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Abstract 

A thought experiment is designed to investigate whether the structure of risk aversion (i.e., the 

changes in absolute or relative risk aversion associated with changes in wealth) can be estimated 

with reasonable precision from agricultural production data. Findings strongly suggest that 

typical production data are unlikely to allow identification of the structure of risk aversion. A 

flexible utility parameterization is found to slightly worsen technology parameter estimates. 

Results also indicate that even under a restricted utility specification, utility parameter estimates 

are biased. Further, their quality is much worse when shocks are not large or samples are small. 
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HOW MUCH CAN WE LEARN ABOUT PRODUCERS’ 
UTILITY FUNCTIONS FROM THEIR PRODUCTION DATA? 

 

Risk and uncertainty are prominent features of agricultural production and marketing. Not 

surprisingly, numerous studies in agricultural economics have focused on producer behavior 

under uncertainty (Just and Pope 2002). One of the most popular topics of study in this field has 

been the estimation of decisions makers’ risk preferences, both by direct elicitation from 

experimental data or responses to hypothetical questions (e.g., Binswanger 1980, Robison 1982), 

or by analyzing observed production and/or investment choices (e.g., Brink and McCarl 1978, 

Antle 1987, Antle 1989, Love and Buccola 1991, Saha, Shumway and Talpaz 1994, Chavas and 

Holt 1996, Kumbhakar 2002a). 

The seminal studies estimating risk preferences from actual production and/or investment 

decisions have focused on the level of risk aversion, by estimating risk preferences separately 

from technology (e.g., Simmons and Pomareda 1975, Brink and McCarl 1978) and assuming 

restrictive utility functions (e.g., mean variance analysis). Such studies have been superseded by 

work where risk preferences are estimated simultaneously with technology (e.g., Love and 

Buccola 1991, Coyle 1999), as doing so can increase estimation efficiency and may avoid 

inconsistency problems, even though Antle (1989) argued that there are some advantages in 

separating the estimation of technology and risk preferences. In addition, starting with Saha, 

Shumway and Talpaz (1994), the literature has emphasized the estimation of decision makers’ 

“structure” of risk aversion (i.e., the changes in absolute or relative risk aversion associated with 

changes in wealth) by allowing for more flexible utility functions (Chavas and Holt 1996, Saha 

1997, Bar-Shira, Just and Zilberman 1997, Kumbhakar 2001, Kumbhakar 2002a, Kumbhakar 

2002b, Kumbhakar and Tveterås 2003, Isik and Khanna 2003, Abdulkadri, Langemeier and 

Featherstone 2003). 

Knowledge about the structure of risk aversion is of interest because it determines, among 

other things, decision makers’ responses to background risk, whether risky assets can be 
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considered normal goods, and whether agents save for precautionary purposes (Gollier 2001). 

Importantly, however, Kallberg and Ziemba (1983, p. 1257) concluded that “… utility functions 

having different functional forms and parameter values but ‘similar’ absolute risk aversion 

indices have ‘similar’ optimal portfolios.” They defined the index of absolute risk aversion of 

agent i under end-of-period wealth distribution d as the expected coefficient of absolute risk 

aversion corresponding to i under d. Kallberg and Ziemba’s (1983) conclusions must be qualified 

by the fact that their study assumed multivariate normally distributed returns, a case relatively 

favorable to finding similar choices across alternative utility functions (Černý 2004). More 

recently, Černý (2004) argued that, except for investments involving very large and skewed risks, 

agents with similar values of relative risk aversion, evaluated at their initial wealth levels, make 

almost identical portfolio decisions, regardless of their risk aversion structures. 

Estimation of the structure of risk aversion in production models is based on the premise 

that, in the presence of uncertainty, optimal input choices vary according to the decision maker’s 

structure of risk aversion. However, the studies by Kallberg and Ziemba (1983) and Černý 

(2004) suggest that, given the same level of risk aversion (as measured by either the absolute risk 

aversion index or the level of local relative risk aversion), differences in optimal input decisions 

induced by different structures of risk aversion are negligible, except for very large and skewed 

risks. This implies that, unless risks are very large and skewed, identification of the structure of 

risk aversion in production models may rely on sources of information too weak to allow the 

kind of econometric estimation that the literature has been pursuing. 

The purpose of the present study is to investigate whether it is indeed feasible to estimate 

the structure of risk aversion given the risks underlying the data usually employed by researchers 

in empirical production analysis. To this end, a thought experiment is performed with risks 

calibrated using historical farm data. Farming is chosen because it involves substantial risks, 

thereby increasing the chances for the structure of risk aversion to exert a noticeable impact on 

production decisions. In addition, many of the empirical studies concerned have relied on data 

from production agriculture. Importantly, the experiment is designed to favor the likelihood of 
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obtaining good estimates of the risk aversion structure, so that failure to get reasonable estimates 

provides strong evidence against the hypothesis that the structure of risk aversion can be 

recovered from production data. Succinctly, the experiment involves the generation of a large 

number of simulated data sets from widely-used utility and production functions, and 

subsequently employs such data to simultaneously estimate utility and technology parameters 

(under the assumption that the econometrician knows the true functional forms of utility and 

production). 

The study contributes to the literature by providing evidence against the hypothesis that 

typical production data contain enough information to allow identification of the structure of risk 

aversion. If anything, a flexible utility parameterization slightly worsens the estimates of 

technology parameters. Overall, our findings greatly undermine the case for estimating the 

structure of risk aversion in studies of production. More generally, the method employed here 

may be useful in other situations where identification of the parameters and/or models of interest 

is suspected to be too weak to be useful, by allowing researchers to discard doomed-to-fail 

estimation projects at an early stage. 

 

I. Model 

We adopt standard assumptions in the aforementioned production literature by postulating that at 

decision time t = 0, a competitive producer chooses the amounts of input (x) that maximize the 

expected utility of end-of-period random wealth, 

 

(1) x* = argmaxxEW{U[ )(~ xW ]}, 

 

where x* denotes the vector of optimal input amounts, EW(⋅) is the expectation operator with 

respect to random variable W~ , U(⋅) is the producer’s utility function, and )(~ xW  is his end-of-

period random wealth. The latter is defined to be the agent’s initial wealth (W0) plus random 

profits from production, 
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(2) )(~ xW  ≡ p~ )(~ xy  − r x + W0, 

 

where p~  is random end-of-period output price, )(~ xy  is random output, and r is the vector of 

variable input prices. 

For present purposes, model (1)-(2) is too general to be operational. To be able to make 

headway from an empirical standpoint, it is necessary to be more specific about the utility 

function U(⋅), the technology )(~ xy , and the nature of randomness in price and output. Such 

issues are addressed in the following subsections. 

 

I.1. The Decision Maker’s Utility Function 

The producer is assumed to be characterized by the hyperbolic absolute risk aversion (HARA) 

utility function, 

 
(3) U(W) = (1 − γ1)−1 (γ0 + 11) γ−W , 

 

which is defined on the domain of W satisfying (γ0 + W) > 0. The negative of parameter γ0 

represents the agent’s lowest admissible wealth. Parameter γ1 is the agent’s “baseline” risk 

aversion (Černý 2004), and must be strictly positive if (3) is to represent risk-averse preferences. 

HARA utility is adopted here because it comprises the most popular functional forms used in 

expected utility analysis (i.e., the exponential, quadratic, and power utilities) (Gollier 2001). 

Importantly, quite different structures of risk aversion can be obtained under appropriate 

parameterizations of (3). To see this, note that the HARA coefficient of relative risk aversion is 

given by 

 

(4) R(W) = γ1 W (γ0 + W)−1, 

 

so that ∂R(W)/∂W = γ1 γ0 (γ0 + W)−2. Since the sign of ∂R(W)/∂W is equal to the sign of parameter 
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γ0, it follows that the HARA agent is characterized by decreasing, constant, or increasing relative 

risk aversion (DRRA, CRRA and IRRA) if, and only if, parameter γ0 is negative, zero, or 

positive, respectively.1 Furthermore, as shown later, it is straightforward to parameterize (3) so 

as to test Černý’s (2004) claim that optimal decisions are essentially the same, regardless of 

whether the agent’s utility is characterized by DRRA, CRRA or IRRA, except for decisions 

involving very large and skewed risks. More specifically, Černý (2004) labels R(W) as the 

agent’s local relative risk aversion, and argues that the key determinant for optimal portfolio 

decisions is R(W0) (i.e., the local risk aversion evaluated at the “safe” wealth level W0). Loosely 

speaking, this means that individuals with similar coefficients of relative risk aversion evaluated 

at initial wealth will behave similarly toward risk. 

 

I.2. Production Technology 

The production technology )(~ xy  assumed for the analysis is of a Cobb-Douglas form 

 

(5) y(xA, xB; ye~ ) = α0 A
Axα  B

Bxα  ye~ , 

 

where α0, αA, and αB are technology parameters and ye~  is a random variable whose distribution 

is discussed in the next section. Major reasons for adopting technology (5) are its simplicity and 

the fact that the Cobb-Douglas technology is arguably the most widely-used production function 

in economic analysis. Examples of studies employing two variable inputs are Saha, Shumway, 

and Talpaz (1994) and Saha (1997), who analyzed wheat farms in Kansas with capital and 

materials as inputs, and Kumbhakar and Tveterås (2003), who studied salmon farms in Norway 

using feed and labor as inputs.2 More complex technologies, or a Cobb-Douglas production 
                                                           
1The coefficient of absolute risk aversion for HARA utility (3) is A(W) = γ1/(γ0 + W). Hence, such utility is 
characterized by decreasing absolute risk aversion, as ∂A(W)/∂W = −γ1 (γ0 + W)−2 < 0. A three-parameter HARA 
utility would allow for preferences depicting increasing absolute risk aversion (e.g., Gollier 2001, p. 26). However, 
such generalization is not pursued here, because the implied preferences are widely regarded as inconsistent with 
real-world attitudes toward risk (Gollier 2001, p. 238). 
2Kumbhakar (2001, 2002a, 2002b) examined Norwegian salmon farms with a production function consisting of only 
one variable input (labor). Isik and Khanna (2003) studied the adoption of site-specific technologies by farmers in 
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function involving additional inputs, would require the estimation of additional technology 

parameters, thereby posing stronger challenges for the estimation of utility parameters γ0 and γ1. 

