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Productivity pathways: climate- 
adjusted production frontiers for the 
Australian broadacre cropping  
industry
Neal Hughes, Kenton Lawson, Alistair Davidson, Tom Jackson and Yu Sheng

Abstract 
This study introduces two advances to the aggregate productivity index methodology typically employed 
by ABARES. First, it accounts for the effects of climate variability on measured productivity by matching 
spatial climate data to individual farms in the ABARES farm surveys database. Second, a farm-level 
production frontier estimation technique is employed to facilitate the decomposition of productivity 
change into several key components, including technical change and technical efficiency change.

The study makes use of farm-level data from the ABARES Australian agricultural and grazing industries 
survey database. An unbalanced panel dataset is constructed containing 13 430 observations (4255 farms) 
over the period 1977–78 to 2007–08. Spatial climate data, including winter and summer seasonal rainfall and 
average maximum and minimum temperatures, were obtained via the Australian Water Availability Project. 
These data were mapped to individual farms using Geographic Information System methods. 

The study employed stochastic frontier analysis methods to estimate a production frontier with time 
varying technical efficiency effects of the form proposed by Battese and Coelli (1992). Production frontiers 
are estimated for each of the three major Grains Research and Development Corporation regions: southern, 
northern and western.

Selected climate variables are shown to display a high degree of explanatory power over farm output. The 
results confirm that deterioration in average climate conditions has contributed significantly to the decline 
in estimated productivity over the post-2000 period. Technical change is shown to be the primary driver of 
productivity growth in the industry in the long run, offset by a gradual decline in technical efficiency. After 
controlling for climate variability, a gradual decline in the rate of technical change is still observed.
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1 Introduction
Productivity growth in the Australian agriculture sector has historically been relatively strong, 
typically outstripping productivity growth in the rest of the economy. Within the agriculture 
sector, productivity growth has been particularly high among broadacre cropping farms, with 
estimated growth in total factor productivity (TFP) of greater than 5 per cent a year between 
1979–80 and 1997–98 (Nossal et al. 2009). 

However, it is now evident that agriculture productivity growth rates have slowed considerably 
over the past decade. Among cropping specialists, productivity change averaged around –2 per 
cent a year over the period 1997–98 to 2006–07 (Nossal et al. 2009). This slowdown has attracted 
substantial research attention in recent times; measuring the extent of the slowdown, identifying 
potential contributing factors and investigating possible remedial measures (for example, see 
Sheng et al. 2010).

This study introduces two advances to the aggregate productivity index methodology 
typically employed by ABARES. First, it accounts for the effects of climate variability on 
measured productivity levels, by matching Bureau of Meteorology climate observations to 
individual farms in the ABARES farm surveys database. Accounting for the effects of climate 
variability is important to better understand underlying productivity trends. Standard 
estimates of productivity are subject to substantial annual volatility owing to fluctuations in 
climate conditions. In addition, there has been a well-documented decline in average rainfall 
observed in much of Australia’s key agricultural areas over the past decade. To fully evaluate 
the extent of the productivity slowdown, it is necessary to control for these changes in climate 
conditions.

Second, this study employs production function estimation techniques, specifically stochastic 
frontier analysis. These techniques make full use of individual farm-level survey (and climate) 
data to provide a picture of the distribution of productivity levels across individual farms 
and, in turn, to decompose aggregate productivity change into several key components, or 
productivity ‘pathways’.

Two key productivity pathways considered in this study are technical change, representing the 
development of new technologies or the ‘best farms getting better’, and technical efficiency 
change, representing the rate of adoption of available technologies, or the rate at which the 
‘average farms catch up to the best farms’. Decomposing productivity provides additional 
insights, as different pathways can have their own unique sets of drivers and potential policy 
responses.
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2 Productivity pathways 
This section provides a brief discussion of production frontiers and productivity decomposition. 
For a more detailed discussion, see O’Donnell (2009 and 2010). Key productivity components 
of interest include technical change (TC), technical efficiency change (TE) and scale and mix 
efficiency change (SME). Figure a illustrates each of these ‘pathways’ in the context of a single 
output, single input production technology.

Technical change 
Technical change is represented by 
an upward shift in the production 
frontier over time; a move from PF

1
 

to PF
2
 (figure a). In essence, technical 

change reflects the availability of 
new technologies and knowledge. 
At an industry level, an improvement 
in productivity owing to an 
expansion of the frontier might be 
simplistically described as ‘the best 
farms getting better’.

A key source of new knowledge 
on agricultural production is 
formal research and development 
(R&D) activities. This includes 
knowledge generated by domestic 

public R&D activities (such as those undertaken by Rural Research and Development 
Corporations/Companies) and R&D investments by private firms. In addition, new knowledge 
may be acquired through international research spillovers or informally through farmer 
experimentation and learning by doing.

Accurate information on the link between rural R&D and productivity and, more generally, on 
the social returns to rural R&D investment, is important from the perspective of determining 
the optimal level and composition of government investment in rural R&D. While there is 
general agreement that rural R&D contributes to productivity growth, quantifying the exact 
nature of the relationship between productivity growth and R&D remains difficult in practice.

Technical efficiency change
Technical efficiency change refers to improvements in productivity via the further adoption 
of existing technologies; that is, farm movement toward the production frontier (figure a). 
Improvements in industry productivity as a result of technical efficiency change could be 
described simply as ‘the average farms catching up to the best farms’.

Key productivity change componentsa

input

output

TE
SME

TC

PF
2

PF
1
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Technical efficiency change is driven by a process of diffusion of knowledge. The rate of 
adoption of technology is thought to be heavily influenced by human capital factors (such 
as the age, education level and experience of farm operators), as well as access to social 
networks. Another key determinant is the availability of information about new technologies. 
Traditionally, government extension services have played a key role in helping to gather, 
interpret and communicate information on the latest technologies, although private extension 
services are increasingly playing a role.

Scale and mix efficiency change
Additional pathways to productivity growth may include changes in scale efficiency and mix 
efficiency. Scale efficiency change will occur wherever firms change scale while operating 
under either increasing or decreasing returns to scale. For example, firms may increase in scale 
over time to exploit economies of scale, as demonstrated in figure a.

Mix efficiency change refers to changes in productivity due solely to changes in input 
or output mix (economies of scope). In this study, a combined measure of scale and mix 
efficiency is estimated. Changes in farm scale and mix are expected to depend on the profit-
maximising behaviour of farm managers and, in turn, on prevailing input and output prices 
(O’Donnell 2010).

