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ORIGINAL ARTICLE

 

Optimal production under uncertaintyS. Rasmussen

 

Criteria for optimal production under 
uncertainty. The state-contingent approach*

 

Svend Rasmussen

 

†

 

The state-contingent approach to production economics presented by Chambers
and Quiggin provides a new basis for deriving optimality criteria for production
under uncertainty. In the present paper criteria are formally derived for risk-averse
producers. It is not possible to derive useful criteria for strictly risk-averse producers,
but useful criteria for risk-neutral producers are presented for three different types
of  input. Based on a formal definition of  ‘good’ and ‘bad’ states of  nature, the use
of  inputs and levels of  production of  strictly risk-averse producers are compared
to those of  risk-neutral producers. Depending on the type of  input, risk-averse
producers may use more or less input than risk-neutral producers.

 

1. Introduction

 

While the subject of  planning and decision making under uncertainty has
been treated extensively in the published literature on agricultural economics
(e.g., Robison and Barry 1987; Hardaker 

 

et al.

 

 1997), there are in fact no
prescriptive criteria for optimal production under uncertainty. The book
‘Uncertainty, Production, Choice, and Agency – The State-Contingent
Approach’ written by Chambers and Quiggin (2000) provides a new
theoretical basis for describing and analysing production under uncertainty.
The purpose of  the present paper is to use the theory and the concepts pre-
sented in this book to derive prescriptive criteria for optimal production
under uncertainty.

The first real attempts to model uncertainty in relation to production
were made by Magnusson (1969) and Sandmo (1971). Magnusson focused
on production risks. Sandmo focused on uncertain product prices. Using
the expected utility (EU) model, Sandmo showed that output under price
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uncertainty is smaller than when prices are certain. However, he did not
provide any (prescriptive) criteria for optimising production that could be
used by decision-makers when planning production under uncertainty. In
fact, he explicitly stated that that while ‘… under certainty, the solution is
characterised by equality between price and marginal cost, there is no obvi-
ous way of  making such a comparison [under uncertainty]’ (Sandmo
1971, p. 66).

As with the Sandmo approach, developments in the theory of  economics
under uncertainty have typically provided no formal criteria that could be
used by decision-makers when planning production and input use. Instead,
most of  the effort has been directed towards discussing the utility function,
especially the advantages and disadvantages of  the EU model based on the
von Neuman-Morgenstern utility function (von Neumann and Morgenstern
1944; Schoemaker 1982; Quiggin 1993). Related major issues have been
estimating risk attitudes and parameters of the utility functions (Binswanger
1980; Antle 1987), and estimating variability of  prices and yields in the
form of parameters of the moments of the probability distribution (Anderson
and Griffiths 1981; Rasmussen 1997). In relation to production decisions,
Just and Pope (1978) provided a definition of  risk-reducing versus risk-
increasing inputs, and formulated conditions under which an input could
be considered risk-reducing. However, this concept of  risk-reducing inputs
appears not to have provided any prescriptive power for decision-making.
In 1983 Antle wrote: ‘Agricultural economists have made little progress in
analysing or measuring production risk in ways that provide useful informa-
tion for farm management’ (p. 1099). After studying dynamic models of pro-
duction, Antle (1983) also found that farmers’ optimal production decisions
are affected by risk whether they are risk-neutral or risk-averse.

The published literature dealing with economic decisions under uncer-
tainty (risk management) (e.g., Anderson 

 

et al.

 

 1977; Barry 1984; Robison
and Barry 1987; Hardaker 

 

et al.

 

 1997) typically takes a ‘defensive’
approach in the sense that it describes how firms/producers should respond
to risk or cope with risk. The major subjects are the sources of  risk/
uncertainty and how the firm may respond by performing risk manage-
ment; that is, holding financial reserves, gathering information, forward
contracting, buying insurance, diversification, etc. But very little is said
about the criteria to be used when making the basic production decisions;
that is, deciding how much input to apply and how much of  a product to
produce. The reason is that, with the theoretical foundation used so far, the
well-known marginal principle used so successfully under certainty breaks
down under uncertainty. Or, as Hardaker 

 

et al.

 

 (1997) put it: ‘What happens
to the prescriptions of  the [production] theory when the prevalence of  risk
and the reality of  widespread risk aversion are recognised? … The simple
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answer is that the prescriptions of  optimality of  conventional production
theory are invalidated, or at least qualified. In principle, each production
decision needs to be analysed using the SEU [Subjective Expected Utility]
model’ (p. 127).

The state-contingent approach presented by Chambers and Quiggin
(2000) and in a number of  articles (e.g., Chambers and Quiggin 2001, 2002)
provides the basis for deriving criteria for optimising production under
uncertainty using the well-known marginal principles from the theory of
production under certainty. The approach is based on the ‘simple’ idea that
goods are defined not only by type, place, and date, but also by a fourth
dimension, the state of  nature at the (future) time when the good will
become available.

This idea is not new. As mentioned by Chambers and Quiggin (2000), the
idea was first presented by Arrow in 1952 and Debreu further described the
concept in 1959 (Debreu 1959). In 1965 Hirshleifer realised the close for-
mal analogy with Fisher’s model for riskless choice over time and used the
approach to develop a theory of  investment under uncertainty (Hirshleifer
1965). However, the real power of  Chambers and Quiggin’s book is that it
combines the state-contingent approach (Hirshleifer and Riley 1992) with the
modern (dual) approach to production economics presented by Chambers
in his 1988 book.