The present analysis was also performed using the Just-Pope production function y(xA, xB; 

ye~ ) = α0
A

Axα B
Bxα + exp(βA xA + βB xB) ye~  (Just and Pope 1978) instead of (5), parameterized with 

α0 = 3, αA = 0.2, αB = 0.6, βA = 0.06, and βB = −0.03 following Saha, Shumway, and Talpaz 

(1994), and with ( )ylog e  distributed as described in Appendix B. (Note that βB < 0 means that 

input B is risk-reducing). To save space, results for the Just-Pope specification are omitted, as 

they led to the same conclusions as the results for the simpler production function (5). 

Importantly, technology (5) also seems better suited than the Just-Pope setup for the present 

purposes. This is true because the latter is more complex and therefore more prone to the critique 

that it hinders the chances for risk preference identification.3 

 

II. Simulation Design, Calibration, and Simulated Data Generation 

Given the model set-up described in the previous section, the present study’s objective is to 

investigate whether it is possible to estimate the vector of utility parameters γ ≡ [γ0, γ1] 

simultaneously with the vector of technology parameters α ≡ [α0, αA, αB] for levels of 

uncertainty - as reflected by the probability distributions of ye~  and p~  - often found in 

production agriculture. The null hypothesis is that the typical data sets used in the empirical 

production literature do allow estimation of the structure of risk aversion (i.e., the simultaneous 

identification of γ0 and γ1). The validity of such a hypothesis is evaluated by means of a thought 

experiment. The experiment consists of generating data corresponding to the postulated decision-

making model by means of simulations, and then employing such data to estimate the underlying 

                                                                                                                                                                                           
Illinois resorting to three variable inputs (nitrogen, phosphorous, and potassium). Abdulkadri, Langemeier, and 
Featherstone (2003) investigated wheat farms in Kansas with three variable inputs (materials, capital, and labor). 
3Conditional on knowing the true values of βA and βB, the Just-Pope specification offers better opportunities for 
identifying the utility parameters. However, such advantage does not necessarily extend to the case where βA and βB 
are unknown, because in the latter instance, estimation is more involved than for (5). Just-Pope simulations also 
require more care, because each optimal input bundle must be checked to ensure that the additive shock does not 
lead to a negative amount of output with strictly positive probability. In our Just-Pope simulations, observations 
where input bundles violated the nonnegative output restriction were discarded.  
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utility and technology parameters. 

It is important to emphasize that the thought experiment is designed to obtain simulated 

data so as to favor the odds of being able to accurately estimate γ. That is, the data are 

deliberately constructed so as to exhibit nicer properties than actual field data. For example, the 

true behavioral model underlying the simulated data is very simple (i.e., (1) through (5)), all 

observations are generated from the same utility and technology parameters,4 all observations 

are identically and independently distributed (so that there is no time or cross-section correlation 

reducing the informational content of the data), there are neither optimization nor data-recording 

mistakes, inputs are not subject to physical constraints like field size or integer quantities, etc. By 

construction, our simulated samples are free of selection bias (i.e., the bias due to the 

endogeneity of qualitative characteristics of inputs in crop choice). This is important, because 

inferences regarding risk behavior may be incorrect if selection bias is present but not accounted 

for (Koundouri and Nauges 2005). Further, all variables are unambiguously defined, so that no 

issues arise regarding the estimation and/or interpretation of the structure of risk aversion (see 

Meyer and Meyer 2005). 

Consistent with the stated goal of stacking the odds in favor of identifying the underlying 

preferences, end-of-period wealth does not include income from other activities, or payments 

from government programs aimed at reducing yield, price, or revenue uncertainty. Including 

additional activities would reduce the chances for identification, as it would involve more 

unknown parameters (e.g., moments of the joint probability distributions of the associated shocks, 

and technological parameters if the additional activities entailed production).5 Government 

payments would also hinder the identification of preferences, by making risk less important. In 

the limiting case of no yield uncertainty and government payments eliminating price uncertainty, 
                                                           
4Arguably, the issue of preference heterogeneity and reliable identification of individual preferences is just as 
important as reliable estimation of flexible functional forms. However, estimating 2 N individual utility parameters 
using a sample of size N will be at least as problematic as estimating only two utility parameters from the same 
sample, even if one includes individual characteristics as additional explanatory variables. 
5Omission of non-agricultural production activities is a standard assumption in the empirical literature (e.g., Saha, 
Shumway, and Talpaz 1994; Saha 1997; Isik and Khanna 2003; Abdulkadri, Langemeier, and Featherstone 2003; 
Kumbhakar 2001, 2002a, and 2002b; and Kumbhakar and Tveterås 2003).  
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it would be impossible to identify the parameters of the utility function because farmer risk 

preferences would be irrelevant. 

Employing ideally well-behaved data is critical for our purposes, because it favors 

estimation of the structure of risk aversion. That is, the data are generated so as to protect the null 

hypothesis of identification to the extent possible. Rejecting the null hypothesis under such 

conditions should provide much stronger support for the claim that the structure of risk aversion 

cannot be recovered from field data. 

 

II.1. Simulation Design 

Simulated data are generated for nine basic scenarios involving the combination of three 

structures of risk aversion (DRRA, CRRA, and IRRA) with three levels of uncertainty regarding 

random variables ye~  and p~  (low-, medium-, and high-variance). For each basic scenario, the 

simulated data consist of two million vectors, where the nth vector contains observations 

corresponding to the nth production decision vn ≡ [W0,n, p0,n, rA,n, rB,n, *
,nAx , *

,nBx , pn, yn]. Vector 

vn comprises the relevant “exogenous” variables known at the time of making the nth decision 

(i.e., initial wealth W0,n, output price at decision-making time p0,n, and input prices rA,n and rB,n), 

the corresponding optimal input amounts ( *
,nAx  and *

,nBx ), and the associated end-of-period 

realizations of the variables that were random when the nth decision was made (i.e., output price 

pn and output yn). 

 

II.2. Calibration 

The DRRA, CRRA, and IRRA scenarios are obtained by parameterizing the HARA utility (4) 

with [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. Parameters γ0 and γ1 are 

purposefully set at substantially different levels across scenarios to facilitate obtaining different 

values at the estimation stage. The CRRA scenario with [γ0, γ1] = [0, 3] implies a constant 

coefficient of relative risk aversion R(W) = 3, which reflects a reasonable level of relative risk 

aversion (Kocherlakota 1996; Gollier 2001, pp. 31 and 289; Meyer and Meyer 2005, table 2 on p. 
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260). The advocated DRRA γ1 parameterization constitutes a benchmark, as the coefficient of 

absolute prudence divided by the coefficient of absolute risk aversion equals exactly two when γ1 

= 1 in (3). Gollier (2001, pp. 147, 287, 288, and 387) derives a series of risk preference 

properties that hinge upon whether the coefficient of absolute prudence divided by the coefficient 

of absolute risk aversion is smaller or greater than two. 

Importantly, the aforementioned DRRA, CRRA, and IRRA parameterizations are chosen 

so that they all yield an average value of R(W0) equal to three under the assumed probability 

density function (pdf) of initial wealth (see (6) below). The latter feature allows us to investigate 

whether R(W0) does, indeed, reflect all that matters regarding the impact of risk preferences on 

optimal decisions, as argued by Černý (2004). If he is correct, the DRRA and IRRA scenarios 

simulated here should yield optimal input amounts almost identical to the optimal input levels 

corresponding to the CRRA decision maker with a coefficient of relative risk aversion R(W) = 3.6 

Since monetary units can be arbitrarily chosen, all prices are scaled by setting their 

unconditional means equal to one. The prices known to the agent when making the nth decision 

(i.e., p0,n, rA,n, are rB,n) are obtained by assuming that they are identically and independently log-

normally distributed with mean −0.03125 and variance 0.0625, which implies a mean equal to 

one and a coefficient of variation of 25.4%. The twin assumptions of independence and relatively 

large variability of decision-time prices are adopted to facilitate the estimation of utility 

parameters, as real-world data typically exhibit dependence and less variability than is being 

postulated here. 

Production function (5) is parameterized with αA = 0.2 and αB = 0.6, so as to closely 

match the estimates obtained by Saha, Shumway, and Talpaz (1994) and Saha (1997) for capital 

                                                           
6Kallberg and Ziemba’s (1983) study suggests that an alternative approach would be to use different utility function 
parameterizations yielding the same value for the index of absolute risk aversion. The main shortcoming of such an 
approach for present purposes, however, is that the index of absolute risk aversion is endogenous, in the sense that it 
cannot be defined without reference to the agent’s choices. To see this, note that Kallberg and Ziemba’s (1983) index 
requires the evaluation of the agent’s coefficient of absolute risk aversion at his end-of-period wealth, but the latter 
is determined by the agent’s decisions (which depend on his risk aversion). In contrast, computation of Černý’s 
(2004) index of local risk aversion requires knowledge about the agent’s beginning wealth (as opposed to end-of-
period wealth), and this is predetermined. 
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and materials, respectively. The values chosen for αA and αB imply decreasing returns to scale. 

Having clearly different magnitudes for αA and αB may provide information about the impact of 

the parameter size on the precision of its estimate. To yield reasonable values of rates of return 

on variable inputs, scale parameter α0 is fixed at a value of three. If there were no uncertainty 

regarding ye~  and p~ , and they were fixed at their mean values of one, optimal inputs 

corresponding to the mean decision-time prices (i.e., 0p  = Ar  = Br  = 1) would equal *
Ax  = 

2.0995 units and *
Bx  = 6.2986 units. The latter figures translate into costs of 8.3981 and gross 

revenues of 10.4976, for a net rate of return of 25% (= 10.4976/8.3981 − 1) on variable inputs. 

For the baseline scenarios, simulated observations on initial wealth are generated from 

 

(6) W0 = 18.9 + 69.2 z, 

 

where z is a random variable distributed according to the standard beta pdf Beta(0.87, 1.27). 