Exit of less efficient farms
The exit of farms that are less technically efficient may contribute to industry productivity 
growth by removing less efficient farm operators from the industry or reallocating other inputs 
from the industry, including land. This process of adjustment will be driven largely by market 
forces. An important policy implication is the need to minimise any artificial constraints that 
limit the ability of markets to perform this allocative role.

The exit of less efficient farms and/or farm managers may result in improvements in either 
industry technical efficiency or industry scale efficiency (where exit occurs though a process of 
farm rationalisation). As such, isolating the effect of farm / farm operator exit from other factors 
influencing industry technical and scale efficiency remains difficult in practice.

Pathways to profitability
Terms of trade is defined as the ratio of output to input prices; changes in productivity and 
terms of trade jointly determine profitability. For most commodities, Australian primary 
producers are price-takers in domestic and international markets. Given that the terms of 
trade is largely beyond farmers’ control, the main driver of long-term profitability growth is 
productivity growth. Long-term productivity improvements have historically enabled Australian 
farmers to offset the effect of a declining terms of trade on farm profitability (figure b).

Both technical change and technical efficiency improvements are unambiguously good 
for both productivity and profitability. However, scale and mix efficiency movements can 
potentially cause productivity and profitability to move in opposite directions. For example, 
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O’Donnell (2010) notes that improvements in the terms of trade may encourage firms to 
expand scale (to increase profits) to the point where decreasing returns to scale are incurred, 
such that increasing profitability is associated with decreasing productivity. O’Donnell (2010) 
undertook an empirical assessment providing supporting evidence for such an effect in 
Australian agriculture.

Broadacre TFP and terms of trade in Australia, 1953–2007

TFP

terms of trade

b

index

100

200

300

400

200820031998199319881983197819731968196319581953

Note: The terms of trade is the ratio of an index of prices received by farmers to an index of prices paid
by farmers (ABARE 2009). TFP is the broadacre agriculture total factor productivity index (Nossal et al. 2010).
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3 Measurement and  
 interpretation
Decomposition of productivity change requires empirical estimation of production frontiers 
from panel data on firm output and input levels. Estimation of production frontiers is subject 
to a number of significant practical challenges, which have important implications for the 
interpretation of associated productivity estimates.

Quality differences in inputs and outputs
In practice, there are limits on how completely inputs and outputs can be measured. An 
important example in the context of agriculture is land quality. While land inputs are generally 
measured in quantity terms, there are important quality dimensions, including soil nutrient 
levels and water holding capacity. Non-controlled variation in the quality of input and/or 
output variables can lead to biased estimates of production frontiers and technical efficiency.

Natural resources and environmental conditions
Agricultural productivity is heavily influenced by the availability of key non-market natural 
resource inputs and prevailing environmental conditions, particularly moisture availability. 
Failure to control for moisture availability will clearly result in biased estimates of production 
frontiers and technical efficiency.

Risk and uncertainty 
Agricultural production decisions, particularly in Australia, are made in the face of significant 
risk and uncertainty. Failure to account for risk and uncertainty could potentially result in biased 
estimates of production frontiers and technical efficiency levels. Issues of risk and uncertainty 
are not investigated in detail in this report, but are considered further in O’Donnell, Chambers 
and Quiggin (2010).

Measurement error and other statistical noise
All real world datasets are subject to some degree of measurement error and other sources 
of statistical noise. The presence of noise has important implications for the measurement of 
productivity. In particular, defining a production frontier by the best performing farms in a 
sample may be problematic, especially where there are outliers.

Interpretation of technical inefficiency 
A common feature among all of these measurement issues is the potential to contribute to 
a general overestimation of technical inefficiency.1 For example, farms may be classified as 
technically inefficient as a result of having relatively poor land quality rather than because 

1 While these issues have a tendency to result in the general overestimation of technical inefficiency levels, they can also operate in 
the opposite direction for individual firms.
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of any pure technical inefficiency. Where these potential sources of error are controlled for 
accurately, farm deviations from the frontier can safely be viewed as pure technical inefficiency, 
due solely to the managerial ability of farm operators.

Ideally, the estimation techniques used adequately account for these measurement issues. In 
this study, several steps are taken to improve the reliability of estimates, including the use of 
econometric techniques to deal with noise (stochastic frontier analysis) and the incorporation 
of key natural resources / environmental inputs such as rainfall and temperature.
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4 Previous research
Australian agricultural productivity trends: potential slowdown
ABARES estimates time series TFP indexes for Australian broadacre agriculture industries using 
data from annual farm surveys and traditional indexing methodology (Nossal et al. 2009, Zhao 
et al. 2010). Positive annual average productivity growth of 1.5 per cent has been estimated for 
the broadacre agriculture sector over the period 1977–78 to 2006–07 (Nossal et al. 2009). There 
is significant volatility in productivity growth from year to year, much of this due to the effects 
of climate variability. In general, cropping specialists have outperformed livestock industries 
over the period, with 2.1 per cent average growth. However, there appears to have been 
a slowdown in productivity growth in the cropping sector, particularly from 2000 onward 
(figures c and d).

A number of potential causal factors for the slowdown have been identified, including the 
adverse climate conditions and reduced public R&D investment. Recent research has found 
that the slowdown can be considered a statistically significant structural change or ‘turning 
point’ (Sheng et al. 2010). Reduced moisture availability and R&D investment have both been 
shown to be correlated with the observed decline in productivity growth (Sheng et al. 2010).

Broadacre TFP indexes
1977–78 to 2007–08c

cropping specialist

broadacre

mixed cropping–livestock

sheep industry

beef industry 

index

50

100

150

200

250

2008200319981993198819831978

Source: Nossal et al. 2010.

Broadacre TFP growth short-term 
trendsd

Source: Nossal et al. 2010.
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Determinants of agricultural productivity: human capital, farm 
size and climate variability
ABARE (now ABARES) completed several studies investigating the determinants of broadacre 
agriculture productivity growth. These studies employed regression techniques to identify 
explanatory variables correlated with farm TFP indexes (Zhao et al. 2009, Kokic et al. 2006, 
Alexander and Kokic et al. 2005).

Explanatory variables have typically included human capital proxies (such as age and 
education) and measures of farm size and climate variables (such as moisture availability). A 
number of studies observed a significant positive relationship between farm size and TFP (for 
example, Kokic et al. 2006). A number of studies have also observed significant relationships 
between human capital variables (such as education levels) and farm TFP indexes (Zhao et al. 
2009).