In the following, the state-contingent approach is first presented, using
the concepts and terminology of Hirshleifer and Riley (1992), and Chambers
and Quiggin (2000). Conditions are presented under which the technology
can be represented by a family of  product transformation curves, one for
each state of  nature. The production technology under uncertainty is then
described in the form of  product transformation curves for three different
types of  input: state-general, state-specific, and state-allocable inputs. For
each of  these three types of  inputs, optimality criteria for application are
derived when producing one output under the general assumption that the
decision-maker is risk-averse. It is shown that without specific assumptions
concerning the functional form and parameters of  the utility function, these
(general) criteria have no prescriptive power. However, useful criteria are
derived under the assumption that the utility function is linear (i.e., the decision-
maker is risk-neutral).

With a view to comparing input-use of  risk-neutral and (strictly) risk-
averse producers, the concepts of ‘good’ and ‘bad’ states of nature are defined.
Based on these definitions, conditions describing circumstances under
which a (strictly) risk-averse decision-maker would use more or less inputs
than a risk-neutral decision-maker are derived. It is concluded that the cri-
teria describing optimal production under risk for a risk-neutral decision-
maker are analogous to the criteria describing optimal production under
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certainty. It is not possible to state clearly whether a (strictly) risk-averse
decision-maker will use more input or produce more output than a risk-
neutral decision-maker. The answer will depend on the specific preferences
of  the decision-maker, partly described by what are considered ‘good’ and
what are considered ‘bad’ states of  nature from his or her point of  view. It
is finally concluded that the concepts of  ‘good’ and ‘bad’ states of  nature
defined and presented in the present paper are useful and will probably
prove useful in further analysis of economics of production under uncertainty.

 

2. Concepts and terminology

 

The state-contingent approach to describing production of  an output 
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under uncertainty is based on the following concepts:
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We consider the production of  only one output.

 

1

 

 The uncertain produc-
tion conditions are described in the form of  a set of  states 

 

Ω

 

, from which
‘nature’ picks the state of  nature independently of  the decisions made by
the decision maker. Nature picks the state of  nature after the decision
maker has made his production decision; that is, after he has decided how
much input 

 

x

 

 to apply, where 
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 is an input vector 
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tive) probabilities 
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Depending on the state of  nature, the output in state 
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) is determined by
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The concepts and derivations are easily generalised to more outputs as shown by
Chambers and Quiggin (2000).
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a transformation function 

 

T

 

(

 

x

 

, 

 

z

 

) 

 

=

 

 0 where 

 

z

 

 is a vector (z1, … , zS) of state-
contingent outputs. The product price is a state-contingent output price
denoted ps(s = 1, … , S ). Net return ys in state s is revenue zsps minus cost
c. The decision maker chooses the level of input x that maximises utility,
assumed to be a non-decreasing function W of  the state-contingent vector
of  net returns y = (y1, … , yS).

Chambers and Quiggin place relatively weak assumptions on the utility
function W. The same is done here, the only assumption (apart from mono-
tonicity, continuity and differentiability) being that the decision maker is
risk-averse, defined by the condition that:

W (y, … , y) ≥ W (y1, … , yS) (9)

where y is the expected net return; that is,

y = π1 y1 + π 2 y2 + … + πS yS (10)

and ( y, … , y) is an S-dimensional vector of  expected net returns. Figure 1
shows an indifference curve for a risk-averse decision-maker. Indifference
curves for risk-averse decision-makers are convex. The figure illustrates that
a production plan yielding a vector of state-contingent net returns y = (y1, y2)
provides a utility of  W 1. The expected net return is y = π1 y1 + π2 y2 and the

Figure 1 Key concepts related to the state-contingent production
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certainty equivalent (i.e., the certain return that provides the same utility as
the uncertain project y) is CE. In figure 1 it is further illustrated that the
slope of  a tangent to the indifference curve where it crosses the bisector is
equal to −π1 /π2. A line with the slope of  −π1/π2 is called the fair-odds line.2

The bisector (or the certainty line, as it is called by Hirshleifer 1965, and
Hirshleifer and Riley 1992) illustrates certainty because along the bisector
the net return is the same in all states of  nature (see Hirshleifer and Riley
1992 for further explanation).

The fact that

(11)

or more generally that

(12)

where y = y1 = y2 = … = yS is an arbitrary scalar (y ≥ 0) and Ws is the deriv-
ative of  W with respect to ys, will be used intensively in the following.
Figure 1 illustrates that at point y, the (absolute) slope of  the indifference
curve W 1 is less than the (absolute) slope of  the fair-odds line and thus that:

(13)

Although the same definitions and terms as in Chambers and Quiggin
(2000) will generally be used throughout, it is convenient to make a slight
variation. While Chambers and Quiggin consider risk neutrality as a special
case of risk aversion, I shall use the term risk neutrality when equation (9)
holds with strict equality, and use the term risk-aversion when equation (9)
holds with strict inequality. Thus, in figure 1 a risk-neutral decision maker has
indifference curves equal to the fair-odds lines and a utility function given by:

W *(y) = π1 y1 + π 2 y2 + … + πS yS. (14)

2 A formal derivation of the fact that the indifference curve always has the slope of –π1/π2

where it crosses the bisector, is given by Chambers and Quiggin (2000), (pp. 89–90). An
informal explanation is that at points where the indifference curve crosses the bisector (i.e.,
where the net return y is certain) the marginal substitution between incomes in different
states of  nature (the slope of  the indifference curve) depends only on the relative probabil-
ities (π1 / π2) (and not on specific preferences related to uncertainty as such).
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3. Production technology – types of inputs

The production technology over which to optimise production may be illus-
trated using the production possibility set, the input set, the output set, or
the corresponding outer boundary of  these sets; that is, the production
function, the isoquant, or the product transformation curve (see Chambers
(1988), for definitions). Under certainty, optimal input use in a one-input
one-output setting may be illustrated graphically by using the production
function. The optimal combination of  inputs to produce a certain amount
of  output may be illustrated using the isoquant; and the optimal combina-
tion of  output for a given amount of  input may be illustrated using the
product transformation curve. The corresponding criteria for optimal pro-
duction in the three cases are: ph∂ f (x ) /∂xi = wi, (∂ f (x ) /∂xi ) /(∂ f (x ) /∂xj ) =
wi /wj, and (∂ fh(x ) /∂xi ) / (∂ fk(x ) /∂xi ) = pk /ph, respectively, where ∂ f (x ) /∂xi is
the marginal product with respect to the i-th input, wi is the price of  input
i, ∂ fh (x ) /∂xi is the marginal product of  producing output h with respect to
the i-th input, and ph is the price of  product h.