Hence, initial wealth has lower bound W0 = 18.9, upper bound 0W  = 88.1 (= 18.9 + 69.2), mean 

47.03, and standard deviation 19.18. The rationale for using (6) is twofold. First, (6) provides a 

distribution of initial wealth consistent with real-world data under the advocated scaling of prices 

and quantities (see Appendix A for details). Second, as pointed out earlier, the mean value of 

R(W0) corresponding to (6) equals three under the adopted DRRA, CRRA, and IRRA 

parameterizations.7 The corresponding average elasticities of R(W0) with respect to initial wealth 

are −2, 0, and 0.5, respectively. The absolute values of the DRRA and IRRA average elasticities 

are large (see Meyer and Meyer 2005, p. 260), so as to facilitate the estimation of the structure of 

risk aversion. 

Output shocks ye~  are assumed to have a probability distribution whose shape mimics 

the empirical distribution of farm-level corn yields in Iowa. Estimation of the probability 

distribution of ye~  is explained in Appendix B. Output shocks have a mean of one; in the 

                                                           
7The [5%, 50%, 95%] quantiles of R(W0) equal [9.26, 1.70, 1.30] for DRRA, [3, 3, 3] for CRRA, and [1.94, 3.06, 
3.92] for IRRA. 
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medium-variance scenario their standard deviation is 0.207, whereas in the low- and high-

variance scenarios, their standard deviations are 0.104 and 0.310, respectively.8 Having low- and 

high-variance scenarios allows us to analyze the sensitivity of the parameter estimates to the 

uncertainty in output shocks. This is important, among other things, to alleviate concerns that the 

medium-variance scenario may not adequately represent the true output uncertainty faced by 

farmers. A possible reason for such concern is that our estimation of the probability distribution 

of the output shocks assumes that it is exogenous, i.e., that the variability in farm-level corn 

yields in Iowa is not affected by the risk preferences of the surveyed farmers. 

The levels of output uncertainty employed for the simulations are representative of farm-

level production risks often found in the U.S. This is true because for Iowa corn, the case used to 

estimate the baseline scenario, the average rate for 65% actual production history crop insurance 

is 4.1 cents per dollar of liability (Risk Management Agency). By comparison, the analogous 

rates in cents per dollar of liability for other agricultural products in their respective main 

producing states are as follows: almonds 7.4, apples 6.0, avocados 5.8, cotton 5.5, dry beans 8.6, 

forage 6.1, grapefruit 4.3, grapes 7.6, lemons 3.0, macadamia nuts 1.4, peaches 4.8, peanuts 8.0, 

pears 5.6, potatoes 5.0, rice 5.6, soybeans 3.5, sugar beets 5.4, sugar cane 3.2, sweet oranges 6.7, 

tobacco 3.7, tomatoes 4.9, and walnuts 5.3 (Risk Management Agency). 

Finally, the postulated random generating process for end-of-period crop prices is 

 

(7) ln( p~ ) = μp + 0.5 ln(p0) − 0.3 ln( ye~ ) + pe~ , 

 

where p0 is the (known) price at the time of decision making and pe~  is a zero-mean normally 

distributed random variable. The term involving ln( ye~ ) accounts for the stylized fact that output 

shocks tend to have a negative impact on output prices. The standard deviations of pe~  for the 

                                                           
8That is, the standard deviation in the low-variance (high-variance) scenario is 50% smaller (larger) than the 
standard deviation in the medium-variance scenario. 
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low-, medium-, and high-variance scenarios are 0.1, 0.2, and 0.3, respectively.9 To obtain an 

unconditional mean of p~  equal to 1, the intercept term μp is fixed at −0.0232 in the medium-

variance scenario, and 0.0014 and −0.0659 in the low- and high-variance scenarios, respectively. 

Expression (7) is based on regressions employing historical price and yield-shock data, which are 

reported in Appendix C. 

 

II.3. Generation of Simulated Data for the nth Production Decision 

Conceptually, vector vn ≡ [W0,n, p0,n, rA,n, rB,n, *
,nAx , *

,nBx , pn, yn], comprising simulated data for 

the nth production decision, is calculated in three steps. In the first step, a random draw from (6) 

is used to compute initial wealth (W0,n), and random draws from the respective log-normal 

distributions are used to obtain decision-time output price (p0,n) and input prices (rA,n and rB,n). In 

the second step, numerical methods are employed to solve for *
,nAx  and *

,nBx , i.e., the input 

amounts that maximize expected utility given the information available at decision time. The 

latter comprises the vector [W0,n, p0,n, rA,n, rB,n], production technology, and the probability 

distributions of ye~  and p~ . In the third step, actual realizations of output (yn) and output price 

(pn) are obtained. Realized output is calculated by drawing an output shock (ey,n) from the 

probability distribution of ye~ , and substituting it, along with optimal inputs ( *
,nAx  and *

,nBx ), 

into production function (5). As per realized output price, it is computed by drawing a price 

shock (ep,n) from the pdf of pe~ , and substituting it, together with the decision-time price (p0,n) 

and the output shock (ey,n), into price equation (7). 

To ensure that results are as comparable as possible for the alternative (DRRA, CRRA, 

IRRA) × (low-, medium-, high-variance) scenarios, the same vector of exogenous decision-time 

variables [W0,n, p0,n, rA,n, rB,n] is used across all nine basic scenarios for the nth production 

decision. A different procedure is required for end-of-period shocks ey,n and ep,n, however, 
                                                           
9Again, standard deviations in the low- and high-variance scenarios are, respectively, 50% smaller and 50% larger 
than the standard deviation in the medium-variance scenario. The postulated levels of price uncertainty represent the 
price risks associated with many agricultural products in the U.S., including broilers, calves, corn, cotton, dry beans, 
eggs, grapefruit, hogs, lambs, lettuce, onions, oranges, pears, potatoes, rice, sorghum, soybeans, tomatoes, and wheat 
(Harwood et al. 1999, p. 11). 
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because having low-, medium-, and high-variance cases prevents us from using the same [ey,n, 

ep,n] values across all scenarios. Hence, to compute end-of-period shocks so as to enhance 

comparability across settings, we first draw from appropriate standard pdfs (uniform for ye~  and 

normal for pe~ ), and then convert such draws into the shocks corresponding to the alternative 

scenarios by performing suitable transformations.10 

Calculation of optimal inputs is the step that requires the greatest computational effort. To 

describe how the numerical optimization is performed, let function u(xA,n, xB,n, ye~ , pe~ ; W0,n, p0,n, 

rA,n, rB,n) represent the utility of random end-of-period wealth corresponding to the nth 

production decision. With this notation, the optimization problem consists of maximizing (8) 

with respect to xA,n and xB,n: 

 

(8) 
py eeE , [u(xA,n, xB,n, ye~ , pe~ ; W0,n, p0,n, rA,n, rB,n)] ≡ ∫∫ ⋅);,,,( ,, pynBnA eexxu fy,p(ey, ep) dey dep, 

 

where fy,p(⋅) denotes the joint pdf of ye~  and pe~ . However, output shocks ( ye~ ) are assumed to be 

independent of price shocks ( pe~ ), so that fy,p(ey, ep) = fy(ey) fp(ep), where fy(⋅) and fp(⋅) are the 

marginal pdfs of output and price shocks, respectively. Further, since the expectation in (8) has 

no analytical solution, its computation requires numerical quadrature methods (Miranda and 

Fackler 2002, ch. 4). Hence, the objective function employed for numerical optimization is the 

one shown on the right-hand-side of (9): 

 

(9) 
py eeE , [u(xA,n, xB,n, ye~ , pe~ ; W0,n, p0,n, rA,n, rB,n)] ≡ Σs Σq u(xA,n, xB,n, ey,q, ep,s; ⋅) πy,q πp,s, 

 

where ey,q and ep,s are quadrature nodes, and πy,q and πp,s are the respective quadrature weights. 

For output shocks, 100 nodes (and weights) are used, as described in Appendix B. Nodes and 

                                                           
10To illustrate this point, consider the generation of the nth end-of-period price shocks. We first draw a realization 
zp,n from the standard normal pdf, and then calculate ep,n for the low-, medium-, and high-variance scenarios as 0.1 
zpn, 0.2 zp,n, and 0.3 zp,n, respectively (see explanation of (7) above). 
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weights for price shocks are determined by a 10-point Gaussian quadrature.11 

Numerical optimization of the objective function on the right-hand side of (9) is 

performed by means of the “fmincon” function in MATLAB version 7.0.4.365. Function 

“fmincon” is set up to find a minimum of a constrained nonlinear multivariable objective 

function. In the present setup, the only constraint imposed on the optimization is that costs 

(rA,n
*

,nAx + rB,n
*

,nBx ) do not exceed γ0 + W0,n; otherwise, the HARA condition γ0 + Wn > 0 would 

be violated for sufficiently small levels of revenue (pn yn). 

The accuracy of the “fmincon” optimal inputs is verified by comparing them with the 

input amounts obtained by performing a grid-search optimization for a test set, consisting of the 

625 (= 54) combinations of initial wealth and decision-time prices resulting from the Cartesian 

product of the 5-point Gaussian quadrature nodes for W0, p0, rA, and rB. Test set results are also 

used to construct initial values (through regressions of the corresponding *
Ax  and *

Bx  on W0, p0, 

rA, and rB) for the optimization concerning xA,n and xB,n. 

 

II.4. Generation of Simulated Samples 

The procedure described in the preceding subsection is used to generate one million vn vectors 

(i.e., data for one million production decisions) for each of the nine basic scenarios analyzed. 

Since the objects of interest are the distributions of the parameter estimates, to enhance the 

estimation of such distributions, the data set is augmented by means of antithetic replications 

(Geweke 1988). More specifically, an additional set of one million antithetic decision vectors vn+ 

≡ [W0,n+, p0,n+, rA,n+, rB,n+, *
, +nAx , *

, +nBx , pn+, yn+] are constructed and used for estimation. 

Variables W0,n+, p0,n+, rA,n+, and rB,n+ are the antithetic replications of W0,n, p0,n, rA,n, and rB,n, 

respectively. Variables *
, +nAx  and *

, +nBx  are the optimal inputs corresponding to W0,n+, p0,n+, rA,n+, 

and rB,n+. Finally, pn+ is calculated from (7) using p0,n+ and the antithetic replications of ey,n and 

                                                           
11By construction, an S-point Gaussian quadrature computes the first (2 S − 1) moments of pe~  without error. 
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ep,n, whereas yn+ is obtained by substituting *
, +nAx , *

, +nBx  and the antithetic replication of ey,n into 

(5). 