These previous studies made use of a moisture availability / water stress index developed by 
the Agricultural Production Systems Research Unit. All of these studies observed a significant 
positive correlation between the moisture availability index and productivity.

Estimation of production frontiers for agriculture
To date there has been limited application of farm-level production frontier estimation 
techniques to Australian agriculture. Previous studies include the work of Battese and Corra 
(1977), Battese and Coelli (1988), Fraser and Hone (2001) and Kompas and Che (2004).

Battese and Corra (1977) estimated stochastic production functions using a single year, 
1973–74, of the ABARE Australian agricultural and grazing and industries survey (AAGIS). Battese 
and Coelli (1988) applied panel data stochastic frontier methods to three years of data (1978–79 
to 1980–81) for a sample of dairy farms in New South Wales and Victoria. Individual farm 
technical efficiency levels ranged from 0.30 to 0.93 (Battese 1992).

Fraser and Hone (2001) estimated deterministic (data envelopment analysis) production 
frontiers for an eight-year balanced panel data sample of Victorian wool producers. They 
assumed constant returns to scale and estimated a mean technical efficiency level of 0.81. In 
addition, Fraser and Hone (2001) found TFP to be driven primarily by technical change, with 
technical efficiency change having minimal effect.

Kompas and Che (2004) estimated a stochastic production frontier and technical efficiency 
model for the Australian dairy industry for the period 1996 to 2000, making use of ABARE 
survey data. They estimated a dairy production frontier with constant returns to scale and 
observed a mean technical efficiency level of 0.87.
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5 Methodology
This section provides a summary of the method used to estimate production frontiers, known 
as stochastic frontier analysis. The data sources used, including the ABARES farm survey data 
and climate data, are also outlined.

Stochastic frontier analysis 
Stochastic frontier analysis is an econometric method of estimating production frontiers, 
which takes into account the presence of statistical noise. As such, stochastic frontier analysis 
is suitable for estimating production frontiers with large unit-level datasets such as the ABARES 
farm survey data. In contrast, the traditional deterministic approach (data envelopment 
analysis) does not account for noise, potentially resulting in biased estimates.

The key to the stochastic frontier analysis approach is the specification of a ‘composite error 
term’, which explains farm deviations from the production frontier as a combination of 
technical inefficiency (u) and statistical noise (v). This study involved estimating a production 
frontier with a ‘translog’ functional form and quadratic time trend and climate responses:

where:

   

 

 

 

 

 

 

 

Yi,t    = aggregate output index of farm i in time period t

β0    = constant term

Xj,i,t = input indexes j (land, labour, capital and materials and services)

βj  = input parameters j

t = time trend 

βt , βtt = time trend parameters

 Xj,i,t = climate variables k (such as rainfall and temperature) 

αk , πk = climate variable parameters

M

NM
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vi,t     = symmetrical normally distributed random variable 

ui     = non-negative truncated normal random variable.

The functional form of the technical inefficiency effects follows that of Battese and Coelli 
(1992), with time varying technical inefficiency drawn from a truncated normal distribution:

 

Where: 

T = total number of time periods

η = inefficiency trend parameter

μ = technical inefficiency distribution parameter 

   (where μ = 0 implies half normal model)

σ2 = total error variation

γ = technical inefficiency contribution to total error variation.

The above model was estimated using the FRONTIER software version 4.1 (CEPA 2009), which 
employs an iterative maximum likelihood procedure.

Given the estimated model, ABARES standard farm-level TFP index can be decomposed into 
a variety of key components. First, a climate effects index (CE) can be constructed from the 
estimated climate parameters ( αk , πk ), demonstrating the relative effects of climate variability 
(across time and across farms) on farm output and productivity. From this a climate-adjusted 
TFP index can be derived (TFPCA).

TFPCA can then be further decomposed into technical change (TC), technical efficiency 
change (TE) and scale and mix efficiency change (SME). The technical change component 
can be derived from the estimated model time trend parameters (βt , βtt ), while the technical 
efficiency change component can be derived from the estimated technical efficiency 
parameters (η, ui). Given technical change and technical efficiency change, scale and 
mix efficiency change can be estimated as a residual. The methodology underlying this 
decomposition is outlined in detail in Appendix A.
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ABARES farm survey data
Farm-level data on output and market input use over the period 1977–78 to 2007–08 were 
drawn from the ABARES farm survey database. ABARES collects farm-level data through the 
Australian agricultural and grazing industry survey (AAGIS), which samples around 1500 to 1600 
broadacre farms each year.

The AAGIS provides a representative sample of Australian broadacre agriculture, specifically five 
key agricultural industries as defined by the Australian and New Zealand Standard Industrial 
Classification: cropping specialists; mixed cropping–livestock; beef; sheep; and sheep–beef. 
The survey has extensive regional coverage throughout each of the three major Grains 
Research and Development Corporation (GRDC) regions: southern, northern, and western 
(map 1). 

For this study, the sample was limited to farms classified as either crop specialists or mixed 
cropping–livestock (to match GRDC requirements). Irrigation farms were also excluded 
from the sample. The sample was further reduced by exclusion of outliers and farms with 
inadequate location data (necessary for matching of climate variables). A breakdown of the 
final sample sizes by industry and GRDC region is found in table 1.

Major GRDC cropping regions and ABARES farm survey data
coverage (cropping specialists and mixed cropping–livestock farms)

map 1

GRDC regions

sample data of cropping farms (per square km)

high: 0.01

low: 0.0001
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The AAGIS maintains a process of sample rotation where each year a certain proportion of 
farms are dropped from the sample and replaced with new farms, resulting in an unbalanced 
panel dataset. The number of years for which farms remain in the final sample varies 
significantly, with an average duration in the sample of 3.2 years.

This study makes use of farm-level output and input quantity indexes derived as part of the 
ABARES estimation of aggregate TFP indexes. The variables used in this study include an 
aggregate output quantity index and four input quantity indexes: land, labour, capital and 
materials, and services. A brief summary of the process involved in constructing these indexes 
is provided below; a more detailed discussion is presented in Zhao et al. (2010).

Output index
Most broadacre farms produce multiple outputs. Indexing techniques (involving the use of 
prices as weights) are used to aggregate individual outputs into a single output index for each 
farm (specifically a Fisher quantity index). This involves a nested indexing procedure. Broadacre 
outputs include the following major categories: crops, livestock, wool and other farm income. 
The crops category then includes a variety of different crops (for example, wheat, barley, oats), 
which are aggregated into a single crop output index. Each of the major output indexes are 
then combined into a single aggregate output index for the farm.

Input indexes
ABARES defines four major input indexes in its standard TFP estimation framework.