As emphasised by Chambers and Quiggin, using the state-contingent
approach to analyse production under uncertainty in principle makes it
possible to use the same tools as used under certainty. All that is needed is
to expand the definition of  a good (product) by including a fourth dimen-
sion; that is, state of  nature – to the definition of  a good. Thus, besides
type, place, and time, the state of  nature that will prevail at the future time
(after commitment of  input) when the good becomes available is the fourth
dimension in defining a good. By including the state of  nature in the defini-
tion of  a good, otherwise identical goods that will be available in different
states of  nature are treated as different goods, with the possibility of  differ-
ent prices, etc., as under certainty.

The core of  describing production under uncertainty is therefore related
to the production in each state of  nature, and – not least – the possibility to
substitute (ex ante) production in one state of  nature for (ex ante) produc-
tion in other states of  nature.

3.1 Technology

Production technology under uncertainty may be described in a fairly gen-
eral way using the transformation function T given by:

T (x, z) = 0 (15)

which is an implicit description of  technologically efficient production
plans, where x is the vector (x1, … , xN) of inputs and z is the vector (z1, … , zS)
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of  state-contingent outputs of  a single stochastic output z. Assuming differ-
entiability equation (15) may be represented in an explicit form as:

z1 = f1 (z2, … , zS, x1, … , xN ) (16)

where f1 is an explicit (production) function describing the maximum
amount of  output in state 1 as a function of  output in the other S-1 states
of  nature and the input vector x.

If  the state-contingent outputs are independent in the sense that the
amount of  output produced in state s does not influence (and is not influ-
enced by) the amount of  output produced in state t, the production is non-
joint in inputs (Chambers 1988). Thus, the production zs in state s only
depends on the amount of  input committed to production prior to revela-
tion of  this state of  nature. This means that z1 in equation (16) does not
depend on z2, … , zS, but only on the input vector x.3 In the present paper,
it will be assumed that inputs are non-joint except where otherwise stated.
When production is non-joint in inputs the production technology may be
described by the following set of  independent production functions:

zs = fs (x1, … , xN ) s ∈ Ω. (17)

The condition for writing equation (16) in the form of equation (17) is that
at the time when the state of  nature reveals itself, the production decision
has already been taken, and therefore a specific input vector x has already
been committed. Thus, the input vector x will be the same whatever the sub-
sequent state of  nature may be.4 Chambers and Quiggin (2000) use the term
output-cubical to describe the technology in (17), and they provide (p. 54)
a graphical representation of  output-cubical technologies for three states of
nature (S = 3). Figure 2 provides a graphical representation of  this techno-
logy for S = 2. The efficient production in figure 2 is [z1a, z2a] if  the input
vector xa is committed and [z1b, z2b] if  the input vector xb is committed. If
input xa is committed the production in state 2 is relatively high compared
to the production in state 1. If  instead input xb is committed production in
state 1 is relatively high compared to production in state 2. Figure 2 thus
illustrates that it is possible to substitute between state-contingent outputs
by choosing different input vectors. It should be noticed that in the cases

3 At this stage it is assumed that there are no budget restrictions or physical restrictions
attached to the availability of  the N inputs (x1, … , xN).

4 In some types of  production it may be possible to make input adjustments after the
state of  nature has revealed itself. This type of  (dynamic) optimisation is not considered in
the present paper.
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considered in this paper, the general condition for this kind of  substitution
is that the number of  inputs is equal to or greater than the number of  states.

Figure 3 further illustrates this substitutability, both between state-
contingent outputs and between inputs. The input vector xa produces z1a in
state 1 and z2a in state 2. The input vector xb produces z1b in state 1 and z2b

in state 2. As illustrated by the isoquant z2a, the output level z2a in state 2
may be produced using different combinations of  the two inputs x1 and x2,
illustrated by the steep isoquant passing through xa in figure 3. Corre-
spondingly, the flat isoquant passing through xa illustrates that the output
level z1a in state 1 may be produced using different combinations of  the two
inputs x1 and x2. Figure 3 also shows that if  the decision maker chooses an
input bundle with more x2 and less x1 (i.e., xb) then more output is pro-
duced in state 1 (z1b) and less in state 2 (z2b). Thus, the decision maker has
the opportunity to control the uncertain output by controlling the input
vector. This is the essence of  the state-contingent approach because it
shows that the decision maker may take an ‘offensive’ approach instead of
a ‘defensive’ approach to planning under uncertainty.

Figure 2 Output sets for state-contingent production
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The normal properties attached to a production function f are that it is a
positive, non-decreasing function with decreasing first-order derivatives,
and this applies to fs (s = 1, … , S ) in the following analysis. However, under
uncertainty it is appropriate to consider the possibility that in some states
of  nature the optimal amount of  input may be at a stage of  the production
function where output is decreasing in input (input has a poisoning effect).
Accordingly, the property non-decreasing is not maintained, and I will con-
sider both the increasing and the (possible) decreasing part of  the produc-
tion function, and therefore allow both ∂ fs /∂x ≥ 0 and ∂ fs /∂x < 0.

As the technology considered in the paper is a special case of  the more
general technology considered by Chambers and Quiggin, each type of
input has to be considered explicitly to gain tractable results.