The simulated data for the two million production decisions are then grouped into 

20,000 (4,000; 2,000) samples of 100 (500; 1,000) production decisions each. In turn, each of the 

simulated samples is used to perform an econometric estimation of the utility and technology 

parameters, resulting in 20,000 (4,000; 2,000) estimates for each parameter from the samples 

with 100 (500; 1,000) observations, respectively.12 

The sizes of the simulated samples were chosen to cover the sample magnitudes 

typically used in the literature. For the studies of the structure of risk aversion cited in the 

introduction, sample sizes ranged from a low of 32 observations in Chavas and Holt (1996), to a 

high of 1010 observations in Bar-Shira, Just and Zilberman (1997). Saha (1997), Saha, Shumway 

and Talpaz (1994), Isik and Khanna (2003), Kumbhakar and Tveterås (2003), Kumbhakar 

(2002a), Kumbhakar (2002b), and Kumbhakar (2001) used samples of 60, 60, 100, 224, 224, 226 

and 300 observations, respectively. The estimation performed by Abdulkadri, Langemeier and 

Featherstone (2003) relied on three separate samples comprised of 125, 240 and 255 

observations per sample. 

 

II.5. “Mixed-Variance” Scenarios 

In addition to the aforementioned nine (DRRA, CRRA, IRRA) × (low-, medium-, high-variance) 

scenarios, a set of three “mixed-variance” scenarios are generated for DRRA, CRRA, and IRRA 

preferences. In the mixed-variance settings, the nth production decision vector is augmented by 

incorporating variable σn (i.e., vn ≡ [W0,n, p0,n, rA,n, rB,n, σn, *
,nAx , *

,nBx , pn, yn]), where σn equals 

0.5, 1, or 1.5 depending on whether the distribution of price and output shocks for the nth 

decision have small-, medium-, or large-variance, respectively. The mixed-variance scenarios are 

aimed at incorporating heteroskedasticity in the output and price shocks. The variance of shocks 

                                                           
12Data corresponding to two million production decisions can be generated without resorting to antithetic 
replications. However, the latter allow us to obtain more accurate estimates of the distributions of interest. 
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may change from period to period, but is assumed to be known at the time of decision making. 

Hence, the nth period’s optimal choice incorporates the level of uncertainty corresponding to the 

nth period’s output and price shocks. Data for the nth period mixed-variance scenario are 

straightforward to generate by randomly selecting vn from the small-, medium-, and large-

variance scenarios with probabilities of 1/3 each, and augmenting the selected vn vector by the 

associated σn. 

 

II.6. Scenarios with a Wider Distribution of Initial Wealth  

The distribution of initial wealth is a major risk structure identifier. To analyze whether an initial 

wealth distribution substantially wider than (6) enhances the estimation of the utility parameters, 

simulations are also performed using observations on initial wealth generated from a uniform 

distribution with the same lower bound as (6) (i.e., 18.9), but a much larger upper bound of 500 

(versus 88.1 for (6)). In this instance, initial wealth has a mean of 259.45 and a standard 

deviation of 138.88, and the upper bound divided by the lower bound yields a ratio of 26.6. To 

see how wide this uniform distribution is, note that for the distribution of family net worth for all 

U.S. farm households in 2004, the ratio of the 95% quantile (= $2.36 million) to the 10% 

quantile (= $150 thousand) is only 15.7 (Economic Research Service 2008). 

 

III. Estimation 

To favor the null hypothesis that utility parameters can be recovered from the production 

decision data, we assume that the econometrician knows the specific form of the utility and 

production functions, and is only interested in estimating their corresponding parameters. 

Therefore, the present estimation is not affected by issues pertaining to functional form 

approximations. 

Clearly, shocks enter the decision maker’s objective function in a highly nonlinear 

fashion. Thus, even if shocks followed a standard (e.g., normal or log-normal) distribution, 

maximum likelihood (ML) estimation would require a linear approximation to render the 
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problem tractable (Jagannathan, Skoulakis and Wang 2002). Further, the postulated distribution 

of output shocks is not standard, and it would be highly unrealistic to assume that it is known to 

the econometrician. This hampers the use of ML, as ML estimates may not be consistent when 

the distribution of the observable variables is misspecified (Hansen and Singleton 1982). For 

such reasons, the generalized method of moments (GMM) is adopted as the baseline estimation 

method. 

Useful references for the theory underlying GMM and its numerous applications include 

Hansen (1982), Davidson and Mackinnon (1993, ch. 17), Ogaki (1993) and Cliff (2003). The 

present optimal decision making framework lends itself nicely to application of GMM. 

Succinctly, estimation is based on a system of three regression equations corresponding to the 

logarithmic transformation of the production function (5) (i.e., (10)) and the first-order 

conditions (FOCs) for optimization of (8) (i.e., (11)):13 

 

(10) εy,n(α) ≡ log(yn) − log(α0) − αA log( ∗
nAx , ) − αB log( ∗

nBx , ), 

 

(11) εj,n(αj, γ) ≡ 
1* *

0 , , , , 0,

0 0,

   n n A n A n B n B n n

n

p y r x r x W
W

γ
γ

γ

−
⎛ ⎞+ − − +
⎜ ⎟⎜ ⎟+⎝ ⎠

 ( nnjjn yxp 1
,
−∗α  − rj,n),  

 

for j = A and B, and n = 1, ..., N, where N is the sample size. To compare the present model to the 

existing empirical work, note that (10) and (11) above are analogous, respectively, to estimation 

equations (16) and (14) in Saha, Shumway, and Talpaz (1994); (11) and (10) in Isik and Khanna 

                                                           
13Estimation was also performed employing the untransformed technology equation (i.e., εy,n(α) ≡ yn − α0 A

nAx α∗
,  

B
nBx α∗

,  instead of (10)), but the quality of the resulting parameter estimates was slightly lower. The term [(γ0 + pn yn − 

rA,n ,A nx∗  − rB,n ,B nx∗  + W0)/(γ0 + W0
1)] γ−  in FOC (11) represents the stochastic discount factor (Pennacchi 2007, 

Ch. 4). In the GMM literature, FOC equations are typically estimated by means of a stochastic factor specification 
(e.g., Altug  and Labadie 1994, ch. 3; Hansen and Singleton 1982; Ogaki 1993). In the present simulations, using 

the stochastic discount factor instead of (γ0 + pn yn − rA,n ,A nx∗  − rB,n ,B nx∗  + W0
1) γ−  in (11) yields substantial 

improvements in estimation.  
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(2003); (17) and (19) in Abdulkadri, Langemeier, and Featherstone (2003); (1) and (13) in 

Kumbhakar (2001); (6a) and (7a) in Kumbhakar (2002a); (8) and (12), and (18) and (21) in 

Kumbhakar (2002b); (2) and (3a)-(3b) in Kumbhakar and Tveterås (2003); and the equation 

alluded to on p. 774 and (8) in Saha (1997). 

The term εy,n provides no information to help identify utility parameters, and εA,n (εB,n) 

contains no information for identifying production parameters α0 and αB (αA). For the small-, 

medium-, and large-variance scenarios, the set of instruments used for each of the equations 

above consists of vector ιn ≡ [1, W0,n, p0,n, rA,n, rB,n, *
,nAx , *

,nBx ]', comprising a constant 

(standardized to unity) and the variables known at the time of decision making. For the mixed-

variance scenario, vector ιn is augmented by the variance variable σn.14 

The rationale for using GMM in the present study is the same as for the typical use of 

GMM to test asset pricing relationships via Euler equations (e.g., Altug  and Labadie 1994, ch. 

3). That is, for any variable z known at the time of decision making, it must be the case that 

)~(, zE jee py
ε  = )~(, jee py

E ε z = 0 for j = y, A, B. This is true because z is non-random from the 

perspective of the decision time, )~(, yee py
E ε  = 0 from production function (5), and )~(, Aee py

E ε  = 

)~(, Bee py
E ε  = 0 from FOCs. By the law of iterated expectations, it follows that the unconditional 

expectations are also zero: )~( zE jε  = E[ )~(, zE jee py
ε ] = 0 for j = y, A, B. Given a sample of size N, 

the set of sample counterparts of )~( zE jε  is the vector gN(α, γ) ≡ 1/N Σn [εy,n(α) εA,n(αB, γ) 

εB,n(αB, γ)]' ⊗ ιn, where ⊗ denotes the Kronecker product. Since parameters [α, γ] are the only 

elements of gN(⋅) unknown to the econometrician, the GMM estimates [α̂ , γ̂ ] are chosen so as to 

render gN(⋅) as close to zero as possible by minimizing a quadratic form in gN(⋅) with respect to 

the unknown parameters: 

 

(3.3) [α̂ , γ̂ ] = argmax[α,γ][gN(α, γ)' VN gN(α, γ)]. 

 
                                                           
14Including σn in the set of instruments implies that the econometrician knows with certainty whether the variance 
associated with the nth period’s shocks is small, medium, or large. This is clearly unrealistic, but is assumed here to 
favor the null hypothesis of identification. 
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In (3.3), VN is a positive definite weighting matrix which converges in probability to a positive 

definite matrix V0. Loosely speaking, the GMM estimates yield the sample counterparts of 

orthogonality conditions )~( zE jε  as close to zero as possible. 

Estimation is performed using the GMM and MINZ software libraries in MATLAB 

version 7.0.4.365 (Cliff 2003), which can be downloaded from http://mcliff.cob.vt.edu/progs.html. 

Results reported in the next section are obtained from two-step GMM estimation. The true 

parameter values are used to initialize the numerical GMM optimization, so as to facilitate 

convergence. Also to enhance convergence, the weighting matrix for the first GMM step is set 

equal to VN = (1k ⊗ ι'ι)−1, where 1k is the (k × k) identity matrix, k is the number of regression 

equations (three in the present application), and ι = [ι1, ..., ιN]' (Cliff 2003). In addition, to ensure 

that 0γ̂  does not violate the constraint ( 0γ̂  + W) > 0 associated with HARA utility (3), for 

estimation purposes, we impose the restriction that 0γ̂  > 0.001 − min(W1,n, n = 1, ..., N),     

where W1,n ≡ pn yn − rA,n
*

,nAx  − rB,n
*

,nBx  − W0,n. 