•	 Land quantity index: based on the average of the opening and closing area operated.
•	 Labour quantity index: combining data on hired labour, owner operator labour, family labour 

and shearing costs. 
•	 Capital quantity index: combining the market value of various capital components such as 

buildings, plant and machinery and livestock capital. 
•	 Materials and services quantity index: covering a large range of inputs, including materials 

such as fertiliser, fuel and crop chemicals, and services such as contract services, rates and 
taxes, and administrative services.

1 ABARES farm data sample size by industry class and region 

 southern  western northern other Australia
     

Total observations over 31-year period     
Crop specialists 3 138 1 134 1 410 181 5 863
Mixed cropping–livestock 3 624 1 524 1 743 676 7 567
Total 6 762 2 658 3 153 857 13 430
     

Average number of observations per year     
Crop specialists 101 37 46 6 189
Mixed cropping–livestock 117 49 56 22 244
Total 218 86 102 28 433
     

Note: Each observation corresponds to one farm in one year.
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Climate data
For this project, ABARES completed a brief review of the relationship between agricultural 
output and climate variability and the availability of data for key climate variables. This 
information was used to identify suitable climate variables to include as explanatory variables 
in the stochastic frontier analysis.

In Australia, moisture availability is the primary limiting factor of crop and livestock growth 
(Cawood 1996, Stephens 2002, Raupach et al. 2008, Van Gool and Vernon 2005). Moisture 
availability is a function of rainfall as well as evaporation and soil quality characteristics. 
Although energy availability (solar radiation and temperature) is considered non-limiting in 
Australia, extreme temperature events (either high or low) can impair plant function and lower 
pasture or crop yields (Cawood 1995, 1996).

Moisture
The CSIRO produces estimates of soil moisture as part of the Australian Water Availability 
Project (AWAP). However, these estimates rely on soil quality data, which have a number of 
limitations, including limited spatial resolution and varying coverage and methodologies used 
across regions. Soil moisture measures are also potentially affected by farm management 
decisions. As such, soil moisture variables were considered unsuitable for this analysis.

In the absence of accurate soil moisture data, growing season rainfall is considered to be a 
reasonable measure of plant moisture availability (Cawood 1996). While rainfall fails to fully 
incorporate differences in soil moisture and quality, data are readily available at suitable spatial 
and temporal resolution from the Bureau of Metrology (and in interpolated form via the AWAP).

This study defines two seasonal rainfall variables: total rainfall over the winter crop growing 
season (from April to October); and total rainfall over the summer crop growing season (from 
November to March), which is relevant in the northern region where summer cropping is 
common. A lagged summer season rainfall variable (rainfall in the previous summer season) is 
also considered, since summer rainfall may contribute residual soil moisture of benefit to the 
subsequent winter growing season.

Temperature extremes
Like rainfall, temperature data are available at high temporal and spatial resolution via the 
AWAP. However, given that extreme temperature events impair plant growth, there is a need 
to construct an appropriate measure of temperature variations rather than an average or total 
measure.

A number of measures of temperature were tested in this study, including:

• threshold measures—the days within growing seasons where maximum (minimum) 
temperatures exceeded (fell below) critical thresholds 

•	 average monthly maximum and minimum temperatures—considered a proxy for temperature 
extremes
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•	 growing degree days—reflecting the average of daily maximum and minimum temperatures 
relative to a base temperature. 

Both the threshold measures and the average monthly maximum and minimum temperatures 
demonstrated the anticipated correlation with farm output. However, monthly maximum and 
minimum temperatures proved to have marginally superior explanatory power as a proxy for 
exposure to temperature extremes.

Mapping climate data to individual farms
Climate data were obtained from the AWAP, which is a joint project between the Bureau 
of Meteorology, the CSIRO, ABARES and the Australian National University. This project has 
produced long time series of interpolated grids of key meteorological variables covering 
Australia at daily, weekly and monthly intervals at a 0.05 degree (about 5 km) resolution.

These rainfall and temperature ‘surfaces’ were used to generate farm-specific climate variables, 
given farm latitude, longitude and area operated information recorded in the ABARES survey 
data. Area weighted average climate variables were calculated using ArcGIS software by 
representing each farm as a circle centred on the farm’s latitude and longitude, with radius 
chosen to match the farm area operated.

Final climate variables
Table 2 shows summary statistics for the final climate variables constructed for this study for 
each of the major GRDC regions.

2 Climate variable summary data, 1977–78 to 2007–08  

climate variable  units southern western northern

  mean SD mean SD  mean SD 
Winter season       
Total rainfall  mm 291  (113) 290  (96) 274  (127)
Average maximum temperature  °C 18.3  (1.8) 20.1  (1.7) 22.9  (2.3)
Average minimum temperature  °C 6.6  (1.4) 8.1  (1.1) 8.4  (1.9)
       

Summer season       
Total rainfall  mm 134 (73) 90 (55) 343  (111)
Average maximum temperature  °C 28.4 (2.3) 30.4 (2.6) 31.8  (1.9)
Average minimum temperature  °C 13.4 (2.0) 14.9 (1.8) 17.8  (1.8)

Note: Standard deviation (SD) in parentheses.
Source: Constructed from data from the Australian Water Availability Project. 
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6 Results
Coefficient estimates
Separate stochastic frontier models were estimated for each of the GRDC regions (southern, 
western and northern). For each region, frontier models were estimated for all sample farms 
(cropping specialists and mixed cropping–livestock) and then separately for crop specialist 
farms only (table 3). Across all models the majority of parameter estimates proved statistically 
significant. Parameter estimates are contained in Appendix B (tables 9 and 10).

Climate variable response curves
Estimated coefficients for climate variables largely conformed to expected signs and 
magnitudes (tables 9 and 10). In each model, rainfall variables were included in quadratic form, 
allowing for a decreasing marginal gain from additional rainfall. Examples of the estimated 

effects of changes in rainfall (relative to the 
mean) on output are shown in figure e for 
the southern region (model 1) and figure f 
for the northern region (model 3).

Figure e illustrates how the marginal benefit 
of additional rainfall declines substantially 
in wet years, eventually reaching a point 
of decreasing returns under extremely wet 
conditions. In the southern region, the effect 
of rainfall in the winter growing season 
dominates that of other climate variables, 
although lagged summer rainfall has a 
statistically significant effect. In the northern 
region, winter rainfall, summer rainfall and 
lagged summer rainfall have effects of 
similar magnitude (figure f ).