3.2 Types of input

The crucial characteristic of  production under uncertainty is that a specific
input may yield different responses in different states of nature. Some inputs
may influence production in some or all states of  nature (state-general
input). Some inputs may influence production in only one state of  nature
(state-specific input). In addition, some inputs may be allocated between

Figure 3 Substitution between input and states of nature
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different states of  nature (state-allocable input). Finally, the availability of
inputs may be limited by budgetary restrictions or physical restrictions.

3.2.1 State-general inputs
In the most general case, no specific assumptions are placed on the input.
Accordingly, a state-general input is defined as an input that influences pro-
duction in one or more (possibly all) states of  nature.5 The formal definition
of  a state-general input xn is that

for one or more states s ∈ Ω for some (relevant) level of xn. (18)

A state-general input is illustrated graphically in figure 4. Figure 4
assumes that there are only two states of  nature. Figure 4(a) illustrates the
production function in state 1 (z1 = f1 (x i))

6  and figure 4(b) the production in
state 2 (z2 = f2 (x i)). Corresponding to the four different levels of input (0, a,
b, and c), there are four combinations of  state-contingent output (0, za, zb

and zc), as shown in figure 4(c).
Assuming free disposability of  output (see Chambers 1988), the product

transformation curves for each of  the four input levels are illustrated as the
right-angled curves with the state-contingent output 0, za, zb and zc just
described as the corner points.

An example of  a state-general input is the use of  fertilisers in grain pro-
duction. If  the uncertain event is the weather during the growing season,

5 Chambers and Quiggin (2000) use the term completely non-state-specific inputs to
describe what is here called state-general inputs (p. 37).

6 All other inputs are assumed fixed.

Figure 4 Derivation of product transformation curve for state-general input
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the production z1 in a ‘wet’ season (state 1) is determined by f1(xn), and in
a ‘dry’ season (state 2) the production z2 is determined by f2(xn). The con-
cept non-joint in inputs means that even if  one were willing to sacrifice
some of  the output in one state of  nature it is not possible to influence the
yield in the other state of  nature. Yield when the season is ‘wet’ is com-
pletely independent of  yield when the season is ‘dry’, and depends only on
the amount of  fertiliser xn applied.

3.2.2 State-specific inputs
A state-specific input is a special case of  a state-general input. A state-
specific input is defined as an input that influences production in only one
state of  nature. Thus, the formal definition of  a state-specific input xn is that

(19)

A state-specific input may be illustrated as shown in figure 5. As in
figure 4 there are two states of  nature. However, only in one state (here
state 1) has the input any influence on production. In state 2, production is
a constant, independent of  the application of  the input xi considered.

An example of  a state-specific input is a pesticide that is only effective
under certain weather conditions. Consider again production of  grain
under uncertain weather conditions where (z1) is the output when the
weather is ‘wet’ and (z2) is the output when the weather is ‘dry’. If  a certain
pesticide is effective only when the weather after pesticide application be-
comes ‘wet’ and has no effect when the weather afterwards becomes ‘dry’,
then this input xn is a state-specific input – specific to (and only to) the ‘wet’
state of  nature.

Figure 5 Derivation of the product transformation curve for state-specific input
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The product transformation curves in figure 5(c) are, as before, right
angles with corners corresponding to the four combinations of  state-
contingent output (0, za, zb and zc).

3.2.3 State-allocable inputs
A state-allocable input7 is defined as an input that may influence output in
two or more states of  nature, and which may be allocated (ex ante) to dif-
ferent states of  nature. Therefore, the formal definition of  a state-allocable
input xn is that

(20)

where xns is the amount of  input xn allocated (ex ante) to the s-th state of
nature.

As long as there are no physical restrictions on the amount of  input xn

available, a state-allocable input may be considered within the same frame-
work as a state-general or state-specific input. The ‘trick’ is to consider xns

as an independent input – an input that may itself  be a state-general or a
state-specific input. Thus, instead of  considering the input vector x =
(x1, … , xn, … , xN) we consider the expanded input vector x’ = (x1, … , xn1,
… , xns, … , xNS, ... , xN) and treat each xns as a normal variable input.

An example may clarify this.8 Assume that the weather is uncertain.
Assume further that labour (xn) may be used either to build a dam that prevents
flooding if  the weather becomes ‘wet’ (state 1), or to improve the irrigation
system that prevents drought if  the weather becomes ‘dry’ (state 2). Then
xn1 is the input ‘labour used for building a dam’ and xn2 is the input ‘labour
used for improving the irrigation system’.

In this example the two ‘new’ inputs (xn1 and xn2) are state-specific inputs
(they only influence production in one state of  nature). In the following
such inputs are called strictly state-allocable inputs. There may be examples
of  state-allocable inputs which are not strictly state-allocable. Consider for
instance the input ‘fertilisers’. Assume that application of  fertilisers will
increase production no matter what the weather in the subsequent growing
season will be. However, there are different types of  fertilisers, some of
which will have a higher efficiency under certain weather conditions than
others. If there are K such types of weather specific fertilisers then the relevant

7 Chambers and Quiggin (2000) also use this term (p. 39).

8 The example is taken from Chambers and Quiggin (2000, p. 38).
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decision variable is no longer just the amount of fertiliser (xn), but the amount
of  each type of  fertiliser (xnk, k = 1, … , K ). These ‘new’ inputs are in this
case themselves state-general inputs.

If  there is only a limited amount xn of  the state-allocable input available,
then the allocation must comply with the following restriction:

xn ≥ xn1 + xn2 + … + xnS. (21)

Further, if  each of  the S ‘new’ inputs in equation (21) are state-specific
(xn strictly state-allocable) then the technology for a state-allocable input
may be illustrated as shown in figure 6 for S = 2.

