional on εt and Ht, the estimation problem is much simpler and analytic expressions 

for the gradient and hessian with respect to the spline parameters exist. I use this feature 

to form an approximate EM algorithm (Dempster et al., 1977).  

In general, the EM algorithm maximizes a likelihood function by alternately 

computing the expectation of the complete data likelihood with respect to the latent 

variable (the E-step) and maximizing this expected likelihood with respect to the 

parameters (the M-step). The complete data likelihood function for the POTS model is  

 ∑ ℑ+∑ ℑ∆=
=

−

=

−
T

t

t
t

T

t

t
ttc fFfL

1

1

1

1 )|(log),|(log εε  

      ∑ −∆′−∆−∑−−=
=

−

=

T

t
ttttttttt

T

t
t cFcFTn

1

2

1
)()(

2
1||log)2log(

2
εθλεθλπ  

        ∑ ′−∑−−
=

−

=

T

t
ttt

T

t
t HHT

1

1

1 2
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2
1)2log(

2
εεπ . 

Conditional on the observed data, the expected complete data likelihood is 

∑ −∆′−∆−∑−−=ℑ
=

−

=

T

t
ttttttttttt

T

t
t

T
c cFcFTnLE

1
|

2
|

1
)()(
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2
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−
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T

t
t

T

t
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|

1

1
|

1
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11
|

2 tr
2
1

2
1log

2
1)2log(

2
tr

2
1 εεπθλθ ,   (5) 

where tr() denotes the trace operator. To simplify computation, I keep Ht fixed when 

maximizing (5) in the M-step, implying that the resulting parameter estimates merely 

approximate the maximum likelihood estimates. Thus, I take the final steps to the 

maximum using the estimates from this approximate EM algorithm as starting values for 

a numerical algorithm such as BHHH applied to (4). 
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In summary, I use the following algorithm to maximize the likelihood in (4): 

1. Use the Kalman filter to obtain tt |ε  and ttP |  (E-step). 

2. Keeping Ht fixed, maximize (5) with respect to spline parameters using Newton-

Raphson (M-step). 

3. Still keeping Ht fixed, iterate on the E- and M-steps until convergence. 

4. Keeping the spline parameters fixed, maximize the likelihood in (4) numerically 

with respect to other parameters in the model. 

5. Repeat 1-4 until convergence 

6. Using estimates from step 5 as starting values, use a numerical algorithm such as 

BHHH to take the final steps to the maximum of the likelihood in (4). 

Steps 1-5 in this algorithm markedly improve computation time because they generate 

starting values for the numerical algorithm in step 6 that are close to the maximum 

likelihood estimates. In contrast, a numerical algorithm such as BHHH that begins with 

arbitrary starting values can be very slow to converge. 

 
4. EMPIRICAL RESULTS FOR CBOT CORN 

In this section, I test the theory of storage and estimate the Samuelson effect by 

applying the POTS model to corn futures on the CBOT. CBOT corn is the most actively 

traded agricultural futures contract.  Active trading leads to liquid markets and observed 

prices that correspond to the market’s valuation of the contract. Thus, CBOT corn 

provides an ideal medium for illustrating the POTS model.  

I estimate the POTS model using daily settlement prices for trading days from 

January 1, 1991 to December 31, 2000. The sample includes data on 53 different 

contracts. Specifically, the sample includes contracts that delivered in March, May, July, 
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September, and December for each year from 1991-2000 and on the March, May, and 

July contracts for 2001. Because I use trading days from 1991-2000, the sample includes 

a subset of the trading days for some contracts. For example, the sample includes only the 

last three months of trading on the March 1991 contract and does not include the last 

three months of trading on the March 2001 contract.4 There are 19,745 total observations. 

During the sample period, the average settlement price across all trading days and all 

contracts was 263 cents per bushel, with a minimum of 175 and a maximum of 548. The 

mean daily price change was close to zero at −0.02 cents, and the standard deviation was 

2.96. The average daily trading volume was 57,154 contracts and average number of 

contracts open at the end of each day was 323,064, where each contract requires delivery 

of 5000 bushels. 