 

III.1. Maximum-Likelihood Estimation 

Despite the aforementioned shortcomings of ML estimation for the present purposes, ML is of 

interest because it is the procedure typically used in agricultural economics. Hence, to mimic the 

strategy followed by such literature, estimation is also performed using ML under the assumption 

that the errors defined by (10) and (11) are jointly normally distributed. 

 

IV. Results and Discussion 

GMM estimation results for the flexible utility specification under the baseline initial wealth 

distribution (6) are summarized in tables 1 through 3. The tables contain the median and the 

2.5% and 97.5% quantiles (within parentheses) for each of the utility and technology parameter 

estimates. In the following discussion, the 2.5%-97.5% quantile intervals are referred to as the 

95% confidence intervals (CIs). Tables 1, 2, and 3 report results for the small-, large-, and mixed-

variance scenarios, respectively. To save space, outcomes for the medium-variance scenario are  
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Table 1. GMM parameter estimates for flexible utility estimation specification, assuming 

baseline initial wealth distribution, small-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −19.2 4.8 2.909 0.211 0.608 
  (−20.3, −18.9) (2.3, 19.4) (2.40, 3.61) (0.18, 0.23) (0.51, 0.70) 
       

DRRAb 500 −19.1 3.9 2.842 0.215 0.628 
  (−19.3, −18.9) (2.8, 5.9) (2.50, 3.10) (0.20, 0.22) (0.58, 0.68) 
       

DRRAb 1,000 −19.0 3.7 2.847 0.216 0.625 
  (−19.2, −18.9) (2.9, 5.4) (2.62, 3.06) (0.20, 0.22) (0.58, 0.66) 
       

CRRAb 100 4.0 194 3.112 0.232 0.572 
  (−20.4, 38227) (20.8, 81743) (2.96, 3.31) (0.21, 0.28) (0.52, 0.60) 
       

CRRAb 500 11.5 92.0 3.064 0.222 0.583 
  (−14.8, 22006) (26.6, 24280) (2.99, 3.15) (0.21, 0.24) (0.56, 0.60) 
       

CRRAb 1,000 10.4 73.3 3.055 0.219 0.585 
  (−9.1, 18113) (29.5, 16305) (3.00, 3.11) (0.21, 0.23) (0.57, 0.60) 
       

IRRAb 100 30.9 194 3.097 0.228 0.576 
  (−20.0, 33558) (23.7, 72700) (2.94, 3.30) (0.20, 0.28) (0.53, 0.61) 
       

IRRAb 500 40.2 66.6 3.002 0.210 0.598 
  (−14.4, 80342) (15.8, 53750) (2.94, 3.08) (0.20, 0.22) (0.58, 0.61) 
       

IRRAb 1,000 40.6 54.2 2.993 0.209 0.599 
  (−2.7, 87001) (18.5, 50828) (2.95, 3.04) (0.20, 0.22) (0.59, 0.61) 
       
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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Table 2. GMM parameter estimates for flexible utility estimation specification, assuming 

baseline initial wealth distribution, large-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −16.4 4.4 2.896 0.213 0.604 
  (−19.7, 17864) (1.0, 3718) (2.50, 3.31) (0.19, 0.25) (0.51, 0.68) 
       

DRRAb 500 −15.6 4.2 2.875 0.212 0.607 
  (−19.0, 8.8) (2.0, 11.7) (2.70, 3.05) (0.20, 0.23) (0.56, 0.64) 
       

DRRAb 1,000 −15.3 4.2 2.871 0.212 0.606 
  (−18.7, −3.6) (2.3, 8.0) (2.75, 2.99) (0.20, 0.22) (0.58, 0.63) 
       

CRRAb 100 18.4 15.5 2.908 0.217 0.612 
  (−13.9, 30617) (3.5, 7464) (2.51, 3.30) (0.19, 0.25) (0.53, 0.69) 
       

CRRAb 500 17.8 13.4 2.857 0.217 0.614 
  (−0.5, 80.3) (7.4, 27.5) (2.68, 3.04) (0.20, 0.23) (0.58, 0.65) 
       

CRRAb 1,000 17.9 13.1 2.855 0.217 0.612 
  (3.8, 51.6) (8.8, 21.0) (2.73, 2.98) (0.21, 0.23) (0.58, 0.64)        

IRRAb 100 42.7 27.7 2.911 0.217 0.613 
  (−1.3, 52997) (6.5, 11036) (2.51, 3.30) (0.19, 0.25) (0.53, 0.69) 
       

IRRAb 500 42.5 21.1 2.860 0.216 0.613 
  (41.4, 18365) (10.6, 3127) (2.64, 3.03) (0.20, 0.23) (0.58, 0.65)        

IRRAb 1,000 42.6 14.8 2.787 0.214 0.620 
  (41.8, 15549) (10.8, 2325) (2.63, 2.96) (0.21, 0.22) (0.59, 0.65)        
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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Table 3. GMM parameter estimates for flexible utility estimation specification, assuming 

baseline initial wealth distribution, mixed-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −19.0 4.6 2.946 0.211 0.598 
  (−19.8, 15936) (1.6, 6120) (2.53, 3.35) (0.19, 0.24) (0.52, 0.67) 
       

DRRAb 500 −17.3 4.8 2.950 0.208 0.602 
  (−19.1, 13.6) (2.5, 19.4) (2.62, 3.08) (0.20, 0.22) (0.57, 0.65) 
       

DRRAb 1,000 −16.3 5.5 2.954 0.208 0.602 
  (−19.0, −2.7) (2.8, 13.0) (2.73, 3.04) (0.20, 0.22) (0.58, 0.63) 
       

CRRAb 100 16.1 21.4 2.982 0.214 0.598 
  (−19.2, 37748) (5.1, 13654) (2.70, 3.28) (0.20, 0.24) (0.55, 0.64) 
       

CRRAb 500 17.3 17.9 2.946 0.212 0.604 
  (−1.1, 131) (10.2, 51.3) (2.82, 3.08) (0.20, 0.22) (0.58, 0.62) 
       

CRRAb 1,000 17.0 17.1 2.946 0.212 0.603 
  (2.7, 66.4) (11.6, 31.2) (2.86, 3.04) (0.21, 0.22) (0.59, 0.62)        

IRRAb 100 42.0 36.9 2.982 0.214 0.598 
  (−9.8, 61318) (8.0, 17638) (2.71, 3.27) (0.20, 0.24) (0.55, 0.64) 
       

IRRAb 500 42.4 25.1 2.941 0.210 0.604 
  (40.3, 31389) (11.8, 5845) (2.82, 3.04) (0.20, 0.22) (0.58, 0.62)        

IRRAb 1,000 42.4 16.2 2.916 0.206 0.608 
  (41.2, 27094) (12.0, 5047) (2.81, 3.00) (0.20, 0.22) (0.59, 0.62)        
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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not reported, as they typically lie between the small- and large-variance results. 

The clearest pattern in tables 1 through 3 is that, as expected, the precision of the 

parameter estimates, as measured by the width of the 95% CIs, increases with the sample size. 

Regarding technology parameters, αA and α0 are the ones estimated with the greatest and the 

least precision, respectively. That is, the precision of the technology estimates varies inversely 

with the true parameter values. Median estimates are typically closest to the true values in the 

mixed-variance scenario. However, there seems to be little association between the precision of 

[ 0α̂ , Aα̂ , Bα̂ ] and the variance of the output and price shocks or the risk preferences. For example, 

consider the 95% CIs for [α0, αA, αB] corresponding to 100-observation samples. With DRRA 

preferences, the 95% CIs for α0 and αB (αA) are narrower (wider) under the large-variance 

scenario than under the small-variance scenario. In contrast, with IRRA preferences, the 95% CIs 

for α0 and αB (αA) are narrower (wider) when the variance is small than when the variance is 

large. 

Overall, the figures reported in tables 1 through 3 show that technology parameters can be 

accurately recovered, even with samples comprising only 100 observations. Interestingly, 

however, all of the median estimates of αA reported in tables 1 through 3 exceed the true 

parameter value, and it is often the case that the 95% CIs are very close to, but fail to contain, the 

true value of αA. This happens in all of the scenarios reported in tables 1 through 3 for 500- and 

1000-observation samples, and also for 100-observation samples and CRRA and IRRA 

preferences in the small-variance scenario. The true parameter value also lies outside the 

corresponding 95% CI in the case of α0 when preferences are CRRA and IRRA and samples are 

of size 1000 under the large-variance scenario. 

Unlike technology estimates, the estimates of the preference parameters bear little 

resemblance to the true values and are very imprecise (except for 0γ̂  under DRRA preferences 

in the small-variance scenario). Consider the CRRA scenario first. Both γ0 and γ1 are grossly 

overestimated, as the smallest 0γ̂  and 1̂γ  medians are, respectively, 4.0 (100-observation 

samples in the small-variance scenario) and 13.1 (1000-observation samples in the large-variance 



 

 

24

scenario), compared to true values of γ0 = 0 and γ1 = 3. Prominently, none of the 95% CIs for γ1 

includes the true value. Further, the distance between the true γ1 value and the closest (i.e., lower) 

bound of the 95% CIs is large and increasing with the sample size. For example, in the mixed-

variance scenario, the 2.5% quantiles for 1̂γ  corresponding to 100-, 500-, and 1000-observation 

samples are 5.1, 10.2, and 11.6, respectively. For γ0, the true value lies outside the 95% CIs for 

samples of 1000 observations in the large- and mixed-variance scenarios. When the variance is 

small or samples have 100 observations, the 97.5% quantiles for 0γ̂  and 1̂γ  are too large to be 

credible. It is also worth noting that the distributions of both 0γ̂  and 1̂γ  are substantially 

skewed to the right. 