In figure 6 the available amount of  input is c. With increasing amount of
input allocated to state 1, output increases as illustrated in figure 6(a) (out-
put in the other state is unaffected (figure 6(b)). With increasing amount of
input allocated to state 2, output increases as illustrated in figure 6(d) (out-
put in the other state is unaffected (figure 6c)). With some input allocated
to state 1 (for instance a) and the rest (b) to state 2, the vector of  state-
contingent outputs will be as indicated by point Pab in figure 6(e), where the
points Pc0 and P0c correspond to the allocation of  all input to state 1 and all
input allocated to state 2, respectively.

Other combinations of  input allocation are possible. If  input allocation is
allowed to change continuously, the result is a product transformation
curve Pc0PbaPabP0c as shown in figure 6(e). This curve resembles the ‘normal’
product transformation curve known from optimisation under certainty.

While the concept of  a state-allocable input may be useful in a verbal
description of  planning problems under uncertainty, the concept is in fact
redundant from an analytical point of  view. State-allocable inputs may be
fully described by using the concepts of state-general or state-specific inputs.

4. Criteria for optimal use of input

In the following, criteria for optimal use of  inputs for each of  the three
types of  input mentioned are derived. As one would expect, it is difficult to
derive useful criteria for optimal production without knowing the exact
form of  the utility function. For a risk-neutral decision-maker with a linear
utility function as in equation (14), useful criteria are relatively easy to
derive. For a general risk-averse decision-maker it is not possible to provide
specific criteria. However, it is possible to derive conditions that describe
whether a risk-averse decision-maker will use more or less input than a
risk-neutral decision-maker. This last part of  the analysis depends heavily
on the notion of  ‘good’ and ‘bad’ states of  nature. These two terms will
therefore be defined first.
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4.1 ‘Good’ and ‘bad’ states of nature

The terms ‘good’ and ‘bad’ are subjective concepts. What may be con-
sidered a ‘good’ and what may be considered ‘bad’ state of nature depends on
the preferences of  the decision maker. The benchmark therefore has to be
carefully defined. Because the objective is to compare risk-neutral and

Figure 6 Derivation of the product transformation for state-allocatable input
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risk-averse decision-makers, it is useful to take the conditions of  the risk-
neutral decision-maker as the benchmark.

Consider a risk-neutral decision-maker who optimises production using
the input vector xn. The outcome is a state-contingent vector of  net returns
(y1(x

n), … , yS (xn )) yielding a utility of W*( y1(x
n), … , yS (xn)) = π1 y1(xn) +

π2 y2 (xn) + … + πS yS (xn ).
Consider also a risk-averse decision-maker with a general utility function

W(y1, … , yS). As the scale of  the utility function is arbitrary, it may be re-
scaled so that:

(22)

that is, the sum of  the derivatives of  W(y) with respect to ys (s = 1, … , S ),
Ws, at the point y(xn) is equal to 1.

Based on this scaling of  the utility function, I define the following: to a
risk-averse decision maker, a ‘relatively good’ (or just ‘good’) state of
nature is at state s where:

Ws ( y1 (xn), … , yS (xn)) < πs (23)

and a ‘relatively bad’ (or just ‘bad’) state of  nature is a state s where:

Ws ( y1 (xn), … , yS (xn)) > πs (24)

where ys(x
n) is the state-contingent net return in state s for a risk-neutral

decision-maker using the optimal amount of  input xn. States where:

Ws ( y1 (xn), … , yS (xn)) = πs (25)

are defined ‘neutral’ states of  nature.
Thus, a ‘good’ state is defined as a state where a state-contingent net

income of #1 gives a lower marginal utility than the probability of that state.
Correspondingly, a ‘bad’ state is defined as a state, where a state-contingent
net income of  #1 gives a higher marginal utility than the probability of  that
state. Marginal income is measured using the vector of  state-contingent net
incomes for a risk-neutral decision-maker optimising the use of  input as the
benchmark, and marginal utility is measured on a utility function that is
locally (at point y(xn)) scaled so that the sum of  marginal utilities over the
S states of  nature is equal to 1.

It is immediately clear that if  W is linear (as W* in equation (14)), the scal-
ing equation (22) has already been made, because the sum of the probabilities
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n

S
n

s

S

{ ( ),  , ( )}  1
1

1x xK ≡
=

∑



Optimal production under uncertainty 463

© Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd 2003

is 1. Also in this case there are no ‘good’ or ‘bad’ states of  nature, just
‘neutral’ states of  nature because neither equations (23) nor (24) are valid.

The definitions presented here are a generalisation of  those informally
given by Chambers and Quiggin (2000) for S = 2. To use the term ‘bad’ to
describe a state where #1 is worth more than the probability of  that state,
and ‘good’ to describe a state where #1 is worth less than the probability of
that state, is reasonable from the point of  view that this definition complies
with the view that a ‘bad’ state is something to be avoided, and that there-
fore one more dollar provides higher utility in a ‘bad’ state than in a ‘good’
state. Also, defining ‘good’ and ‘bad’ in relation to the state-contingent net
returns of  a risk-neutral decision-maker is appropriate, as will be shown in
the following.

4.2 Criteria for state-general inputs

With inputs defined as state-general inputs the optimisation problem is
given by the following:

(26)

where

ys = fs (x) ps − wx (s ∈ Ω). (27)

The condition for optimal use of  input xn (n = 1 … N ) is determined by
setting the derivatives of  (26) with respect to xn equal to zero yielding:

(28)

If  the utility function W is linear (risk-neutrality) (28) reduces to:

(29)

which further reduces to:

(30)

where E is the expectation operator. Thus, a risk neutral decision-maker
optimises the application of a state-general input xi by increasing the application
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as long as the expected value of  the marginal product is larger than the
input price.

As the production function fs(x) and the product price ps vary over states
of  nature the typical case is that:

(31)

that is, that the marginal net return in state s is different from the marginal
net return in state t for some given amount of  input xn. According to equa-
tions (28) and (29) this means that for an optimal solution, the marginal
net return will be positive in some states and negative in others. This means
that at the optimal application of  a state-general input the application
would be too high in some states and too low in other states compared to
the application if  one knew in advance what state of  nature would prevail.
This is the case for both risk-neutral and risk-averse decision-makers.