The last trading day on a given CBOT corn contract is the business day prior to the 

15th calendar day of the contract month. Holders of a short position can deliver any time 

between the first day of the delivery month and the second business day following the 

last trading day of the delivery month. The March, May, and September contracts begin 

trading approximately a year and a half before delivery. Specifically, they begin in 

September, December, and May, respectively. The July and December contracts begin 

trading at various horizons throughout the sample, but typically at least two years before 

delivery. The mean number of contracts traded per day equals 7.8, and on 85 percent of 

days in the sample the number of contracts traded is either seven, eight, or nine. 

                                                 
4 In the year 2000, the data include a subset of the contracts actually being traded because I do not have 
data on the September 2001, December 2001, March 2002, May 2002, and July 2002 contracts, all of 
which were trading by the end of December 2000. Two atypical contracts also traded during the sample 
period. These contracts reached delivery in November 2000 and January 2001, but I exclude them from the 
sample because they are the only contracts for November and January delivery during the sample period. 
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For the spline functions, I place nodes at zero, 126, and 252 days before delivery. 

These nodes approximately correspond to the first day of the delivery month, the first day 

of the month six months before delivery, and the first day of the month one year before 

delivery. For the July and December contracts, I also include nodes at 378 days from the 

delivery date (approximately one and a half years before delivery) because these 

contracts trade for a longer period of time.5 I use the same set of nodes for λ and θ. I 

estimate a total of ten splines; one for the factor loading λ and one for the innovation 

standard deviation θ for each of the five delivery months.  

 Table 1 presents results from the estimation of a one-factor model and a two-factor 

model. The two-factor model specifies α and β in (2) as diagonal matrices with nonzero 

elements α11, α22, β11, and β22. To guarantee a positive and stationary conditional 

variance, I directly estimate 2
11α , 2

22α , 2
11

2
11 βα + , and 2

22
2
22 βα +  constraining each to lie in 

the (0,1) interval. Table 1 shows that the estimates of 2
11

2
11 βα +  and 2

22
2
22 βα +  equal 0.987 

for the two-factor model and 0.983 for the one-factor model. These estimates indicate a 

high degree of persistence in the volatility of the common factor(s).  

 As discussed in Section 3, the September contract reaches delivery after the harvest 

begins, and thus it may be affected by both the old-crop and new-crop factors. Table 1 

shows that the estimated value of δ1 equals 0.338. Under the scale constraint 

12 2
221

2
1,, =++=Ω′ δδρδδtdtd cc , this estimate implies that the proportion of the variance 

due to the old crop is 114.02
1 =δ  and the proportion of the variance due to the new crop 

is 425.02
2 =δ . These two proportions do not sum to one, because the high correlation 

                                                 
5 I also estimated models with a larger set of nodes, but I do not report the results because these models 
were inferior by the Bayesian Information Criterion (BIC) and generated the same qualitative conclusions 
as the reported models. 
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between the factors means that much of the variation is common to both factors. This 

estimate indicates that the September contract relates more closely to the new-crop prices 

than the old-crop prices.  In other words, enough corn is harvested by the end of the 

September delivery period to mitigate most of any inventory shortfall. 

Adding the second factor generates a substantial improvement in likelihood over the 

one-factor model. This improvement indicates that breaks in the link between the old and 

new crops are empirically relevant. The importance of the second factor is also evidenced 

by the correlation parameter ρ being significantly less than one. However, although the 

second factor is significant, the correlation between the factors is high at 0.928. These 

high correlations go hand in hand with the relatively small increase in the proportion of 

the variance explained by the factors6 when the second factor is added; adding the second 

factor increases the overall proportion from 0.848 to 0.932.  