As for CRRA preferences, the true values of γ1 for DRRA and IRRA are grossly 

overestimated and lie outside the respective 95% CIs. Also similar to the CRRA case, the gap 

between the true values of γ1 and the bound of the 95% CI closest to them increases with the 

number of observations in the sample, except for IRRA preferences in the small-variance 

scenario. In addition, the upper bound for the 95% CIs corresponding to γ1 under IRRA is 

unreasonably large, and the same is true under DRRA for 100-observation samples in the large- 

and mixed-variance scenarios. In all instances, the distribution of 1̂γ  depicts a noticeable skew 

to the right. 

Under DRRA and IRRA preferences, distributions of 0γ̂  are also clearly right-skewed. 

Median estimates of γ0 are relatively close to the respective true values. However, there are 

obvious problems with 0γ̂ , as well. For IRRA preferences, the lower bound of the 95% CI is 

negative in the small-variance scenario and in the 100-observation-sample cases of the large- and 

mixed-variance scenarios. The problem with this finding is that a negative 0γ̂  means that the 

econometrician would erroneously conclude that preferences are DRRA instead of IRRA (see 

discussion of expression (4) above). Upper bounds for the 95% CIs are also problematic under 

IRRA because they are excessively large. 

For DRRA preferences, the 95% CIs for γ0 are narrower than for CRRA or IRRA. 

However, the 97.5% quantiles of 0γ̂  under DRRA are positive for samples of 100 and 500 
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observations in the large- and mixed-variance scenarios. A positive 0γ̂  would incorrectly infer 

that the corresponding preferences are IRRA, rather than DRRA. Further, the 95% CIs for DRRA 

preferences lie entirely below the true value of γ0 = −18.4 in the small-variance scenario. 

The CI for γ0 when the variance is small and preferences are DRRA is unusually narrow 

relative to any of the other 95% CIs for utility parameters. The explanation for this result is the 

constraint that costs (rA,n
*

,nAx + rB,n
*

,nBx ) do not exceed γ0 + W0,n, imposed at the optimization 

stage to compute optimal input choices. Such constraint binds in 22.7% (14.3%, 8.5%) of the 

small- (medium-, large-) variance simulated observations for DRRA, versus only 4% (0.2%, 0%) 

and 0.2% (0%, 0%) of the observations for CRRA and IRRA, respectively. As samples contain 

larger percentages of observations where the cost constraint is binding, the estimation constraint 

0γ̂  > 0.001 − min(W1n, n = 1, ..., N) is more likely to bind, as well. Importantly, the fact that the 

cost constraint is relevant only for DRRA preferences in the small-variance scenario means that 

it cannot be blamed for the poor quality of the preference estimates shown in tables 1 through 3.  

The mixed-variance scenario reported in table 3 contains additional information 

potentially useful for identifying the structure of risk aversion. This is true because decision 

makers differing in their risk preferences will generally change their input choices in different 

ways in response to changes in risks. However, comparison of the distributions of 0γ̂  and 1̂γ  in 

table 3 with the ones in tables 1 and 2 shows that heteroskedasticity is of little help in the 

estimation of risk preferences. Additional support for this conclusion is furnished by the fact that 

the estimates in table 3 assume that the econometrician exactly knows the level of uncertainty 

embedded in the decision maker’s optimal choices, which is highly unrealistic. Therefore, it 

seems safe to conclude that the structure of risk aversion is very unlikely to be rendered 

identifiable by the presence of heteroskedasticity. 

Table 4 reports results for the medium-variance scenario, assuming a wide distribution of 

initial wealth. Estimates of the technology parameters appear to be largely unaffected. The wide 

initial distribution also seems to have a neutral impact on the quality of the IRRA utility 

estimates. In contrast, utility estimates for DRRA preferences are clearly worse compared to the 
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Table 4. GMM parameter estimates for flexible utility estimation specification, assuming initial 

wealth uniformly distributed with lower bound 18.9 and upper bound 500, medium-variance 

scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 7.6 34.9 2.967 0.212 0.600 
  (−26.4, 62451) (2.3, 12471) (2.67, 3.26) (0.19, 0.24) (0.55, 0.64) 
       

DRRAb 500 19.0 22.7 2.932 0.209 0.603 
  (−19.9, 34755) (4.0, 5228) (2.77, 3.23) (0.20, 0.22) (0.56, 0.62) 
       

DRRAb 1,000 19.4 20.2 2.926 0.208 0.603 
  (−19.5, 28029) (4.7, 3415) (2.81, 3.23) (0.20, 0.22) (0.56, 0.62) 
       

CRRAb 100 58.4 62.3 2.971 0.215 0.601 
  (−25.0, 58270) (8.4, 10984) (2.68, 3.24) (0.20, 0.24) (0.56, 0.64) 
       

CRRAb 500 71.8 44.5 2.921 0.212 0.606 
  (−1.0, 1217) (18.2, 218) (2.78, 3.05) (0.20, 0.22) (0.58, 0.62) 
       

CRRAb 1,000 70.3 40.8 2.914 0.212 0.606 
  (13.7, 599) (19.8, 109) (2.81, 3.01) (0.20, 0.22) (0.59, 0.62)        

IRRAb 100 42.2 61.4 2.971 0.213 0.602 
  (−19.9, 55608) (9.5, 9261) (2.69, 3.24) (0.20, 0.24) (0.56, 0.64) 
       

IRRAb 500 42.7 35.0 2.906 0.209 0.608 
  (41.2, 56880) (12.5, 6494) (2.76, 3.01) (0.20, 0.22) (0.59, 0.63)        

IRRAb 1,000 42.8 29.8 2.890 0.209 0.608 
  (42.2, 31199) (13.9, 3536) (2.80, 2.97) (0.20, 0.22) (0.60, 0.62)        
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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baseline distribution of initial wealth, as the median 0γ̂  is positive (implying IRRA preferences), 

the median 1̂γ  is far greater than the true value γ1 = 1, the 95% CI for γ1 does not contain its true 

value, and the 97.5% quantiles for 0γ̂  and 1̂γ  are unrealistically large. The wide initial wealth 

distribution also has a negative effect on the quality of 0γ̂  under CRRA preferences, because the 

median lies much farther apart from the true value than under the baseline initial wealth 

distribution. In summary, if anything, a wider initial wealth distribution seems to negatively 

affect the estimation of the flexible utility parameters. 

ML results for the medium-variance scenario are shown in table 5. ML estimates of 

technology parameters seem slightly better than their GMM counterparts, as the ML medians 

tend to be closer to the true values and the ML 95% CIs are often narrower. In regard to utility 

parameters, for 1̂γ  the ML medians are closer to the respective true values than the GMM 

medians, but the opposite is true for 0γ̂  medians under CRRA and IRRA preferences. ML 

estimates of both γ0 and γ1 are clearly better than the GMM estimates in terms of 97.5% quantiles, 

because the former are usually much smaller. Overall, however, ML estimates of the flexible 

utility parameters are quite poor. This assessment is reinforced by the facts that the estimates 

reported in table 5 correspond only to samples where the numerical optimization involved in ML 

estimation converged, and that convergence was achieved for only 60% to 80% of the samples, 

depending on the scenario under analysis. 

 

IV.1. Estimation under Restricted Utility Specifications 

As noted earlier, Černý (2004) argues that decisions corresponding to utilities with the same 

value of R(W0) are very similar, unless random shocks are very skewed and have substantial 

variances. If such an argument applies to agricultural production under uncertainty, observed 

input choices would be consistent with an infinite number of γ parameterizations yielding the 

same R(W0). Since the econometrician must infer γ0 and γ1 from the observed input choices, this 

means that attempting to simultaneously estimate both γ0 and γ1 is likely to incur difficulties due 

to lack of identification. 
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Table 5. Maximum-likelihood parameter estimates for flexible utility estimation specification, 

assuming baseline initial wealth distribution, medium-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  0γ̂  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 −17.8 3.7 2.871 0.206 0.615 
  (−19.3, 29.7) (1.1, 19.4) (2.55, 3.13) (0.19, 0.23) (0.58, 0.67) 
       

DRRAb 500 −18.4 2.2 2.934 0.201 0.601 
  (−18.9, −11.3) (1.3, 5.0) (2.81, 3.05) (0.19, 0.21) (0.58, 0.62) 
       

DRRAb 1,000 −18.5 2.0 2.949 0.200 0.598 
  (−18.9, −15.8) (1.2, 3.3) (2.86, 3.04) (0.20, 0.20) (0.58, 0.61) 
       

CRRAb 100 19.9 8.9 2.896 0.205 0.610 
  (−18.3, 148) (1.5, 36.4) (2.54, 3.20) (0.19, 0.23) (0.57, 0.67) 
       

CRRAb 500 35.9 8.5 2.951 0.201 0.600 
  (−8.6, 130) (2.7, 20.6) (2.80, 3.10) (0.19, 0.21) (0.58, 0.62) 
       

CRRAb 1,000 40.4 8.6 2.958 0.200 0.599 
  (−0.1, 124) (3.5, 18.9) (2.85, 3.07) (0.20, 0.21) (0.58, 0.62) 
       

IRRAb 100 32.3 10.1 2.901 0.204 0.609 
  (−17.4, 174) (1.8, 40.0) (2.54, 3.20) (0.19, 0.22) (0.56, 0.67) 
       

IRRAb 500 53.5 10.5 2.957 0.201 0.599 
  (−1.0, 168) (3.7, 22.8) (2.81, 3.10) (0.19, 0.21) (0.58, 0.62) 
       

IRRAb 1,000 67.0 11.4 2.960 0.200 0.598 
  (12.4, 159) (5.2, 21.1) (2.85, 3.08) (0.20, 0.21) (0.58, 0.61)        
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) of the 
“converged” estimates obtained from 20000, 4000, and 2000 samples of 100, 500, and 1000 observations per 
sample, respectively. For DRRA (CRRA, IRRA) sample sizes [100, 500, 1000], convergence was achieved for 
[66.1%, 72.1%, 78.6%] ([66.0%, 76.0%, 82.5%], [61.2%, 63.1%, 65.5%]) of the samples. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates.  
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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A simple solution to the identification problem is to perform estimation under a restricted 

utility specification by fixing either γ0 or γ1 at a reasonable value and estimating the remaining 

utility parameter. An appealing specification consists of setting γ0 = 0 and estimating only γ1; in 

fact, approximating the true DRRA and IRRA utilities with CRRA preferences. The nice feature 

of such specification is that the resulting 1̂γ  provides an approximate estimate of both the 

coefficients of baseline and local relative risk aversion, where the latter is the key determinant of 

decisions under uncertainty. Given the calibration used here, restricted estimation assuming 

CRRA preferences should yield 1̂γ  ≅ 3. 