Estimated responses vary across models 
but generally confirm that extremes 
of temperature have a negative effect 

3 Frontier models estimated 

 southern western northern

Cropping specialists and mixed cropping–livestock model 1 model 2 model 3
Cropping specialists only model 4 model 5 model 6
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on output; all else held constant, higher maximum temperatures and lower minimum 
temperatures result in lower output (see figure g). Overall, however, marginal temperature 
effects are small in comparison to rainfall effects.

A number of climate variable interaction terms were also found to have a statistically significant 
effect on output. Temperature–rainfall interaction terms confirm that higher temperatures 
increase the sensitivity of output to rainfall variation, while lagged summer rainfall was shown 
to act as a substitute for winter season rainfall.

Climate effects index
The climate effects index (CE) represents the combined effects on output of rainfall and 
temperature variations, holding all else constant. The annual mean climate index (across farms 
in all regions) is shown in figure h for the period 1977–78 to 2007–08.

The asymmetry of the annual variations largely reflects the quadratic relationship between 
output and rainfall (figures e and f ). Average climate conditions (particularly in the form of 
rainfall) during the post-2000 period were significantly below those observed during the 
pre-2000 period, and this adversely affected output (as shown in figure h). Table 4 provides a 
summary of the average decline in output due to poorer climate conditions in the post-1999–
2000 period.
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The climate effects index displays greater variation in the southern region (table 5). This reflects 
both a higher degree of annual rainfall variability and a greater farm sensitivity to changes in 
winter rainfall. As is evident from Table 5 cropping specialist farms in the southern and western 
regions tend to display greater sensitivity to variations in climate variables relative to mixed 
cropping–livestock farms.

Substantial variation is observed in the climate effects index across farms within a region in 
each year. Figure i shows the variation in farm-level climate indexes for two representative 
years: 2006–07 (a ‘dry’ year) and 1996–97 (a ‘wet’ year). However, even within ‘dry’ years there 
may be individual farms experiencing ‘wet’ conditions. These results highlight the importance 
of a farm-level approach to controlling for climate variability.

4 Percentage change in mean climate effects index, 1999–2000 to 2007–08 
relative to 1977–78 to 1999–2000.

  southern western northern Australia

Cropping specialists and mixed cropping–livestock –11.5% –7.6% –12.3% –11.0%
Cropping specialists only –14.2% –9.2% –11.0% –13.0%

5 Standard deviation of mean climate effects index, 1977–78 to 2007–08  

  southern western northern Australia

Cropping specialists and mixed cropping–livestock 18.7% 11.3% 16.6% 15.1%
Cropping specialists only 24.8% 18.3% 15.9% 19.3%
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Given the estimated climate parameters and the spatial rainfall and temperature data, maps 
of the climate effects index can also be generated. Map 2 depicts the average of the climate 
index over the period 1977–78 to 1999–2000 at each point (pixel) within each GRDC region. 
In this map, the climate effects index varies between 1.5 (green) and 0.5 (brown). Map 2 also 
displays a climate anomaly map, depicting the change in average climate conditions in the 
post-2000 period relative to the pre-2000 period—varying between –0.5 (red) and +0.5 (blue).

The observed patterns in climate conditions primarily reflect differences in average rainfall. As 
expected, agricultural activity is generally concentrated in the more favourable rainfall areas. 
The climate anomaly maps show that the deterioration in climate conditions has been most 
pronounced in central New South Wales and north-central Victoria (in the southern region) 
and in the northern portion of the western region. While most areas have experienced a 
decline in climate conditions, a minority of areas have experienced an improvement in average 
conditions post-2000.

Map of climate effects index (models 1, 2 and 3), cropping specialists
and mixed cropping–livestock, 1977–78 to 1999–2000 (top) and climate
anomaly 2000–01 to 2007–08 (bottom)

map 2

1977–78  to 1999–2000

2000–01 to 2007–08 anomaly

(1977–78  to 1999–2000 base)

GRDC regions

low: 0.5

high: 1.5

GRDC regions

low: 0.5

high: 0.5
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Productivity decomposition
A summary of the productivity decomposition 
results by region and industry is contained 
in table 6. Figures j and k display the average 
estimated productivity trends across all farms 
in all regions (Australia—cropping specialist 
and mixed cropping–livestock farms). Figure j 
shows the climate-adjusted TFP index and the 
standard TFP index. As would be expected, the 
climate-adjusted series displays significantly less 
volatility. Figure k shows the decomposition 
of climate-adjusted TFP into technical change, 
technical efficiency change and scale and mix 
efficiency change components. Given the 
smooth functional forms assumed for technical 
change and technical efficiency change, any 
annual volatility remaining in climate-adjusted 
TFP is effectively assigned to scale and mix 
efficiency change.

While the results of the productivity decomposition differ across regions and models, there are 
a number of common features.

Technical efficiency decline
Across all models technical efficiency is estimated to have declined gradually. Australia-wide, 
the rate of technical efficiency change is an annual average of around –0.3 per cent. This decline 
implies that the gap between the best (most efficient) farms (those defining the frontier) and 
the average farms (those with lower technical efficiency) has widened over the period. While 

farms overall are improving, the average farms 
have not been able to improve at the same rate 
as the best farms. This widening gap has acted 
as a drag on industry productivity growth.

Technical change the primary 
driver of productivity growth
Technical change is the key driver of long-run 
productivity growth in the industry. Australia-
wide, the rate of technical change was an 
annual average 1.5 per cent, while TFP growth 
was an annual average 1.2 per cent for cropping 
specialist and mixed cropping–livestock farms. 
A primary driver of productivity growth for the 
industry over the period has been the expansion 
of the frontier; that is, the development and 
adoption of new knowledge/technology.
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1977–78 to 2007–08j
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6 Estimated annual growth in productivity components  

 pre-2000 post-2000 total
 1977–78 to 1999–2000 1999–2000 to 2007–08 1977–78 to 2007–08

Cropping specialists and mixed cropping–livestock farms
Australia
Technical change (TC)  1.95% 0.40% 1.53%
Technical efficiency change (TE) –0.30% –0.34% –0.31%
Scale–mix efficiency (SME) 0.35% 0.17% 0.31%
Climate-adjusted TFP (TFPCA) 2.00% 0.24% 1.53%

Southern
Technical change (TC)  1.95% 0.45% 1.55%
Technical efficiency change (TE) –0.34% –0.35% –0.34%
Scale–mix efficiency (SME) 0.35% –0.26% 0.18%
Climate-adjusted TFP (TFPCA) 1.96% –0.16% 1.39%