 Figure 2 illustrates the estimated spline functions from the two-factor model by 

showing the unconditional variance as a function of the time to delivery. I compute the 

unconditional variance as )( 2
,

2
, tdtd λθ + . Figure 2 contains separate plots for each of the 

five contracts with associated 95 percent confidence intervals. The confidence intervals 

are computed using the delta method and the fact that λ and θ are linear in the estimated 

parameters. The relatively tight confidence intervals around the spline estimates permit 

some inference about the relationship between volatility and the time to delivery. Most 

notably, volatility spikes during the delivery month for all but the December contract, and 

it is low at long horizons. I discuss these features further in Sections 4.1 and 4.2. 

                                                 
6 This proportion is measured as ∑ ∆∑ td tdtd tttd F,

2
,,

2
|, /)( εθ , where the summation is taken over all 

observations on a given contract when calculating the proportion by contract and over all observations in 
the sample when calculating the overall proportion. 
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The March contract is most closely related to the factors, with 97.6 percent of the 

variation explained by the factors in the two-factor model (see Table 1). The factors 

explain the least in the September and December contracts, where the proportions of the 

variation explained are 0.910 and 0.886, respectively. To see how much variation the 

factors explain through the life of a contract, consider Figure 3. This figure plots the 

proportion of the model variance in each of the five contracts that is explained by the 

common factors against the date of trading. I compute this proportion from the spline 

functions as )(/)/( 2
,

2
,

2
,

2
,

2
, tdtdtdtdtd FE ∆=+ θλθθ . The figure covers three crop years: the 

delivery crop year (year zero) and the two years preceding it (year one and year two). 

According to the theory of storage, the common factors should explain most, if not 

all, of the variance in prices. Figure 3 shows that, for the December, March, May, and 

July contracts, the common factors explain over 95 percent of the variation for most of 

the duration of the contracts. The curves fall substantially below 100 percent in two 

cases. First, the proportion of the variance explained by the factors drops sharply in the 

delivery month for all contracts. Second, the proportion of the variance explained by the 

factors is smaller at points far from delivery for the July, September, and December 

contracts.  I discuss the first of these cases in Section 4.1 below.  I then discuss the 

second case in Section 4.2, before addressing the Samuelson effect and seasonality in 

Section 4.3, and the theory of storage in Section 4.4. 

 
4.1  Delivery month volatility 

Figure 3 shows that the proportion of the model variance explained by the factors 

drops sharply in the delivery month for all five contracts. For the May contract, the drop 

begins two months before delivery in early March. For the September contract, the 
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proportion drops similarly in March, six months before delivery. These drops indicate 

that the influence of the March, May, and September contracts on the old-crop common 

factor reduces after the beginning of March in year zero. Consequently, the July contract 

drives this factor from early March until early July, as indicated in Figure 3 by the high 

proportion of the variance explained by the factor for the July contract during this period. 

From July until the end of the crop year, the September contract is the only contract with 

an old-crop component still trading. These volatility patterns imply that the March, May, 

July, and September contracts are less related to each other in the last half of the crop 

year than earlier in their lives. 

The relatively high idiosyncratic volatility around the delivery period indicates that 

delivery costs are high. In general, delivery costs will be lowest when a liquid spot 

market for the commodity exists at the delivery location. In such cases, holders of a short 

position can easily buy the commodity and deliver on the contract. If the spot market at 

the delivery location is illiquid, then its price will be volatile for reasons unrelated to 

aggregate fundamentals, and therefore the futures price for imminent delivery will also 

exhibit high idiosyncratic volatility.  Even if liquid markets exist at points far from the 

delivery location, the cost of transporting the commodity from this market to the delivery 

location in time to meet an impending delivery obligation will be prohibitive. Thus, high 

idiosyncratic volatility around the delivery period indicates inefficiency in the delivery 

process. For CBOT corn, this inefficiency is largest in the delivery month for all 

contracts, but it is also significant in the months leading up to delivery for the May, July, 

and September contracts.  
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For all but the last year of this sample, delivery on CBOT corn futures could be made 

in either Chicago Illinois or in Toledo Ohio. A delivery point in St. Louis Missouri was 

added beginning with the December 1993 contract. Concern that these delivery points 

were peripheral to the main corn supply channels led to a change in delivery 

specifications. Beginning with the March 2000 contract, delivery could be made 

anywhere along the Illinois River between Chicago and Pekin Illinois. My results 

indicate that such a change in the delivery institution was necessary. As more data 

becomes available, it will become apparent whether this change was successful in 

improving the efficiency of the futures contract. 