The interesting question is whether the optimal application for a risk-
averse decision-maker who optimises production according to equation (28)
is higher or lower than the optimal application for a risk-neutral decision-
maker who optimises production according to equation (29).

If  all inputs are considered variable (substitution between inputs allowed)
it is not possible to give a general answer. However, if  all inputs except xn

are considered fixed inputs, then a risk-averse decision-maker would use
more of  input xn than a risk-neutral decision maker if

(32)

that is, if the marginal utility is positive. As before, xn is the optimal application
of input for a risk-neutral decision-maker and ys(x) = ps fs(x) − wx(s = 1, … , S ).

Performing the differentiation in (32) yields:

(33)

It is not easy to interpret this condition. However, one would expect that a
risk-averse decision-maker would use more input than a risk-neutral decision-
maker if  the input in question particularly improves the net return in those
states of  nature that are ‘unpleasant’ or ‘bad’ from the point of  view of  the
decision maker, and vice versa.

Using the definition of  ‘good’ and ‘bad’ states from equations (23) and
(24), this is in fact the result obtained when interpreting condition (33). To
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see why, assume that the S states of  nature are ranked so that the first t of
these states are ‘bad’, and the remaining S-t states are ‘good’. Further,
assume that the marginal net return ( ps ∂ fs (xn) /∂xn − wn in the parenthesis
in (33)) for a risk-averse decision-maker using the same amount of  input
as a risk-neutral decision-maker optimising production is positive in all
these first t bad states of  nature. In that case condition (33) applies, because
high values of Ws (Ws > πs) are combined with positive values of  marginal
net returns, and a risk-averse decision-maker would therefore use more
input than a risk-neutral decision-maker.

The conclusion is that if  the marginal net return from applying more
input than  is positive in those states that are ‘bad’ to a risk-averse decision-
maker, then it is optimal for a risk-averse decision-maker to use more of
this input than a risk-neutral decision-maker. This also means that if  the mar-
ginal net return by applying more input than  is negative in those states
that are ‘bad’ to a risk-averse decision-maker, then it is optimal for a risk-
averse decision-maker to use less of  this input than a risk-neutral decision-
maker. Because of the conditions that have been applied, the criterion seems
weak. However, the criterion indicates what the important parameters
are when comparing the use of  a state-general input by risk-averse and risk-
neutral decision-makers.

With only two states of  nature the criterion may be illustrated graphically
as shown in figures 7 and 8. In figure 7 it is shown how the net return curve
in the bottom part of  the figure is derived from state-contingent revenue
and cost in the top of  the figure. The net returns in state 1 and 2, respec-
tively, illustrated in the middle part of  figure 7, are derived as the difference
between the revenue curve and the factor cost curves just above. With an
increase in the amount of  input xi, the output in state 1 first increases (until
a) and then decreases. In state 2, an increase in the amount of  (the same)
input xi, first makes output increase (until b) and then decrease. Notice that
because b is larger than a, the net return in state 2 still increases after the
net return in state 1 has started decreasing. The net return curve at the bot-
tom of  figure 7 summarises how the state-contingent net returns in the two
states develop when input xi is increased. The arrow at the end of  the curve
indicates the direction in which input increases.

In figure 8 a net return curve K is combined with indifference curves to
illustrate how the optimal amounts of  input for a risk-neutral decision-
maker ( ) and a risk-averse decision-maker ( ) are derived as the points
of  tangency between the net return curve and the indifference curve
(straight line for risk-neutral decision-maker). In the example,  >, , that
is, a risk-averse decision-maker would use more input than a risk-neutral
decision-maker. This result also applies using the criterion developed
above. First notice that at the point , W1 /W2 < π1 /π2. Therefore, due to
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the scaling in equation (22), W1 < π1 and W2 > π2. According to (23) and (24)
this means that state 1 is ‘good’, and state 2 is ‘bad’. As the marginal net
return at the point  is negative in state 1 (the ‘good’ state) and positive in
state 2 (the ‘bad’ state), the criterion  >  applies.

Figure 8 also illustrates how difficult it is to compare the optimal input
use of  a risk-averse and a risk-neutral decision-maker. The result of  the

xi
n

 

Figure 7 Derivation of the net return curve
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comparison depends first of  all on what is considered the ‘good’ state of
nature and what is considered the ‘bad’ state of  nature (i.e., whether the
net return curve is over or under the bisector). Further, the result depends
on whether the marginal income after having applied  units of  input
is positive or negative in the ‘good’/‘bad’ state of  nature (what direction
the arrow points). If  the arrow in figure 8 pointed the other way, then

 <, , and a risk-averse decision-maker would use more input than a
risk-neutral decision-maker, because the point of  tangency with the
indifference curve of  the risk-averse decision maker in this case is reached
first.

4.3 Criteria for state-specific inputs

State-specific inputs are effective in only one state of  nature. The optimisa-
tion problem is therefore given by the following:

(34)

where

yt = ft (x)pt − wx (35)

Figure 8 Derivation of optimal production for risk-averse (xa) and risk-neutral (xn) producer
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ys = ks − wx for s ≠ t (36)

and ks is a constant.
The condition for optimal use of inputs x is determined by setting the deriv-

atives of equation (34) with respect to xn (n = 1, … , N ) equal to zero yielding:

(37)

If  the decision-maker is risk-neutral (37) reduces to:

(38)

This means that a risk-neutral decision-maker should apply a state-
specific input as long as the value of  the marginal product multiplied by the
probability of  getting the state of  nature where the state-specific input is
active, is larger than or equal to the input price wn.