Results from the restricted utility specification are provided in tables 6, 7, and 8, which 

correspond respectively to tables 1, 2, and 3 under unrestricted estimation. In the interest of 

space, the restricted-utility counterparts of tables 4 and 5 are omitted, as they provide few 

additional insights. 

Compared to tables 1 through 3, tables 6 through 8 do not exhibit substantial differences 

regarding the estimates of technology parameters. Overall, however, the quality of the 

technology estimates tends to be better for the restricted specification, in terms of both the width 

of the 95% CIs and the difference between the medians and the respective true values. 

Inspection of the estimates of the coefficient of relative risk aversion shown in tables 6 

through 8 uncovers a number of interesting outcomes. First, estimates of γ1 for the small-

variance scenario are noticeably worse than the estimates corresponding to the large- and mixed-

variance scenarios. In the small-variance scenario, 1̂γ  medians are substantially further apart 

from the true value of the coefficient of local relative risk aversion (i.e., 3), and the 95% CIs are 

much wider and more skewed to the right. Greater variance increases the overall noise in the 

estimation system. However, at reasonable levels, it enhances the ability to recover the 

coefficient of risk aversion because the larger the latter, the greater the impact of the variance on 

the optimal decisions. (Note that in the limit when there is no uncertainty, optimal decisions for 

risk-averse and risk-neutral agents are the same.) This suggests that a considerable amount of 

variability in the price and output shocks is required to adequately identify the level of relative  
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Table 6. GMM parameter estimates for restricted utility estimation specification (γ0 = 0), 

assuming baseline initial wealth distribution, small-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 120 3.116 0.232 0.572 
  (26.3, 2443) (2.95, 3.31) (0.20, 0.28) (0.53, 0.61)       

DRRAb 500 44.1 3.010 0.210 0.595 
  (14.3, 134) (2.95, 3.12) (0.20, 0.24) (0.57, 0.61)       

DRRAb 1,000 36.7 3.004 0.209 0.597 
  (15.1, 89.6) (2.96, 3.08) (0.20, 0.22) (0.58, 0.61)       

CRRAb 100 94.7 3.101 0.228 0.576 
  (15.4, 1157) (2.94, 3.31) (0.20, 0.28) (0.53, 0.61)       

CRRAb 500 30.1 3.011 0.210 0.596 
  (10.2, 101) (2.95, 3.11) (0.20, 0.23) (0.57, 0.61)       

CRRAb 1,000 23.6 2.997 0.208 0.599 
  (10.6, 52.2) (2.96, 3.04) (0.20, 0.22) (0.59, 0.61)       

IRRAb 100 84.0 3.088 0.225 0.579 
  (12.8, 953) (2.94, 3.30) (0.20, 0.28) (0.53, 0.61)       

IRRAb 500 27.2 3.006 0.210 0.598 
  (10.6, 88.1) (2.95, 3.10) (0.20, 0.23) (0.57, 0.61)       

IRRAb 1,000 21.3 2.994 0.208 0.600 
  (10.2, 47.6) (2.96, 3.04) (0.20, 0.22) (0.59, 0.61)       
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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Table 7. GMM parameter estimates for restricted utility estimation specification (γ0 = 0), 

assuming baseline initial wealth distribution, large-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 8.4 2.893 0.213 0.615 
  (2.7, 19.6) (2.51, 3.27) (0.19, 0.25) (0.54, 0.68)       

DRRAb 500 7.7 2.837 0.212 0.617 
  (4.4, 11.6) (2.67, 3.00) (0.20, 0.23) (0.58, 0.65)       

DRRAb 1,000 7.8 2.834 0.212 0.616 
  (4.7, 10.2) (2.72, 2.96) (0.20, 0.22) (0.59, 0.64)       

CRRAb 100 8.8 2.922 0.213 0.609 
  (3.5, 20.2) (2.53, 3.30) (0.19, 0.25) (0.53, 0.68)       

CRRAb 500 8.3 2.884 0.213 0.608 
  (5.3, 12.1) (2.71, 3.05) (0.20, 0.23) (0.57, 0.64)       

CRRAb 1,000 8.3 2.879 0.214 0.606 
  (5.4, 10.8) (2.74, 3.00) (0.20, 0.22) (0.58, 0.63)       

IRRAb 100 8.1 2.920 0.212 0.609 
  (3.0, 19.4) (2.53, 3.30) (0.19, 0.24) (0.53, 0.68)       

IRRAb 500 7.2 2.876 0.211 0.608 
  (5.0, 11.2) (2.69, 3.05) (0.20, 0.22) (0.57, 0.64)       

IRRAb 1,000 7.1 2.865 0.211 0.608 
  (5.8, 8.7) (2.74, 3.00) (0.20, 0.22) (0.58, 0.64)       
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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Table 8. GMM parameter estimates for restricted utility estimation specification (γ0 = 0), 

assuming baseline initial wealth distribution, mixed-variance scenario. 

Risk Sam ple Parameter Estimatesa 

Structure Size Utility  Technology 

  1̂γ  0α̂  Aα̂  Bα̂  

DRRAb 100 13.0 2.968 0.211 0.602 
  (4.4, 37.3) (2.70, 3.24) (0.19, 0.24) (0.55, 0.65)       

DRRAb 500 7.7 2.905 0.203 0.612 
  (3.9, 14.8) (2.80, 3.02) (0.20, 0.22) (0.59, 0.63)       

DRRAb 1,000 6.5 2.887 0.202 0.615 
  (4.1, 12.7) (2.82, 2.98) (0.20, 0.21) (0.60, 0.63)       

CRRAb 100 12.3 2.982 0.213 0.598 
  (4.7, 35.4) (2.71, 3.26) (0.20, 0.24) (0.55, 0.64)       

CRRAb 500 10.5 2.948 0.210 0.604 
  (5.8, 16.7) (2.84, 3.07) (0.20, 0.22) (0.58, 0.62)       

CRRAb 1,000 8.5 2.936 0.207 0.605 
  (5.6, 14.1) (2.86, 3.02) (0.20, 0.22) (0.59, 0.62)       

IRRAb 100 11.5 2.980 0.212 0.599 
  (4.3, 34.2) (2.71, 3.26) (0.20, 0.24) (0.55, 0.64)       

IRRAb 500 9.1 2.954 0.208 0.603 
  (6.5, 16.1) (2.83, 3.06) (0.20, 0.22) (0.58, 0.62)       

IRRAb 1,000 8.3 2.952 0.207 0.603 
  (7.1, 13.4) (2.85, 3.02) (0.20, 0.21) (0.59, 0.62)       
aFor each parameter, the table reports the median and the 2.5% and 97.5% quantiles (within parentheses) from 
20000, 4000, and 2000 estimates for sample sizes of 100, 500, and 1000, respectively. Two million simulated 
observations about decision variables were used to construct 20000 (4000, 2000) samples with 100 (500, 1000) 
observations per sample, which were then employed to obtain the reported parameter estimates. 
bDRRA, CRRA, and IRRA risk structures correspond to [γ0, γ1] equal to [−18.4, 1], [0, 3] and [43, 6], respectively. 
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risk aversion, let alone the structure of risk aversion. 

Second, the quality of the γ1 estimates exhibits a clear improvement as the sample size 

increases. For 100-observation samples, the 95% CIs are much wider and the difference between 

the 1̂γ  medians and 1̂γ  ≅ 3 is greater than for larger samples. These findings cast doubt on the 

ability to accurately estimate risk preferences (even if restricted) from small samples. 

A third interesting feature of the 1̂γ  distributions is that the medians systematically 

overestimate the true value of the coefficient of local relative risk aversion (i.e., 3). Further, the 

latter is smaller than the lower bound of the 95% CIs in all but two of the cases reported in tables 

6 through 8 (the exceptions being 100-observation samples for DRRA and IRRA in the large-

variance scenario). The magnitude of the positive bias in the medians of 1̂γ  declines with the 

number of observations in the sample, but is still substantial, even when samples have as many 

as 1000 observations. 

Finally, the distribution of 1̂γ  for the large-variance scenario is very similar across 

DRRA, CRRA, and IRRA preferences. Since all utility functions are parameterized to have 

R(W0) = 3, this finding is consistent with Černý’s (2004) claim that optimal decisions for 

individuals with different preferences but the same value of R(W0) are similar, except for very 

large and/or very skewed risks. For the small- and mixed-variance scenario, the distributions of 

1̂γ  for CRRA and IRRA preferences look similar to each other and relatively different from the 

one for DRRA preferences. The most plausible explanation for this finding is the cost constraint 

discussed earlier, because such constraint is more often binding when preferences are DRRA and 

the variance is small. 

As in the unrestricted utility estimation case, restricted utility estimates do not seem to be 

improved by heteroskedasticity (compare 1̂γ s in table 8 with 1̂γ s in tables 6 and 7). This finding 

lends further support to the conclusion that heteroskedasticty is highly unlikely to provide the 

additional information needed to identify the structure of risk aversion. 
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V. Concluding Remarks 

Numerous studies have focused on the simultaneous estimation of technology and risk 

preferences from actual production data. Importantly, many of them have specifically aimed at 

uncovering the structure of risk aversion (i.e., the changes in absolute or relative risk aversion 

associated with changes in wealth) by estimating flexible utility functions. However, some works 

in finance argue that the structure of risk aversion significantly affects choices under uncertainty 

only when risks are very large and skewed. This means that, unless production risks are very 

large and skewed, recovering the structure of risk aversion from production data should be 

difficult. 