 
4.2  Contracts far from delivery 

Figures 2 and 3 reveal that, for the December, July and September contracts, both the 

total variance and the proportion of the variance explained by the factors are small at long 

horizons. This pattern is reinforced by Figure 4, which plots the unconditional variance 

curves from Figure 2 as a function of the trading date. The figure covers three crop years: 

the delivery crop year (year zero) and the two years preceding it (year one and year two). 

At the times the July and December contracts begin trading, two harvests will occur 

before delivery. Figure 4 shows that, from the start of trading until the first harvest begins 

in September of year one, both contracts exhibit relatively low volatility.  Volatility then 

increases during the first harvest, i.e., between September and December.  The proportion 

of the variance explained by the factors mirrors this pattern, as shown in Figure 3. 

Therefore, it appears that a significant amount of news about the following crop year is 

irrelevant for contracts on the crop two years ahead. No trade occurs in March or May 

contracts for corn two crop-years ahead. 
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The September contract also exhibits low volatility and a low proportion of variance 

explained by the common factors in early trading. In its first four months of trading (May 

to September), the volatility patterns in the September contract match those of the July 

and December contracts in the pre-September period of their first year (see the first 

September curves in Figures 3 and 4). This pattern reflects the high new-crop component 

in September volatility that is indicated by the low estimated value of δ1 in Table 1. The 

final point of note on the September contract is that its volatility drops significantly in the 

two months before delivery (see Figure 4).  This drop may reflect the resolution of 

uncertainty about how much new-crop corn will be available for delivery. Volatility 

increases again during the delivery month indicating delivery frictions. 

  
4.3  Samuelson effect and seasonality 

Figure 4 demonstrates a nonlinear and nonmonotonic version of the Samuelson effect. 

Specifically, at a given date, contracts that are closer to delivery typically have higher 

volatility than more distant contracts. The nonlinearity of the Samuelson effect becomes 

apparent if volatility is tracked through time. In year two in Figure 4, only the first 

September contract and the July and December contracts are trading. The volatility of 

these contracts is relatively low in this period.  During year one, volatility steadily 

increases as the market obtains more information about the year zero harvest. Volatility 

peaks between September and November of year zero, during the middle of the harvest. 

The harvest resolves much of the uncertainty about year zero prices, so volatility 

decreases between November and March. As noted above, the September contract 

exhibits higher volatility than the other year zero contracts between January and March 

due to it being more closely related to the new-crop contracts than the old-crop contracts. 
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Beginning in March, volatility increases dramatically for the two remaining year zero 

contracts, May and July. As indicated in Figure 3, much of this volatility is idiosyncratic 

and indicates the presence of frictions in delivery arrangements. 

Figure 4 reveals substantial seasonality in year zero but little seasonality in year one. 

The volatility curves exhibit only a slight increase going into the year zero harvest, when 

a substantial amount of news about the new crop arrives. After the year zero harvest, the 

variance drops by about 30 percent. One reason for the small seasonal differences in year 

one is that in many years there were few surprises in the period leading up to harvest and 

in the harvest season itself. Moreover, when surprises occurred, they often arose at 

different times of the year. Figure 5 illustrates this point by showing the conditional 

variance of the two factors as estimated by the GARCH model. The most prominent 

surprises are indicated by high conditional volatility periods, which occurred in July-

September 1991, May-July 1994, January-February 1996, April-October 1996, February-

May 1997, July-September 1997, June-July 1998, and July-September 1999.   

 
4.4  Theory of storage 

The high proportion of price variation explained by the common factors lends support 

to the theory of storage. For most of the life of all contracts, the proportion of the 

variance explained by the factors exceeds 0.95. The theory of storage also has dynamic 

predictions. Specifically, periods when the old-crop variance exceeds the new-crop 

variance should coincide with periods of low correlation between the factors, 

backwardated prices, and low inventory. 