9

A risk-averse decision-maker uses more input xn than a risk-neutral
decision-maker if:

(39)

where, as before,  is the optimal application of  input xn for a risk-neutral
decision-maker (other inputs considered fixed), and ys(x) is given by equa-
tions (35) and (36).

Performing the differentiation in (39) and using the value of  pt∂ ft(x
n)/

∂xn = wn /πt, from (38), the condition (39) is equivalent to:

(40)

As the sum at the right hand side of equation (40) is equal to 1 (one) (see (22)),
the condition in equation (40) indicates that state t is a ‘bad’ state (see
(24)). It is therefore concluded that if  the state-specific input xn is directed
towards a ‘bad’ state of  nature, then a risk-averse decision-maker will use
more input than a risk-neutral decision-maker, and vice versa.

9 Notice that because ∂ fs(x) /∂ xn = 0 for s ≠ t, the condition (38) is in fact equivalent to
(30).
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This conclusion shows that, as for the state-general input, there is no
unique answer to whether a risk-neutral decision-maker will use more or
less state-contingent input than a risk-averse decision-maker. It depends on
the type of  state the input is directed towards.

4.4 Criteria for state-allocable inputs

A state-allocable input is characterised by the possibility of  making an (ex
ante) allocation of  the input to whatever state (s) of  nature is judged to be
best. The optimisation problem for a state-allocable input xn is given by the
following:

(41)

where

ys = fs(x)ps − wn(xn1 + … + xnS) − w’x’ (s = 1, … , S ) (42)

and where xns ≥ 0 is the application of  input xn with a view to increasing
production in state s. The term w’x’ is the (fixed) cost of  buying the other
N − 1 inputs.

In the following it is assumed that xn is strictly state-allocable (each
xnt is state-specific). In that case the optimal application of  input xnt

is determined by the same conditions as for state-specific inputs, that
is,

(43)

If  the decision-maker is risk neutral then, because of  the scaling in (22),
(43) may be written:

(44)

which further reduces to:

(45)

This means that a risk-neutral decision-maker should increase the applica-
tion of a state-allocable input to state t as long as the value of the marginal
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product multiplied by the probability of  getting state t is larger than the
input price wn.

10

The question is whether a risk-averse decision-maker uses more or less
state-allocable input than a risk-neutral decision-maker. The answer is
given by comparing equations (44) and (45). The result is identical to the
result concerning state-specific inputs. Thus, if  a strictly state-allocable
input is allocated to a ‘bad’ state of  nature, then the risk-averse decision-
maker will use more input directed to that state than a risk neutral decision-
maker, and vice versa.

If the amount of input is restricted as in equation (21), the condition (43)
changes to:

(46)

where λ is the Lagrange multiplier of  restriction (21).
If  the decision-maker is risk neutral then the sum at the right hand side

is 1 and Wt = πt. This means that the limited amount of  input xn should be
allocated between state s and state t so that:

(47)

that is, the value of  the marginal product of  input xn in state t multiplied by
the probability of  getting state t should be equal to the marginal product of
input xn in state s multiplied by the probability of  getting state s.

4.5 Criteria for optimal production of output

As in the case of  certainty, one may want to consider production from the
output side and to ask the question: What is the criterion for determining
the optimal amount of  output under uncertainty?

Under certainty the optimal production of  a particular product (a com-
modity) is determined by the criterion MC = p, where MC is marginal cost
and p is the product price. Under uncertainty it is not sufficient just to con-
sider a particular type of  product (a commodity). A commodity is not just
one product. It is in fact S different (state-contingent) products, because a
commodity that will be produced in state s is different from a commodity
that will be produced in state t. (This type of  statement is quite similar to
the statement that a commodity that becomes available in one years time is

10 Note that because ∂fs(x)/∂xnt = 0 for t ≠ s the condition (37) is in fact equivalent to (30).

W p
f
x

w W t St t
t

nt
n s

s

S∂
∂

( )
       (   ,  , )

x
= + =

=
∑ λ

1

1 K

π πt
t

nt
t s

s

ns
s

f
x

p
f

x
p s t

∂
∂

∂
∂

      ( ,   )= ∈Ω



Optimal production under uncertainty 471

© Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd 2003

a different product compared to the same commodity that becomes available
in two years time).

The optimisation problem under uncertainty therefore involves optimisa-
tion of  production over the S states of  nature as follows:

(48)

where:

ys = ps zs − cs(w, zs) (49)

and cs (w, zs) is the cost function:

cs (w, zs) ≡ min{wx: fs(x) ≥ zs, s = 1, … , S}. (50)

As shown by Chambers and Quiggin (2000), the minimum cost of  pro-
ducing the entire vector of  state-contingent outputs when the technology is
output-cubical (state-general inputs) has to satisfy:

(51)

As state-specific inputs and state-allocable inputs are just special cases of
state-general inputs, the condition in equation (51) may be considered a
general condition for the (minimum) cost of  producing an output vector z.

Even in the case where equation (51) holds with strict equality (51) is not
in general differentiable in zs. Therefore it is not possible to solve equation (48)
by using the derivatives. However, consider the special case where all inputs
(x1, … , xN) are state-specific inputs; that is, each input influences produc-
tion in only one state of  nature. In this case the cost function cs(w, zs) is

cs(w, zs) = min{wsxs: fs(x
s ) ≥ zs, s = 1, … , S} = cs(w

s, zs) (52)

where xs is the (sub)vector of  inputs that are specific to state s and w s is the
corresponding (sub)vector of  input prices. Because production in state s is
completely independent of  the input applied to state t and vice versa, the
cost function for the entire vector of  state-contingent outputs now has the
simple additive form

(53)

and because equation (52) is differentiable, so is the cost function (53).
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Under the condition that inputs are state-specific it is therefore possible
to differentiate equation (48) with respect to z; that is, with respect to each
of  the elements (z1, … , zS). Setting each derivative equal to zero leads to the
following S optimality conditions:

(54)

where MCs is the marginal cost with respect to zs; that is the derivative of
the cost function c in equation (53) with respect to zs. Notice that weighting
MCs by the marginal utility in all states of  nature is a result of  the fact that
the cost of  producing a marginal unit of  output in state s is the same no
matter what state of  nature occurs. However, the marginal income ( ps) only
occurs in state s. For a risk-neutral decision-maker (54) reduces to:

πs ps = MCs ∀s ∈ Ω. (55)

Therefore, a risk-neutral decision-maker should increase production of  state
s output as long as the marginal cost is lower than the product price in state
s multiplied by the probability of  state s.