The present study explores the apparent disconnect between the production and finance 

literatures by setting up a thought experiment calibrated to match the characteristics of risks 

faced by decision makers in a high-risk production activity (farming), and investigating whether 

the structure of risk aversion can be estimated with reasonable precision. Farming data are used 

for calibration, not only because most of the studies concerned have employed data pertaining to 

production agriculture, but also because the high and skewed risks involved provide the most 

potential for the structure of risk aversion to considerably affect optimal decisions. The thought 

experiment is designed to facilitate estimation of the structure of risk aversion. Failure to 

reasonably estimate the structure of risk aversion under such ideal conditions can then be 

construed as strong evidence against the hypothesis that the risk aversion structure can be 

recovered from actual production data. 

The study demonstrates that the simultaneous estimation of the two parameters of a 

standard hyperbolic absolute risk aversion (HARA) utility function and a three-parameter Cobb-

Douglas production function yields extremely poor estimates of the utility parameters, even 

when samples comprise as many as 1000 observations. The 95% confidence intervals (CIs) for 

the utility parameters are very wide and often fail to include the true values. Further, there are 

scenarios for which the 95% CIs imply increasing relative risk aversion (IRRA) when the true 

preferences are characterized by decreasing relative risk aversion (DRRA), and vice versa. 
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When estimation is performed under a restricted utility specification consisting of a one-

parameter constant relative risk aversion (CRRA) utility function, both utility and technology 

parameter estimates exhibit improvements. Importantly, this is true even for the scenarios where 

CRRA utility only provides an approximation of the true two-parameter HARA utility 

originating the data. It is worth pointing out, however, that the estimates of the single CRRA 

parameter are positively biased in all scenarios analyzed, and are much poorer when the 

underlying risk is small or when samples have 100 observations (even if the true utility is 

CRRA). The latter finding is relevant, as studies that have simultaneously estimated technology 

and the structure of risk aversion have often relied on real-world samples comprising fewer than 

100 observations. The restricted utility specification lends support to Černý’s (2004) claim that 

optimal decisions for individuals with different preferences, but the same value of local risk 

aversion measured at the initial wealth level, are similar, except for very large and/or very 

skewed risks. 

In summary, the findings of the present study call into question the wisdom of attempting 

to estimate the structure of risk aversion simultaneously with technology using production data. 

In the purposefully simple set-up postulated here, allowing for a flexible utility specification 

yields utility estimates that bear no resemblance to the true parameters. Further, the resulting 

technology estimates are slightly worse than those obtained under a restricted utility specification 

(even if the restricted utility is only an approximation of the actual utility generating the data). 

The findings also suggest that even in the restricted utility specification case, the quality of the 

utility parameters estimated from small samples (a common practice in econometric studies of 

production under risk) is very poor. 

Overall, the results suggest that the emphasis on the estimation of flexible risk 

preferences in production studies has been misplaced, and that future efforts are likely to be more 

fruitfully employed elsewhere. Of course, the results from the present thought experiment need 

not apply to some real-world scenarios. In this regard, it would be useful to investigate what 

additional data requirements and assumptions are needed to obtain reliable estimates of flexible 
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functional forms simultaneously with technology estimates. However, our findings strongly 

suggest that such gains are likely to be unwarranted in many instances, and that the burden of 

proof should fall on those claiming the contrary. 

More generally, the method employed here can be applied in other circumstances where 

there is suspicion that the data may provide too little information to successfully identify 

parameters and/or models of interest. This is important, because assessing ex ante whether a 

particular estimation project is worth pursuing may prevent wasting scarce resources by 

gathering and analyzing data that are highly unlikely to yield the information researchers seek. 
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Appendix A: Estimation of the Probability Density Function of Initial Wealth 

The initial wealth pdf (6) is estimated using the balanced panel employed by Hart and Lence 

(2004), which contains annual initial wealth observations for 317 Iowa farms over the period 

1991 through 1998. Since monetary data in the simulation model are scaled by setting 

unconditional mean prices equal to unity, the 2350 strictly positive initial wealth observations in 

the panel are multiplied by the ratio 7/73788 to obtain scaled initial wealth values. In the scaling 

ratio, the numerator 7 equals the approximate median costs (i.e., median(r x*)) for the CRRA 

simulations (which do not depend on initial wealth data), whereas the denominator 73788 is the 

median operating expense (i.e., the real-world data analog of median(r x*)) for the strictly 

positive initial wealth observations. 

A strictly positive lower bound W0 is necessary to conduct DRRA simulations, as HARA 

utility (3) requires γ0 + W0 > 0, and DRRA entails γ0 < 0. For the DRRA scenario, we fix γ1 = 1 to 

clearly differentiate it from its CRRA counterpart and to provide a useful benchmark (see 

“Calibration” subsection), and set γ0 at the value that yields a mean value of R(W0) equal to 3 for 

the estimated Beta(⋅) pdf for W0. Since such γ0 value must satisfy the restriction W0 > −γ0, we 

simultaneously calculate W0 and γ0 by means of the following iterative procedure: 

Step 1. Set iteration counter at j = 1. 

Step 2. Obtain a sample of 2350 − 2 j observations with lower bound )(
0

jW  and upper bound 
)(

0
jW , by discarding the smallest j and the largest j observations on scaled initial wealth 

(so that the sample median stays constant). 

Step 3. Use the sample from Step 2 to estimate the standard beta pdf Beta(⋅)(j) via maximum 

likelihood, by means of the “betafit” function in MATLAB version 7.0.4.365. 

Step 4. Given Beta(⋅)(j), )(
0

jW , and )(
0

jW , calculate R(j) = mean[R(W0)|γ0
(j) = 0.5 − )(

0
jW , γ1 = 1]. 

Step 5. If R(j) > 3 (note that R(j) < R(j−1) ∀ j), stop and fix W0 = )(
0

jW , 0W  = )(
0

jW , Beta(⋅) = 

Beta(⋅)(j), and γ0 = γ0
(j). Otherwise, set j = j + 1 and go back to Step 2. 

In the present sample, iterations stop at j = 720. It should be clear that the only way to stop at a 

smaller j while having a mean value of R(W0) = 3 is by adopting a DRRA parameterization more 
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similar to the CRRA scenario (i.e., by setting the DRRA [γ0, γ1] closer to [0, 3]). 

 

Appendix B: Estimation of the Probability Density Function of Output Shocks 

The probability distribution of ye~  is derived from Hart and Lence’s (2004) balanced panel, 

which has annual corn yields for 407 Iowa farms from 1991 through 1998. For each farm, 

standardized yields are calculated by dividing actual yields by the farm’s average yield. 

Standardized yields are then pooled across all farms to obtain a sample of 3256 observations 

used to obtain the vector [ey,0.5, ey,1.5, ..., ey,98.5, ey,99.5], where ey,q is the qth quantile of 

standardized yields. The probability distribution of ye~  for the medium-variance scenario 

consists of [ey,0.5, ey,1.5, ..., ey,98.5, ey,99.5], with probabilities [ M
y 5.0,π , M

y 5.1,π , ..., M
y 5.98,π , M

y 5.99,π ] = [0.01, 

0.01, ..., 0.01, 0.01]. 

For the low- and high-variance scenarios, Prelec’s (1998) probability weighting function 

is used to assign the probabilities L
qy ,π  and H

qy ,π  corresponding to ey,q. For the low-variance 

case, the distribution of ye~  is given by ey,q with probability L
qy ,π  ≡ π(q + 0.5; L

1φ , L
2φ ) − π(q − 

0.5; L
1φ , L

2φ ) for π(q; φ1, φ2) ≡ exp{−[−ln(q/100)/ }] 2/1
1

φφ , [ L
1φ , L

2φ ] = [1.02, 0.51], and q = 0.5, 

1.5, ..., 98.5, 99.5. Values for L
1φ  and L

2φ  are derived by trial-and-error, so as to yield the same 

mean but a standard deviation 50% smaller than the standard deviation under the medium-

variance scenario. Analogously, the distribution of ye~  under the high-variance scenario is ey,q, 

with probabilities H
qy ,π  ≡ π(q + 0.5; H

1φ , H
2φ ) − π(q − 0.5; H

1φ , H
2φ ) for [ H

1φ , H
2φ ] = [0.93, 1.73]. 

Compared to the medium-variance probabilities M
qy ,π , the low-variance (high-variance) 

probabilities shift weight from the extremes (middle) of vector [ey,0.5, ey,1.5, ..., ey,98.5, ey,99.5] to its 

middle (extremes), so as to reduce (increase) the standard deviation by 50%, while maintaining 

the mean unchanged at 1.15 

 

 

                                                           
15Note that M

qy ,φ = π(q + 0.5; M
1φ , M

2φ ) − π(q − 0.5; M
1φ , M

2φ ) for [ M
1φ , M

2φ ] = [1, 1]. 
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Appendix C: Estimation of the Probability Density Function of Output Prices 

Expression (7) is an approximation based on the regression estimates reported in table A.1. 

 

Table A1. Price regressions for corn. 

Data Regression Regression

Std. Error

R2 

U.S. aggregate 

data, 1970-2005 

ln(pt) = 47 − 0.0248 t + 0.48 ln(pt−1) − 0.85 ln(ey,t) + ep,t 

         (11) (0.0061)  (0.13)       (0.26) 

0.156 0.914

    

Farm-level yield 

data, 1991-1998 

ln(pt) = 36.4 − 0.0197 t + 0.303 ln(pt−1) − 0.248 ln(ey,f,t) + ep,f,t 

        (2.1) (0.0011)  (0.024)       (0.011) 

0.135 0.266

    
Note: Variable pt is the U.S. season-average corn price received by farmers in marketing year t based on monthly 

prices weighted by monthly marketings (source: U.S. Department of Agriculture), deflated by the corresponding U.S. 

Consumer Price Index, all items, U.S. city average, not seasonally adjusted (1982-84 = 100) (source: Bureau of 

Labor Statistics). Variable lney,t is the ordinary least-squares residual of the regression of ln(yieldt) on a constant and 

t, where yieldt is the U.S. yield per acre in marketing year t (source: U.S. Department of Agriculture). Variable ey,f,t is 

farm f’s crop yield in marketing year t divided by farm f’s average crop yield over 1991-1998 (source: Hart and 

Lence 2004 dataset). Each regression comprises 35 observation for the U.S. aggregate data, and 3,200 observations 

for the farm-level yield data. 
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