Figure 6 illustrates the dynamic predictions of the theory of storage by showing the 

conditional correlation between the factors, the relative conditional variance, and the 
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basis slope.7 The summer of 1996 stands out in Figure 6, as well as Figure 5. Due to a 

poor harvest in 1995, total stocks of corn were lower during the summer of 1996 than at 

any point since 1976. In addition, futures prices were in steep backwardation and spot 

prices reached $5 per bushel, after averaging about $2.50 a bushel in the first half of the 

decade. Figure 6 reveals that the backwardation in 1996 was indeed associated with a 

lower conditional correlation and a higher old-crop variance as predicted by the theory.  

The fall of 1993 also produced a backwardation, and it also corresponded to lower 

conditional correlation and a higher old-crop variance. In addition to 1993 and 1996, the 

conditional correlation decreased and the relative variance increased in the fall of 1991. 

This period exhibited no prolonged backwardation, but the 1991 crop had a low yield 

which caused December stocks of corn to be lower than they had been since the shortage 

of 1984. These low stocks lead to a break in the link between 1991 crop prices and 1992 

crop prices. The only other times in the 1990s where December stocks were below their 

1991 levels were in 1993 and 1995, corresponding to the other observed periods of 

backwardation and low conditional correlation. Thus, the dynamic features of the data 

support the theory of storage. 

 
5. CONCLUSION 

In this paper, I develop the POTS model for volatility dynamics in commodity futures 

markets. The POTS model incorporates common factors across contracts with differing 

delivery dates as well as time-to-delivery and seasonal effects. Applying the POTS model 

to CBOT corn futures reveals substantial inefficiency related to delivery. Specifically, all 

contracts exhibit a large proportion of idiosyncratic variation during the delivery month. 
                                                 
7 I compute the basis slope as the slope coefficient in a regression of the futures prices on a given trading 
day on the times to delivery on those contracts. I compute a separate basis slope for each day in the sample. 
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The May, July, and September contracts also show significant idiosyncratic variation in 

the months leading up to delivery. In addition, the empirical results substantiate the 

theory of storage and yield estimates of the Samuelson effect.  

The POTS model directly applies to futures contracts on any storable commodity with 

seasonal production. The model could easily be adapted to non-seasonal commodities by 

specifying the selection variable cd,t to reflect the production and transportation lag, rather 

than seasonal production patterns. Applying the POTS model in other commodity futures 

markets will enable additional tests for delivery frictions, the theory of storage, and the 

Samuelson effect. Also, because it models jointly the whole spectrum of futures prices, 

the POTS model will be very useful in pricing options on futures contracts and in 

determining optimal hedging strategies. 

I close this paper by using the POTS model to assess the common practice of splicing 

nearby prices together into one time series to proxy a fundamental spot price.  Applied 

researchers typically treat the resulting series as a continuous, homogeneous time series.  

Figure 7 shows a plot of the unconditional variance of such a nearby series as estimated 

by the POTS model. I assume that rollover occurs on the first day of each delivery month. 

The figure shows that volatility jumps sharply around the delivery period for the May and 

July contracts and declines steeply for the September contract. The nonlinear 

heteroskedasticity in this series indicates that it is far from a homogeneous time series. 

For applied researchers who desire to represent a fundamental corn price by a single 

series of futures prices, I make two suggestions. First, the futures contracts should be 

rolled over two to three months before delivery to avoid delivery month inefficiency.  

Second, the September contract should be avoided entirely because it has a high new-
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crop component. Specifically, I recommend using May contract prices during January 

and February, prices on the July contract from March though May, prices on the 

December contract from June through October, and prices on the March contract during 

November and December. Figure 7 shows that this strategy yields a modified nearby time 

series with a relatively smooth variance throughout the year, although the variance still 

increases by 40 percent from the low point in March to the high point in September. 