This criterion is quite similar to the criterion for optimal production
under certainty, the ‘only’ difference being that production under each state
of  nature is considered separately, and the product price is multiplied by
the probability of  being in the specified state of  nature.

Taking the sum over states of  nature on each side of  equation (55) the
following somewhat weaker condition appears:

(56)

which reduces to

(57)

where E ( p) is the expected product price, and the sum on the right-hand
side is the cost of  producing one more unit in all states of  nature; that is,
the cost of  producing one more unit of  output with certainty. Thus, a risk-
neutral decision-maker would produce one more unit of  output as long as
the cost of  doing so is lower than the expected output price.

A risk-averse decision-maker will produce more in state s than a risk-
neutral decision-maker if  the following condition applies:
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(58)

where

(59)

is the vector of  optimal production in each state of  nature for a risk-neutral
decision-maker. Performing the differentiation in equation (58) and inserting
the value of  MCs from equation (55), the following condition applies if  it is
optimal for a risk-averse decision-maker to produce more than a risk-
neutral decision-maker:

(60)

which is valid when Ws > πs. But according to equation (24) this is just the
definition of  a ‘bad’ state of  nature. It may therefore be concluded that if
state s is a ‘bad’ state of  nature then a risk-averse decision-maker will pro-
duce more in state s than a risk-neutral decision-maker. Correspondingly, if
s is a ‘good’ state of  nature, a risk-averse decision-maker will produce less
in state s than a risk-neutral decision-maker.

Concerning the relationship between output in state s and in state t, the
following relation is derived from equation (54):

(61)

Under the condition that ps = pt = p (i.e., no price uncertainty (only produc-
tion uncertainty)), equation (61) reduces to:

(62)

which means that for optimal production the absolute value of  the slope of
the indifference curve is equal to the ratio of  the marginal cost of  produc-
ing in state s to the marginal cost of  producing in state t.

Assume that the state-specific inputs considered are the amounts of  a
strictly state-allocable input being allocated to the S states of  nature. In
that case condition (62) is useful in determining the optimal allocation of  a
limited amount of  input on the different states of  nature for a risk neutral
decision-maker. The interpretation of  equation (62) in this context is that if
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a decision-maker is risk-neutral and there is no price uncertainty (only pro-
duction uncertainty), then a limited amount of  strictly state-allocable input
should be divided between the different states of  nature in such a way that
the ratio of  the marginal costs in each state of  nature is equal to the ratio
of  the probabilities of  being in those states of  nature.

5. Conclusion

The objective of  the present paper has been to derive useful criteria for
optimal production under uncertainty using the state-contingent approach
described by Chambers and Quiggin (2000). Compared to earlier attempts
to derive criteria for optimal production under uncertainty, the state-
contingent approach applied in the present paper has the merit of  being
based on the same marginal principles and optimisation tools as known so
well from the general theory of  production under certainty.

The analysis has been based on the general assumption that decision-
makers are risk-averse. Under such a general assumption it is not possible
to derive criteria that are applicable in a general decision-making context.
Only when the decision-maker is risk-neutral, and the utility function
therefore is linear, may useful general criteria be derived. However, it has
been possible to derive conditions describing under which circumstances
risk-averse decision-makers use more or less input than risk-neutral decision-
makers. This information will prove useful both from a normative and from
a descriptive point of  view.

When the decision-maker is risk-neutral, the criteria for optimal produc-
tion are analogous to the criteria for optimal production under certainty.
From the input point of  view the optimal application of  input under cer-
tainty is determined by the criterion that the application of  input should
increase as long as the value of  the marginal product exceeds the input
price. Under uncertainty the general result is that the application of  a state-
general input should be increased as long as the expected value of  the mar-
ginal product exceeds the input price. As state-specific and state-allocable
inputs are special cases of  state-general inputs, the same conditions apply
to these inputs, although more specific criteria have been derived. From the
output point of  view the optimal production under certainty is determined
by the criterion that production should expand as long as marginal cost is
less than the product price. Under uncertainty it is not possible to derive
criteria for optimal production in the general case (state-general inputs)
because the cost function is not differentiable. However, when inputs are
state-specific (including strictly state-allocable), optimal production is
determined by the criterion that production in a specific state of  nature
should be increased as long as the marginal cost of  increasing production
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in that specific state of  nature is less than the product price in the particular
state of  nature multiplied by the probability of  that state of  nature.

When the decision-maker is risk-averse, it is optimal to use more input
than used by a risk-neutral decision-maker if  the input in question espe-
cially improves production in ‘bad’ states of  nature. If  the input in question
especially improves production in ‘good’ states of nature, a risk-averse decision-
maker will use less input. Thus, it is not possible to make general statements
concerning who will use more input or who will produce more output: the
risk-neutral decision-maker or the risk-averse decision-maker. The answer
will depend on the specific preferences, partly described by what are con-
sidered ‘good’ and what are considered ‘bad’ states of nature from the point
of  view of  the decision-maker.

The definition of  ‘good’ and ‘bad’ states of  nature provided in the
present paper has proved useful and will probably also be helpful in further
analysis of  the economics of  production under uncertainty.
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