Western
Technical change (TC)  2.25% 0.37% 1.74%
Technical efficiency change (TE) –0.30% –0.34% –0.31%
Scale–mix efficiency (SME) 0.22% 1.30% 0.50%
Climate-adjusted TFP (TFPCA) 2.17% 1.32% 1.94%

Northern
Technical change (TC)  1.70% 0.31% 1.32%
Technical efficiency change (TE) –0.22% –0.26% –0.23%
Scale–mix efficiency (SME) 0.45% 0.37% 0.43%
Climate-adjusted TFP (TFPCA) 1.93% 0.42% 1.53%

Cropping specialists only
Australia
Technical change (TC)  2.31% 0.54% 1.84%
Technical efficiency change (TE) –0.26% –0.33% –0.28%
Scale–mix efficiency (SME) 0.10% 0.85% 0.30%
Climate-adjusted TFP (TFPCA) 2.15% 1.06% 1.86%

Southern
Technical change (TC)  2.27% 1.00% 1.93%
Technical efficiency change (TE) –0.32% –0.36% –0.33%
Scale–mix efficiency (SME) –0.03% 0.79% 0.19%
Climate-adjusted TFP (TFPCA) 1.90% 1.43% 1.78%

Western
Technical change (TC)  2.81% –0.42% 1.94%
Technical efficiency change (TE) –0.08% –0.09% –0.08%
Scale–mix efficiency (SME) –0.08% 1.56% 0.35%
Climate-adjusted TFP (TFPCA) 2.65% 1.04% 2.22%

Northern
Technical change (TC)  1.97% 0.15% 1.48%
Technical efficiency change (TE) –0.25% –0.34% –0.27%
Scale–mix efficiency (SME) 0.71% 0.38% 0.63%
Climate-adjusted TFP (TFPCA) 2.45% 0.19% 1.84%
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Declining rate of technical change
Common across all models is a gradually declining rate of technical change. It should be 
noted that the decline in technical change is observed after controlling for the effects of 
deteriorating climate conditions. Australia-wide, technical change over the period 1977–78 to 
1999–2000 was estimated at an annual average of 1.95 per cent, with an average of just 0.4 per 
cent a year over the period 1999–2000 to 2007–08 (cropping specialist and mixed cropping–
livestock farms). Although the estimated rate of technical change declined, there is generally 
no indication of significant technical regress (negative technical change).

Scale and mix efficiency inversely 
related to terms of trade
The scale and mix efficiency component is 
observed to be inversely related to the farmers’ 
terms of trade (figure l), declining initially and then 
increasing steadily thereafter, largely in line with 
terms of trade decline. This result is consistent 
with the theory and results of O’Donnell (2010), 
who emphasised the potential for farmers to 
make productivity-decreasing (but profitability-
increasing) scale and mix decisions in response to 
improvements in the terms of trade.

Regional and industry-specific 
results
Annual average climate-adjusted TFP growth is 
highest in the western region, followed by the 

southern region and then the northern region. This is predominantly due to higher technical 
change and lower technical efficiency decline. Average climate-adjusted TFP growth during 
the period was higher among cropping specialists (1.84 per cent) in comparison with mixed 
cropping–livestock farms (1.53 per cent), again predominantly because of higher technical change.

For southern region cropping specialists, the decline in technical change was relatively 
modest, with annual average growth slowing to 1 per cent during the post-2000 period, in 
comparison with essentially zero growth for western and northern region cropping specialists 
(table 6). Much of this difference is due to the strong influence of climate variables in the 
southern cropping specialists model, such that most of the observed decline in productivity is 
explained by deteriorating climate conditions.

Technical efficiency levels
Technical efficiency scores represent farms’ relative distance from the frontier (where a value of 
1 indicates a ‘best practice’ farm lying on the frontier). A summary of mean technical efficiency 
scores is contained in table 7. The mean technical efficiency levels observed in this study are 
consistent with those observed in previous studies, with an average of around 0.8 across the 
different models. Higher mean technical efficiency was observed in the western region relative 

Scale and mix e�ciency and the
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to the northern and southern regions, and, in general, mean technical efficiency was higher in 
the cropping specialist models.

Map 3 is a map of farm technical efficiency levels for the southern, northern and western GRDC 
regions. For confidentiality reasons, farm technical efficiency scores are shown in interpolated 
form (each point represents the average technical efficiency score of all farms within a 50 km 
radius). Green denotes areas of higher efficiency (levels at or near 1), while red denotes areas of 
low efficiency (levels approaching 0.5).

Spatial patterns in technical efficiency are likely to reflect, among other things, land quality 
and/or climate factors not fully accounted for within the econometric model. In general, areas 
of poor technical efficiency tend to be located in relatively ‘marginal’ or opportunistic cropping 
areas, and in areas with a relatively low concentration of cropping specialist farms, often 
located near the boundaries of the defined regions—such as the northern (New South Wales) 
and western (South Australian) sections of the southern GRDC region. Conversely, areas with a 
high concentration of cropping farms tend to display higher technical efficiency (for example, 
the Darling Downs region in Queensland and the Yorke Peninsula in South Australia).

7 Mean technical efficiency levels  

 Southern Western Northern

Cropping specialists and mixed cropping–livestock 0.79 0.80 0.78
Cropping specialists only 0.80 0.86 0.78

Map of average technical efficiency scores (models 1, 2 and 3), 
cropping specialists and mixed cropping–livestock, 1977–78 to 2007–08 

map 3

GRDC regions

insufficient sample

low: 0.5

high: 1.0



25

7 Conclusions
This study had two primary objectives: to develop a methodology for controlling the effects 
of climate variability on measured productivity; and to decompose productivity change into 
key components through the application of production frontier estimation techniques. Both 
of these methodological developments contribute to an improved understanding of trends in 
Australian broadacre agricultural productivity.

Controlling for climate variability
A method of controlling for climate variability was developed, involving the combination 
of farm survey data with spatial rainfall and temperature climate data. An advantage of this 
approach is that it does not require modelling of on-farm management practices. In addition, 
the approach is sufficiently flexible that it can be calibrated to specific regions, time periods or 
industries.

The approach proved effective, with the chosen climate variables displaying a high degree 
of explanatory power. Estimated relationships between climate variables and farm output 
proved statistically significant and consistent with prior expectations. Differing climate variable 
responses were observed across regions and industries, with the southern region showing 
greater climate sensitivity than the northern and western regions. Cropping specialist farms 
were observed to be more sensitive to climate variability than mixed cropping–livestock farms.