Thus, if seasonal heteroskedasticity is accounted for, this modified nearby price series 

can be treated as a continuous time series. Moreover, the proportion of the variance 

explained by the factors in the POTS model is close to one throughout the range of the 

modified nearby series (see Figure 3), so it accurately reflects a fundamental corn price. 
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Table 1: Estimates of POTS Model 

 1 Factor 2 Factors 

ρ  0.928 
(0.003) 

   

2
11α  

0.097 
(0.031) 

0.087 
(0.004) 

2
22α   0.100 

(0.006) 

   

2
11

2
11 βα +  

0.983 
(0.019) 

0.987 
(0.002) 

2
22

2
22 βα +   0.988 

(0.001) 
   

δ1,sept  0.338 
(0.002) 

   
Diagnostics   

LLF −45,787,649 −45,783,828 
BIC −45,788,539 −45,784,757 

Skewness 0.01 0.06 
Kurtosis 8.35 7.26 

Q5 for ε1t 
(p-value) 

6.85 
(0.23) 

7.04 
(0.22) 

Q5 for ε2t 
(p-value)  6.93 

(0.23) 

   
Proportion of Variance Explained by Factors 
Dec contract 0.866 0.886 
March contract 0.935 0.976 
May contract 0.843 0.946 
July contract 0.780 0.946 
Sept contract 0.855 0.910 
Overall 0.848 0.932 

 
Note:  The spline nodes are at six-month intervals from the delivery data, i.e., for 0, 126, 252, 378 days 
until delivery (the 378 node is only included for July and December).  The data contain daily settlement 
prices on corn futures contracts traded on the CBOT between January 1 1991 and December 31, 2000. 
Heteroskedasticity consistent standard errors are given in parentheses. BIC is computed as LLF–K log(T), 
where K equals the number of parameters and T =19,745. The skewness and kurtosis coefficients measure 
the third and fourth moments of standardized futures price changes )|( 12

,,
−ℑ∆∆ t

tdtd FEF . The Q5 statistics 

test for serial correlation of up to order five in the standardized factors tiitti H ,|,ε  for i = 1,2. 
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Figure 1: Partially Overlapping Time Series 

         
      Example: Nov 8, 1991 
 

 

 

 

 

 

 

 

 

 

Note:  Each horizontal line represents a particular contract on CBOT corn and the span over which it 
trades. The style of the lines indicates whether a particular contract is for old-crop or new-crop corn, or a 
mixture of the two.  The vertical line at Nov 8, 1991 represents an arbitrary date for illustration purposes. 
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Figure 2: Unconditional Variance as a Function of Time to Delivery 
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Note:  The curves are computed from the estimated spline functions ( 2
,

2
, tdtd λθ + ) from the 2-factor model 

in Table 1. Units on horizontal axis represent time to delivery (d) in number of trading days. One year 
equals 252 days. Dashed lines indicate 95% confidence intervals.  
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Figure 3: Proportion of Model Variance Explained by Common Factors 
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Note: The curves are computed as )/( 2
,

2
,

2
, tdtdtd λθθ +  from the estimated spline functions in the 2-factor 

model in Table 1. September is included twice because it is a function of both the old-crop and new-
crop factors. 
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Figure 4: Unconditional Variance as a Function of Trading Date 
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Note: The curves are computed as 2
,

2
, tdtd λθ +  from the estimated spline functions in the 2-factor model 

in Table 1. September is included twice because it is a function of both the old-crop and new-crop 
factors. 
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Figure 5: Conditional Variance of Common Factors 

 

 

 

 

 

 

 

 

 
Note: The series are computed from the GARCH estimates of the 2-factor model (see Table 1).  
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Figure 6: Conditional Correlation and Relative Conditional Variance of Factors 
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Note: The conditional correlation and relative conditional variance series are computed from the GARCH 
estimates for the 2-factor model (see Table 1). The basis slope is computed from daily regressions of 
futures prices on number of days to delivery. 
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Figure 7: Unconditional Variance of the Nearby Contract 

 

 

 

 

 

 

 

 

 

 

 
Note: Nearby contract rolls over on first day of delivery month. Modified nearby contract uses May 
contract for January and February, July contract for March though May, December contract for June 
through October, and March contract for November and December. 


