Price Transmission to Ugandan Coffee Growers in a Liberalized Market

Authors

Mark Musumba
Department of Agricultural Economics
Ph.D Candidate and Graduate Assistant
Division of Research and Graduate Studies
Texas A&M University
College Station, TX 77843-1113
musumba@tamu.edu

Rajorshi Sen Gupta
Department of Agricultural Economics
Tom Slick Graduate Fellow
Texas A&M University
College Station, TX 77843-2124
rajorshi@tamu.edu

Copyright 2011 by [Mark Musumba, Rajorshi Sen Gupta]. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
Abstract

Ugandan Coffee Development Authority (UCDA) provides price information in terms of Indicator price to coffee growers. The reliance on Indicator price is a narrow approach. Growers need better information to deal with price volatility in a liberalized market. Retail prices at the major coffee importing countries in Europe and future prices of coffee may provide improved information and hence greater bargaining power for growers.

Objective

Investigate price transmissions to Ugandan growers and examine how they react to indicator, futures and retail coffee prices. What prices should growers look at in addition to Indicator price?

Background

Uganda is the second largest coffee producer and the largest Robusta producer in Africa.

- Coffee contributes 23.4% of Uganda’s GDP and half its export earning; a quarter of Uganda’s population depend on coffee sector.
- Coffee price volatility has been a fact of life because of supply and demand side shocks.
- In 1990/1 market liberalization lead to the disappearance of the cooperative channel and a vast majority of coffee is now marketed through private traders.
- Cooperatives shielded coffee growers from price fluctuations but the post liberalization, farmers face the risk associated with price volatility in the world market.
- Growers principally rely on the composite Indicator price provided by the UCDA to bargain for a fair price.
- Uganda exports 86% of its coffee to the EU countries where Spain and Belgium import the largest share.
- The coffee futures markets, Intercontinental Exchange in New York and London International Financial Futures and Options Exchange, are mainly used as benchmarks for Arabica and Robusta Coffee respectively.

Methodology

I. Directed Acyclic Graphs (DAGs) are used to investigate the causal flows between the variables.

II. Vector auto regression (VAR) was used to model the interdependencies in the coffee markets.

\[X_t = X_{t-1} - X_{t-2} \]

where \(X_t \) is the price at time \(t \), and \(X_{t-1} \) and \(X_{t-2} \) are the prices at times \(t-1 \) and \(t-2 \), respectively. The equation can be solved using the method of least squares.

Results from VAR Estimation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coef</th>
<th>Std Error</th>
<th>T.Stat.</th>
<th>Signif</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGR{1}</td>
<td>0.911</td>
<td>0.029</td>
<td>30.901</td>
<td>0.000</td>
</tr>
<tr>
<td>BPR{1}</td>
<td>-0.255</td>
<td>0.118</td>
<td>2.161</td>
<td>0.032</td>
</tr>
<tr>
<td>SPR{1}</td>
<td>0.190</td>
<td>0.094</td>
<td>-2.021</td>
<td>0.044</td>
</tr>
<tr>
<td>LFR{1}</td>
<td>0.292</td>
<td>0.150</td>
<td>1.942</td>
<td>0.053</td>
</tr>
<tr>
<td>IDP{1}</td>
<td>-0.030</td>
<td>0.060</td>
<td>-0.504</td>
<td>0.599</td>
</tr>
<tr>
<td>NFR{1}</td>
<td>0.029</td>
<td>0.125</td>
<td>-1.767</td>
<td>0.095</td>
</tr>
<tr>
<td>Constant</td>
<td>-0.826</td>
<td>0.432</td>
<td>-1.875</td>
<td>0.063</td>
</tr>
</tbody>
</table>

Data

Monthly data (in U.S. cents/pound) from January 1988 to June 2010 on the following:

1. Price paid to Uganda Robusta growers (UGR)
2. Retail Coffee Price in Belgium (BPR)
3. Retail Coffee Price in Spain (SPR)
4. Composite Indicator Coffee Price (IDP)
5. London Coffee Futures (LFR)
6. New York Coffee Futures (NFR)

Discussion and Conclusion

1. Market prices are driven by supply and demand. In 2003, the world prices were at a 30 year low because of an 8 percent increase in supply.
2. The price spike in 2009 was due to reduction in supply from Brazil, the largest coffee producer.
3. An increase in Belgium retail prices has a positive effect on the price paid to Ugandan growers but an increase in Spain retail price has a negative effect on the growers price. Belgium's effect is as expected, since it's one of the largest importers.
4. The impulse response functions indicate that a positive shock in the futures markets has a negative effect on the price paid to the growers. This can be explained by the fallacy of composition. The individual reaction of the growers to increase in futures prices leads to an aggregate increase in supply. Consequently, there is over supply of coffee and hence a fall in prices received by growers.
5. An increase in Indicator price leads to increase in prices received by growers. However, Indicator price includes 34% Robusta price, Brazilian Mild Arabica 12%, Brazilian and other Natural Arabica 31%, other Mild Arabica 23% so the results should be interpreted with caution.

References

Acknowledgement

We thank the International Coffee Organization for providing the data for this research.

Mark Musumba
PhD Candidate
Department of Agricultural Economics
Texas A&M University
musumba@neo.tamu.edu

Rajorshi Sen Gupta
PhD Candidate, Tom Slick Graduate Fellow
Department of Agricultural Economics
Texas A&M University
rajorshi@tamu.edu