The results highlight the importance of controlling for climate variability when measuring 
productivity, particularly given the observed decline in climate outcomes in recent years. 
Across all regions, declining climate conditions were observed to explain a significant 
proportion of the slowdown in productivity growth. Post-2000, declining climate conditions 
were estimated to have reduced output by an average of around 17–18 per cent among 
cropping specialist farms in the southern and western regions.

Productivity decomposition
After controlling for climate variability, farm productivity was further decomposed into key 
components, including technical change, technical efficiency change, and scale and mix 
efficiency change. The productivity decomposition results confirmed that technical change 
has been the key determinant of long-run productivity growth in Australia’s broadacre 
cropping industry.

Across all regions, a gradual decline in the rate of technical change was observed. For 
example, in the western region (among cropping specialists and mixed cropping–livestock 
farms), technical change was estimated to be 2.4 per cent a year over the period 1977–78 to 
1999–2000, with growth of just 0.6 per cent a year over the period 1999–2000 to 2007–08. The 
decline in the rate of technical change post-2000 was observed to be most pronounced in 
the western and northern regions. In the southern region, the decline in the rate of technical 
change was relatively modest, especially among cropping specialist farms.
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Growth in technical change was offset by a small decline in average technical efficiency 
levels over the period 1977–78 to 2007–08. Declining technical efficiency implies that the gap 
between the most efficient farms (those defining the frontier) and the less efficient farms has 
widened over the period. Australia-wide, technical efficiency change was estimated to average 
–0.4 per cent a year among cropping specialists and mixed cropping–livestock farms. Scale 
and mix efficiency change was observed to be inversely related to changes in the farmers’ 
terms of trade index, consistent with O’Donnell (2010).

Future research
There remain a number of directions for future research, including application to livestock 
industries, further refinement of climate variables and the generation of ongoing climate-
adjusted TFP series. Further refinements of the frontier estimation technique could 
include consideration of the determinants of technical efficiency, including human capital 
characteristics, as well as explicit treatment of land quality variation.
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Appendix A: Productivity  
 decomposition
Farm-level technical efficiency scores (TES) are defined, as in Battese and Coelli (1992):

 

Annual technical efficiency change (TEC), technical change (TCC) indexes are defined as in 
Coelli et al. (2005).  
 

 

Cumulative technical change (TC) and technical efficiency change (TE) indexes are defined as 
below, with TCi,1 = TEi,1 = 1  

From the estimated frontier model, the climate parameters estimates (âk πk ) are used to 
construct a farm-level climate effects index (CE). This index represents the total effect on farm 
output of deviations in climate variables (namely, seasonal rainfall and average maximum and 
minimum temperatures), holding all else constant.

The index is calculated as outlined below. The index is normalised to average climate 
conditions over the entire sample period (that is, 1 = Average climate conditions) 

ˆ
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where: 

Xk,i,t = climate variable k, observation for farm i in time period t

 âk, πk = climate variable parameters

 Ĉi,t = Climate variable contribution to predicted value (log (Yi,t ))

CEi,t = climate effects index for farm i in period t 

A farm-level total factor productivity (TFP) index is obtained separately via the standard 
ABARES indexing methodology (Zhao et al. 2010). A climate-adjusted farm-level TFP index is 
then defined as:  

A farm-level scale and mix efficiency (SME) index is then defined as a residual: 

For each index (TFP,TE, TC, SME, TFPCA, CE), regional and national averages are defined as 
the unweighted geometric mean of the farm-level indexes; for example: 
 

For the TFPCA, TE, TC, SME indexes, mean annual growth between periods s and t is 
defined as: 

 

NM

ˆ
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Appendix B: Estimation results 

 

8 Explanatory variable description 

variable description

Log
e
() Natural logarithm

Land Land quantity index
Labour Labour quantity index
Capital Capital quantity index
Mat_Ser Materials and services quantity index
Time Time trend (1978 = 1)
Winter_Rain Total rainfall (mm) April to October
Summer_Rain Total rainfall (mm) November to December
Winter_Tmax Average monthly maximum temperature April to October
Winter_Tmin Average monthly minimum temperature April to October
Summer_Rain_Lag Total rainfall (mm) November to December of previous financial year
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9 Stochastic frontier parameter estimates, southern, western and northern 
regions (cropping specialists and mixed cropping–livestock farms)

explanatory variable Southern (model 1) Western (model 2) Northern (model 3)

 estimate SE estimate SE estimate SE

Constant –0.149 (0.145) –1.301 (1.071) 0.180 (1.225)
Log

e
(Land) 0.263* (9.45E-3) 0.355* (0.021) 0.177* (0.012)

Log
e
(Labour) 0.071* (0.015) 0.087* (0.024) 0.106* (0.022)

Log
e
(Capital) 0.184* (0.010) 0.185* (0.016) 0.196* (0.014)

Log
e
(Mat_Ser) 0.522* (0.012) 0.453* (0.019) 0.543* (0.016)

Log
e
(Land)2 –0.058* (5.87E-3) –0.074* (0.013) –0.029* (9.25E-3)

Log
e
(Labour)2 5.88E-3 (0.012) 0.037 (0.037) 0.122* (0.029)

Log
e
(Capital)2 0.072* (8.84E-3) 0.063* (0.016) 0.128* (0.013)

Log
e
(Mat_Ser)2 0.045* (0.011) 0.024 (0.019) 0.102* (0.016)

Log
e
(Land)×Log

e
(Labour) 0.055* (0.017) 0.027 (0.038) 0.018 (0.024)

Log
e
(Land)×Log

e
(Capital) –0.042* (0.012) –0.016 (0.027) –0.027 (0.016)

Log
e
(Land)×Log

e
(Mat_Ser) 0.044* (0.013) 0.092* (0.028) –0.013 (0.018)

Log
e
(Labour)×Log

e
(Capital) –0.017 (0.019) –0.038 (0.036) –1.86E-3 (0.029)

Log
e
(Labour)×Log

e
(Mat_Ser) –0.025 (0.021) –0.039 (0.037) –0.097* (0.035)

Log
e
(Capital)×Log

e
(Mat_Ser) –0.044* (0.016) –0.101* (0.027) –0.169* (0.022)

