Files

Abstract

Pierce’s Disease (PD) is a bacterial disease that can kill grapevines over a span of one to three years. In this paper, we examine and model PD and vector control decisions made at the vineyard level in the Napa Valley in an effort to understand how the pest and disease affect individual growers, and to examine spatial externality issues and potential benefits from cooperation between adjacent vineyards. The model that we created adds to the literature by (a) treating grape vines as capital stocks that take time to reach bearing age and thus cannot be immediately replaced in the event of becoming diseased. We also (b) relax the assumption of an interior solution by examining the boundaries of parameter space for which winegrape growing is profitable and thus allowing growers to abandon land if it is not. We also explore (c) the effect of changing different policy parameters, such as PD control and vine replacement costs. Finally (d) we examine the potential benefits of cooperation between growers to manage vector populations, and determine that coordinated vector control could help riparian-adjacent growers to lessen grapevine losses and land abandonment, and thus to remain profitable in times of high PD pressure.

Details

PDF

Statistics

from
to
Export
Download Full History