Time 0.031* (2.38E-3) 0.037* (3.09E-3) 0.028* (3.81E-3)
Time2 –4.95E-4* (7.07E-5) –6.19E-4* (9.22E-5) –4.57E-4* (1.09E-4)
Winter_Rain 3.43E-3* (6.53E-4) 2.78E-3* (1.28E-3) 1.85E-3 (1.35E-3)
Winter_Rain2 –5.87E-6* (3.41E-7) –6.96E-6* (4.91E-7) –3.11E-6* (5.33E-7)
Winter_Tmax –0.126* (0.020) –0.022 (0.108) –0.156 (0.106)
Winter_Tmax2 5.00E-4 (7.36E-4) –1.72E-3 (2.45E-3) 9.92E-4 (2.14E-3)
Winter_Tmin 0.130* (0.032) 0.173* (0.088) 0.145* (0.043)
Winter_Tmin2 –1.50E-3 (2.33E-3) –7.39E-3 (5.31E-3) –1.41E-3 (2.30E-3)
Winter_Tmax*Winter_Rain 2.79E-4* (3.48E-5) 3.74E-4* (6.86E-5) 2.10E-4* (6.67E-5)
Winter_Tmin*Winter_Rain –3.34E-4* (4.17E-5) –3.97E-4* (8.16E-5) –2.41E-4* (6.55E-5)
Summer_Rain_Lag 3.17E-3* (2.20E-4) 2.27E-3* (4.48E-4) 3.20E-3* (2.91E-4)
Summer_Rain_Lag2 –3.40E-6* (4.95E-7) –1.41E-6 (1.10E-6) –1.48E-6* (3.36E-7)
Winter_Rain*Summer_Rain_Lag –3.90E-6* (6.05E-7) –5.36E-6* (1.05E-6) –4.91E-6* (4.79E-7)
Summer_Rain     1.12E-3* (2.49E-4)
Summer_Rain2         –9.09E-7* (3.14E-7)
      

Composite error term coefficients          
σ2    0.921* (0.066) 0.152* (0.040) 0.926* (0.099)
γ 0.904* (7.71E-3) 0.580* (0.111) 0.887* (0.013)
μ –1.825* (0.146) 0.110 (0.178) –1.812* (0.297)
η –0.014* (1.82E-3) –0.014* (5.35E-3) –8.83E-3* (2.66E-3)
      

Observations 6 761 2 658 3 153
Cross-sections 2 080 747 1 064
Time periods 31 31 31

* Indicates parameter significant at 5 per cent level. SE is standard error.
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10 Stochastic frontier parameter estimates, southern, western and northern 
regions (cropping specialists only)

explanatory variable Southern Western Northern

 estimate SE estimate SE estimate SE

Constant –0.322 (0.173) –1.895 (1.985) –3.216 (2.135)
Log

e
(Land) 0.287* (0.015) 0.340* (0.039) 0.227* (0.025)

Log
e
(Labour) 0.095* (0.023) 0.087 (0.049) 0.074* (0.038)

Log
e
(Capital) 0.160* (0.016) 0.249* (0.032) 0.158* (0.027)

Log
e
(Mat_Ser) 0.480* (0.018) 0.411* (0.034) 0.528* (0.028)

Log
e
(Land)2 –0.091* (0.011) –0.053* (0.025) –0.036* (0.017)

Log
e
(Labour)2 9.99E-4 (0.016) 0.078 (0.068) 0.103* (0.041)

Log
e
(Capital)2 0.058* (0.014) 0.060* (0.029) 0.093* (0.025)

Log
e
(Mat_Ser)2 0.030 (0.018) 0.028 (0.027) 0.072* (0.024)

Log
e
(Land)×Log

e
(Labour) 0.078* (0.028) –0.022 (0.064) –0.039 (0.040)

Log
e
(Land)×Log

e
(Capital) –0.019 (0.020) –0.016 (0.049) –0.019 (0.030)

Log
e
(Land)×Log

e
(Mat_Ser) 0.040 (0.021) 0.072 (0.042) 1.37E-3 (0.030)

Log
e
(Labour)×Log

e
(Capital) –0.049 (0.029) –0.061 (0.067) 6.61E-3 (0.049)

Log
e
(Labour)×Log

e
(Mat_Ser) 7.29E-3 (0.033) 0.046 (0.061) –0.063 (0.055)

Log
e
(Capital)×Log

e
(Mat_Ser) –0.024 (0.026) –0.162* (0.046) –0.122* (0.037)

Time 0.032* (3.75E-3) 0.053* (5.95E-3) 0.034* 6.14E-3
Time2 –4.15E-4* (1.12E-4) –1.06E-3* (1.59E-4) –6.02E-4* 1.74E-4
Winter_Rain 8.19E-3* (1.30E-3) 7.09E-3* (2.76E-3) 2.83E-3 2.24E-3
Winter_Rain2 –8.06E-6* (6.47E-7) –1.85E-5* (1.73E-6) –3.64E-6* 9.01E-7
Winter_Tmax –0.190* (0.029) –0.076 (0.196) 0.160 (0.185)
Winter_Tmax2 2.60E-3* (1.15E-3) 6.56E-4 (4.43E-3) –5.46E-3 3.70E-3
Winter_Tmin 0.172* (0.057) 0.189 (0.157) 0.048 (0.077)
Winter_Tmin2 –1.88E-3 (4.09E-3) –0.016 (0.010) 3.01E-3 4.15E-3
Winter_Tmax*Winter_Rain 1.64E-4* (6.94E-5) 3.10E-4 (1.58E-4) 1.64E-4 1.09E-4
Winter_Tmin*Winter_Rain –4.57E-4* (7.30E-5) 6.81E-5 (2.32E-4) –2.05E-4 1.09E-4
Summer_Rain_Lag 4.02E-3* (4.05E-4) 4.43E-3* (8.91E-4) 2.86E-3* 5.07E-4
Summer_Rain_Lag2 –5.00E-6* (9.31E-7) –3.84E-6 (1.97E-6) –1.10E-6 6.23E-7
Winter_Rain*Summer_Rain_Lag –4.55E-6* (1.18E-6) –1.01E-5* (2.25E-6) –4.61E-6* 8.31E-7
Summer_Rain     1.66E-3* 4.41E-4
Summer_Rain2         –1.30E-6* 5.45E-7
      

Composite error term coefficients          
σ2    0.854* (0.058) 0.192 (0.166) 0.984* (0.159)
γ 0.877* (0.011) 0.612 (0.334) 0.882* (0.019)
μ –1.731* (0.130) –0.408 (1.075) –1.862* (0.400)
η –0.015* (3.45E-3) –5.48E-3 (0.011) –0.011* (4.19E-3)
      

Observations 3 137 1 134 1 410
Cross-sections 1 111 380 559
Time periods 31 31 31

* Indicates parameter significant at 5 per cent level. SE is standard error.
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